DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(g) ∫( 3 + 2)(2 − 1) (h) ∫ 3 3−3 2+4
2
2. Find the following indefinite integral.
(a) ∫ 3 (b) ∫ 1
2
(c) ∫ − 5 (d) ∫ 7
2
98
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
3 (f) ∫ −5
+1
(e) ∫ 2
3
(g) ∫ 4 (h) ∫ −10
3 +2 6−5
3. Find the following indefinite integral. (b) ∫( − 9)8
(a) ∫( + 1)3
99
(c) ∫(4 + 7)5 DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(d) ∫(3 − 8)6
(e) ∫ 2(4 − 3 )−6 (f) ∫ 5
(4−3 )3
100
4. Find the following indefinite integral. DUM20132 ENGINEERING MATHEMATICS 2
(a) ∫ 4 UNIT 4: INTEGRATION
(b) ∫ −5
(c) ∫ 31 (d) ∫ 4 −41
(d) ∫(2 2 − −3 ) (e) ∫( + 1 −2 )
2
101
5. Find the following indefinite integral. DUM20132 ENGINEERING MATHEMATICS 2
(a) ∫ 3 UNIT 4: INTEGRATION
(b) ∫ 3 4
(c) ∫ 25 (d) ∫ 2
3
(d) ∫ 1 6 (e) ∫ −4 4
3
102
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
6. Find the following indefinite integral.
(a) ∫ 3 2+2 (b) ∫ 9 +
3+2 −7 + 9
7. Find the following indefinite integral.
(a) ∫ 1 (b) ∫ 5
9+ 2 2+4
103
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(c) ∫ 1 (d) ∫ 3
√36− 2 √16− 2
(e) ∫ 1 (f) ∫ 1
25− 2 81− 2
104
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
UNIT LEARNING After completing the unit, students should be able to:
OUTCOMES 3. Integrate composite functions byusing substitution method.
4. Integrate product of functionsusing integration by part.
5. Integrate quotient of functions using partial fraction method.
4.3 INTEGRATION
To integrate functions which are not in standard form, we need to use a few other
techniques to make the process of integration easier. There are three techniques:
4.3.1 Integration by Substitution
4.3.2 Integration by Part
4.3.3 Integration by Partial Fraction
4.3.1 INTEGRATION BY SUBTITUTION
∫ ( ( )) ′( ) = ( ( )) +
OR
∫ ( ) = ( ) +
STEP: where = ( ) and = ′( )
1. Choose u = g(x)
Find du = g'(x)
2.
dx
3. Substitute u = g(x), du = g ‘(x) dx
4. Solve the integration
5. Substitute u with g(x) therefore the final answer is in terms of x.
105
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
Example :
Evaluate the following using the appropriate substitution:
(a) ∫ 2 2
Solution :
Let = 2 ⇒ = 2
∴ ∫ 2 2 = ∫ 22 = ∫ = + = 2 +
( )(b) 3x2 x3 − 1 dx
Solution :
Let u = (x3 − 1) du = 3x 2 dx
3x2 (x3 − 1)3 dx = u du
= u2 + c +c
2
= (x3 − 1)2
2
(c) ∫
Solution :
Let = ⇒ =
∴ ∫ = ∫ ∫ = + = +
(d) ∫
Solution :
Let = ⇒ = 1
2 ( )2
∴ ∫ = ∫ = 2 + = 2 +
106
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(e) ∫(4 + 5)7
Solution :
From the formula (Substitution Type I): ∫(4 + 5)7 = (4 +5)8 = (4 +5)8 +
4(8) 32
or using,
INTEGRATION BY SUBSTITUTION
= 4 + 5 ⇒ = 4 ⇒ =
4
8 (4 + 5)8
∴ ∫(4 + 5)7 = ∫ 7 = 1 (8) + = 32 +
4 4
(f) ∫ 1
4 −5
Solution :
From the formula (Substitution Type II): ∫ 1 = 1 |4 − 5| +
4 −5 4
or using,
INTEGRATION BY SUBSTITUTION
= 4 − 5 ⇒ = 4 ⇒ =
4
1 1 1 1
∴ ∫ 4 − 5 = ∫ ( ) 4 = 4 + = 4 |4 − 5| +
(g) ∫
+
Solution :
From the formula (Substitution Type III):
Let ( ) = 1 + ⇒ ′( ) =
∴ ∫ = |1 + | +
1+
or using,
INTEGRATION BY SUBSTITUTION
= 1 + ⇒ =
1 + = |1 + | +
∴ ∫ 1 + = ∫ =
107
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
EXERCISE 4.3.1
1. Evaluate the following using the appropriate substitution.
(a) ∫ 3 2 3
(b) ∫ 2
(c) ∫ 2 ( 2 + 3)4
(d) ∫ ( 2 − 3)5
108
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(e) ∫ 2√ 3 + 5
(f) ∫ 2
√ 2+1
(g) ∫ 3 2
√ 3−2
(h) ∫ 2
109
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(i) ∫ +2
2+4 +5
(j) ∫ 5
5 −3
(k) ∫
(1− )3
(l) ∫ 1 2
110
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
TUTORIAL 4.3.1
1. Evaluate the following using the appropriate substitution.
(a) ∫ 9 2 (1 − 3 1
)2
(b) ∫ 2(1 + 3)4
(c) ∫
√1−4 2
1
(d) ∫ (1 − 2)2
111
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(e) ∫ 4 (2 2 − 3)6
(f) ∫
3−
(g) ∫ 4 +6
( 2+3 +7)4
(h) ∫ 3 (5 4)
112
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
4.3.2 INTEGRATION BY PARTS
∫ = − ∫
The priority of choosing u :
L = Logarithmic function such as ln(x), log(x)
I = Inverse Trigonometric Function such as sin-1(x), cos-1(x), tan-1(x)
A = Algebraic Function such as x, x2, x3
T = Trigonometric Funtion such as sin(x), cos(x), tan (x)
E = Exponential Function such as ex, 3x
STEP: Choose , differentiate ⇒ and find
1.
