The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by nazirahbrahim74, 2021-06-29 08:54:29

FlipWorkbookDUM20132

Notes & Tutorial

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(g) ∫( 3 + 2)(2 − 1) (h) ∫ 3 3−3 2+4
2

2. Find the following indefinite integral.

(a) ∫ 3 (b) ∫ 1
2

(c) ∫ − 5 (d) ∫ 7
2

98

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

3 (f) ∫ −5
+1
(e) ∫ 2

3

(g) ∫ 4 (h) ∫ −10
3 +2 6−5

3. Find the following indefinite integral. (b) ∫( − 9)8
(a) ∫( + 1)3

99

(c) ∫(4 + 7)5 DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(d) ∫(3 − 8)6

(e) ∫ 2(4 − 3 )−6 (f) ∫ 5
(4−3 )3

100

4. Find the following indefinite integral. DUM20132 ENGINEERING MATHEMATICS 2
(a) ∫ 4 UNIT 4: INTEGRATION

(b) ∫ −5

(c) ∫ 31 (d) ∫ 4 −41

(d) ∫(2 2 − −3 ) (e) ∫( + 1 −2 )
2

101

5. Find the following indefinite integral. DUM20132 ENGINEERING MATHEMATICS 2
(a) ∫ 3   UNIT 4: INTEGRATION

(b) ∫ 3 4  

(c) ∫ 25 (d) ∫ 2
3

(d) ∫ 1 6 (e) ∫ −4 4  
3

102

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

6. Find the following indefinite integral.

(a) ∫ 3 2+2 (b) ∫ 9 +
3+2 −7 + 9

7. Find the following indefinite integral.

(a) ∫ 1 (b) ∫ 5
9+ 2 2+4

103

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(c) ∫ 1 (d) ∫ 3
√36− 2 √16− 2

(e) ∫ 1 (f) ∫ 1
25− 2 81− 2

104

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

UNIT LEARNING After completing the unit, students should be able to:
OUTCOMES 3. Integrate composite functions byusing substitution method.
4. Integrate product of functionsusing integration by part.
5. Integrate quotient of functions using partial fraction method.

4.3 INTEGRATION

To integrate functions which are not in standard form, we need to use a few other
techniques to make the process of integration easier. There are three techniques:

4.3.1 Integration by Substitution
4.3.2 Integration by Part
4.3.3 Integration by Partial Fraction

4.3.1 INTEGRATION BY SUBTITUTION

∫ ( ( )) ′( ) = ( ( )) +

OR

∫ ( ) = ( ) +

STEP: where = ( ) and = ′( )

1. Choose u = g(x)
Find du = g'(x)
2.
dx
3. Substitute u = g(x), du = g ‘(x) dx
4. Solve the integration
5. Substitute u with g(x) therefore the final answer is in terms of x.

105

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

Example :

Evaluate the following using the appropriate substitution:

(a) ∫ 2 2

Solution :

Let = 2 ⇒ = 2
∴ ∫ 2 2 = ∫ 22 = ∫ = + = 2 +

 ( )(b) 3x2 x3 − 1 dx

Solution :

Let u = (x3 − 1)  du = 3x 2 dx

 3x2 (x3 − 1)3 dx = u du

= u2 + c +c
2

= (x3 − 1)2
2

(c) ∫

Solution :

Let = ⇒ =
∴ ∫ = ∫ ∫ = + = +

(d) ∫


Solution :

Let = ⇒ = 1



2 ( )2
∴ ∫ = ∫ = 2 + = 2 +

106

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(e) ∫(4 + 5)7

Solution :

From the formula (Substitution Type I): ∫(4 + 5)7 = (4 +5)8 = (4 +5)8 +
4(8) 32

or using,

INTEGRATION BY SUBSTITUTION

= 4 + 5 ⇒ = 4 ⇒ =
4
8 (4 + 5)8
∴ ∫(4 + 5)7 = ∫ 7 = 1 (8) + = 32 +
4 4

(f) ∫ 1
4 −5

Solution :

