Chapter 1:
Rational numbers
1.1 Integer
What Are Integers?
a) A positive or negative whole
numbers, including zero , is called an
integer
Activity: Recognise and then circle the integers
1.1 (a) Positive & Negative Numbers
a. Positive number – a
number greater than
zero.
0123456
b) Negative number – a
number less than zero.
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Examples of (+) & (-) Numbers in real life situation
(a)Temperature
High
temperature
(positive numbers)
Low temperature
(Negative numbers)
Negative Numbers Are Used to
Measure Under Sea Level
30
20
10
0
-10
-20
-30
-40
-50
Hint
◼ If you don’t see a negative
or positive sign in front of a
number it is positive.
+9
1.1(c)Integers on a number line
Left Right
Less than 0 More than 0
0
1.1(d)Compare & Arrange Integers
Example: Compare and Arrange The
Integers
-3, 4, 2, -5, 6, 0, -1
(a) In ascending order
(b) In descending order
1.2 Basic arithmetic operation involving
integers
Integers addition +( + ) = +
and subtraction -(- )=+
+( - ) = -
rules!! -(+)=-
(a) Addition
To add a positive integer, we count to the right on
the number line
To add a negative integer, we count to the left on
the number line
-+
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Example 1: solve
3 + (-5) = 3 – 5
= -2
+
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-
Example 2: solve
-3 + (+7) = +4
-
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
+
Example 3 : solve
-3 + (-4)
Solution:
-3 + (-4) = -3 -4
= -7
-
(b) Subtraction
To subtract a positive integer, we count to
the left on the number line
To subtract a negative integer, we count to
the right on the number line
subtract a positive integer subtract a negative integer
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Example 1 : solve
5-8
Solution: -
Example 2 : solve
3 – (- 6 )
Solution:
3 – (- 6 ) = 3 + 6
=9
+
Let’s play
-9 -5 -4 -3 -2 -1 0
-5 -4 -3 -2 -1 0 1
-4 -3 -2 -1 0 1 2
-3 -2 -1 0 1 2 3
-2 -1 0 1 2 3 4
-1 0 1 2 3 4 5
0 12 3 4 5 6
Let’s play 6 54 3 2 1 0
5 4 3 2 1 0 -1
4 3 2 1 0 -1 -2
3 2 1 0 -1 -2 -3
2 1 0 -1 -2 -3 -4
1 0 -1 -2 -3 -4 -5
0 1 2 3 -4 -5 -6
Math Challenge !!
-4 1 21
-4 3 -3 (-4)
Aren’t integers
interesting?