From the formula (Substitution Type II): ∫ 1 = 1 |4 − 5| +
4 −5 4

or using,

INTEGRATION BY SUBSTITUTION

= 4 − 5 ⇒ = 4 ⇒ =
4
1 1 1 1
∴ ∫ 4 − 5 = ∫ ( ) 4 = 4 + = 4 |4 − 5| +

(g) ∫
+

Solution :

From the formula (Substitution Type III):

Let ( ) = 1 + ⇒ ′( ) =

∴ ∫ = |1 + | +
1+

or using,

INTEGRATION BY SUBSTITUTION

= 1 + ⇒ =

1 + = |1 + | +
∴ ∫ 1 + = ∫ =

107

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

EXERCISE 4.3.1

1. Evaluate the following using the appropriate substitution.
(a) ∫ 3 2 3  

(b) ∫ 2  

(c) ∫ 2 ( 2 + 3)4  
(d) ∫ ( 2 − 3)5

108

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(e) ∫ 2√ 3 + 5

(f) ∫ 2  
√ 2+1

(g) ∫ 3 2  
√ 3−2

(h) ∫ 2

109

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(i) ∫ +2  
2+4 +5

(j) ∫ 5  
5 −3

(k) ∫
(1− )3

(l) ∫ 1 2


110

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

TUTORIAL 4.3.1

1. Evaluate the following using the appropriate substitution.

(a) ∫ 9 2 (1 − 3 1

)2

(b) ∫ 2(1 + 3)4

(c) ∫
√1−4 2

1

(d) ∫ (1 − 2)2

111

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(e) ∫ 4 (2 2 − 3)6

(f) ∫
3−

(g) ∫ 4 +6
( 2+3 +7)4

(h) ∫ 3 (5 4)

112

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

4.3.2 INTEGRATION BY PARTS

∫ = − ∫

The priority of choosing u :

L = Logarithmic function such as ln(x), log(x)
I = Inverse Trigonometric Function such as sin-1(x), cos-1(x), tan-1(x)
A = Algebraic Function such as x, x2, x3
T = Trigonometric Funtion such as sin(x), cos(x), tan (x)
E = Exponential Function such as ex, 3x

STEP: Choose , differentiate ⇒ and find

1.
2.
3. Choose , integrate and find
4. Substitute into the formula : − ∫

Simplify and solve the integration.

113

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

Example :

Evaluate the following.

(a) ∫ −3 = and = −3

Solution :

Choose:

= 1 ⇒ = ∫ 1 = ∫ −3 ⇒ = − −3
3


∴ ∫ = − ∫

= (− −33 ) − ∫ − −3
3

= − −3 − −3 +

39

(b) ∫

Solution :

Choose: = and =

= 1 ⇒ = 1 ∫ 1 = ∫ ⇒ = 2
2

∴ ∫ = − ∫

= ( 2) − ∫ 2 (1 )
2
2
= 2 − ∫
22

= 2 − 2 +
24

114

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(c) ∫

Solution :

Choose: = and =
∫ 1 = ∫ ⇒ =
= 1 ⇒ =



∴ ∫ = − ∫
= − ∫
= − +

115

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

EXERCISE 4.3.2

1. Evaluate the following using the appropriate substitution.
(a) ∫ 2

(b) ∫ 2

(c) ∫ −

116

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(d) ∫
(e) ∫ 4
(f) ∫ −2
(g) ∫ 2

117

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

TUTORIAL 4.3.2

1. Evaluate the following using the appropriate substitution.
(a) ∫

(b) ∫ −2

(c) ∫ 3

118

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(d) ∫ 2

(e) ∫ 3

(f) ∫ 2

119

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

4.3.3 INTEGRATION BY PARTIAL FRACTION

Denominator Expression Form of Partial Fractions
Linear factor
( )
( + )( + ) ( + ) + ( + )

Example :

Find

(a) ∫ 1
( −2)( −3)

Solution :

1 = +
( −2)( −3) −2 −3

= ( −3)+ ( −2)

( −2)( −3)

∴ 1 = ( − 3) + ( − 2)

Using cover-up method,
Let = 3; 1 = (3 − 3) + (3 − 2)

1 = 0 +
= 1

Let = 2; 1 = (2 − 3) + (2 − 2)
1 = −
= −1

∫ 1 = ∫ −1 + 1
( −2)( −3) −2 −3

= − | − 2| + | − 3| +

120

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(b) ∫ 3
2−4

Solution :

∫ 3 = ∫ 3
2−4 ( −2)( +2)

3 = +

( −2)( +2) −2 +2

= ( +2)+ ( −2)

( −2)( +2)

∴ 3 = ( + 2) + ( − 2)

Using cover-up method,

Let = 2; 3(2) = (2 + 2) + (2 − 2)

6 = 4
= 3

2

Let = −2; 3(−2) = (−2 + 2) + (−2 − 2)

−6 = −4
= 3

2

∫ 3 = ∫ 3 + 3
( −2)( +2) 2( −2) 2( +2)
= 3 | − 2| + 3 | + 2| +

22

121

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

EXERCISE 4.3.3

Express the functions in each of the following integrals in partial fractions and hence perform the integration.

(a) ∫ 1
( +5)( +6)

122

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(b) ∫ 10
( −4)(2+5 )

123

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(c) ∫ 3
2− −2

124

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(d) ∫ 2 +3
2−9

125

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

TUTORIAL 4.3.3

Express the functions in each of the following integrals in partial fractions and hence perform the integration.

(a) ∫ 6
( +1)( −2)

126

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(b) ∫ 3 +2
( −1)(1−2 )

127

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(c) ∫ +1  
2−25

128

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(d) ∫ 2 +1
2+5 +6

129

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

UNIT LEARNING After completing the unit, students should be able to:
OUTCOMES 6. Evaluate the definite integraIs.

4.4 DEFINITE INTEGRAL

https://www.mathsisfun.com/calculus/integration-definite.html



∫ ( ) = ( ) − ( )



SOME PROPERTIES OF DEFINITE INTEGRAL

ba

(i)  f (x) dx = − f (x) dx

ab

a

(ii)  f (x) dx = 0

a

mb b

(iii)  f (x) dx +  f (x) dx =  f (x) dx

am a

130

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

Example :

Evaluate.

(a) 3

Solution : ∫ ( 2 + 3)

1

∫13( 2 + 3) = [ 3 + 3

3 3 ]

1
= [33 + 3(3)] − [13 + 3(1)]
33

27 1
= [ 3 + 9] − [3 + 3]

= 18 + 10

3

= 21 1 @ 64

33

(b)

Solution : ∫  

− 2

∫− 2   = [−cos ]− 2
= [−cos( )] − [−cos (− )]

2

= [1] − [0]
=1

131

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

EXERCISE 4.4
Evaluate the following.
(a)

2

∫ 6 2

0

(b)

3

1
∫ 2

2

(c)

25

∫ √

1

132

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(d)

2

∫(1 + 2 + 2)

−1

(e)

3

∫ ( 4 + 6 2 + 9) 

1

(f)

6

∫ ( 2 + 1)

−1

(g)


2

∫ 2  

− 2

133

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

TUTORIAL 4.4
Evaluate the following.
(a)

2

∫ (3 − 3) 

0

(b)

2

∫ ( + 2 − 2) 

−1

(c)

9

∫ 2 √  

4

134

DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION

(d)

0

∫ ( + 1)( + 2)

−2

(e)

3 2 − 1
∫ 2

1

(f)

⁄2

∫ 2

0

135


Click to View FlipBook Version