2.
3. Choose , integrate and find
4. Substitute into the formula : − ∫
Simplify and solve the integration.
113
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
Example :
Evaluate the following.
(a) ∫ −3 = and = −3
Solution :
Choose:
= 1 ⇒ = ∫ 1 = ∫ −3 ⇒ = − −3
3
∴ ∫ = − ∫
= (− −33 ) − ∫ − −3
3
= − −3 − −3 +
39
(b) ∫
Solution :
Choose: = and =
= 1 ⇒ = 1 ∫ 1 = ∫ ⇒ = 2
2
∴ ∫ = − ∫
= ( 2) − ∫ 2 (1 )
2
2
= 2 − ∫
22
= 2 − 2 +
24
114
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(c) ∫
Solution :
Choose: = and =
∫ 1 = ∫ ⇒ =
= 1 ⇒ =
∴ ∫ = − ∫
= − ∫
= − +
115
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
EXERCISE 4.3.2
1. Evaluate the following using the appropriate substitution.
(a) ∫ 2
(b) ∫ 2
(c) ∫ −
116
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(d) ∫
(e) ∫ 4
(f) ∫ −2
(g) ∫ 2
117
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
TUTORIAL 4.3.2
1. Evaluate the following using the appropriate substitution.
(a) ∫
(b) ∫ −2
(c) ∫ 3
118
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(d) ∫ 2
(e) ∫ 3
(f) ∫ 2
119
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
4.3.3 INTEGRATION BY PARTIAL FRACTION
Denominator Expression Form of Partial Fractions
Linear factor
( )
( + )( + ) ( + ) + ( + )
Example :
Find
(a) ∫ 1
( −2)( −3)
Solution :
1 = +
( −2)( −3) −2 −3
= ( −3)+ ( −2)
( −2)( −3)
∴ 1 = ( − 3) + ( − 2)
Using cover-up method,
Let = 3; 1 = (3 − 3) + (3 − 2)
1 = 0 +
= 1
Let = 2; 1 = (2 − 3) + (2 − 2)
1 = −
= −1
∫ 1 = ∫ −1 + 1
( −2)( −3) −2 −3
= − | − 2| + | − 3| +
120
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(b) ∫ 3
2−4
Solution :
∫ 3 = ∫ 3
2−4 ( −2)( +2)
3 = +
( −2)( +2) −2 +2
= ( +2)+ ( −2)
( −2)( +2)
∴ 3 = ( + 2) + ( − 2)
Using cover-up method,
Let = 2; 3(2) = (2 + 2) + (2 − 2)
6 = 4
= 3
2
Let = −2; 3(−2) = (−2 + 2) + (−2 − 2)
−6 = −4
= 3
2
∫ 3 = ∫ 3 + 3
( −2)( +2) 2( −2) 2( +2)
= 3 | − 2| + 3 | + 2| +
22
121
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
EXERCISE 4.3.3
Express the functions in each of the following integrals in partial fractions and hence perform the integration.
(a) ∫ 1
( +5)( +6)
122
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(b) ∫ 10
( −4)(2+5 )
123
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(c) ∫ 3
2− −2
124
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(d) ∫ 2 +3
2−9
125
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
TUTORIAL 4.3.3
Express the functions in each of the following integrals in partial fractions and hence perform the integration.
(a) ∫ 6
( +1)( −2)
126
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(b) ∫ 3 +2
( −1)(1−2 )
127
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(c) ∫ +1
2−25
128
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(d) ∫ 2 +1
2+5 +6
129
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
UNIT LEARNING After completing the unit, students should be able to:
OUTCOMES 6. Evaluate the definite integraIs.
4.4 DEFINITE INTEGRAL
https://www.mathsisfun.com/calculus/integration-definite.html
∫ ( ) = ( ) − ( )
SOME PROPERTIES OF DEFINITE INTEGRAL
ba
(i) f (x) dx = − f (x) dx
ab
a
(ii) f (x) dx = 0
a
mb b
(iii) f (x) dx + f (x) dx = f (x) dx
am a
130
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
Example :
Evaluate.
(a) 3
Solution : ∫ ( 2 + 3)
1
∫13( 2 + 3) = [ 3 + 3
3 3 ]
1
= [33 + 3(3)] − [13 + 3(1)]
33
27 1
= [ 3 + 9] − [3 + 3]
= 18 + 10
3
= 21 1 @ 64
33
(b)
Solution : ∫
− 2
∫− 2 = [−cos ]− 2
= [−cos( )] − [−cos (− )]
2
= [1] − [0]
=1
131
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
EXERCISE 4.4
Evaluate the following.
(a)
2
∫ 6 2
0
(b)
3
1
∫ 2
2
(c)
25
∫ √
1
132
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(d)
2
∫(1 + 2 + 2)
−1
(e)
3
∫ ( 4 + 6 2 + 9)
1
(f)
6
∫ ( 2 + 1)
−1
(g)
2
∫ 2
− 2
133
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
TUTORIAL 4.4
Evaluate the following.
(a)
2
∫ (3 − 3)
0
(b)
2
∫ ( + 2 − 2)
−1
(c)
9
∫ 2 √
4
134
DUM20132 ENGINEERING MATHEMATICS 2
UNIT 4: INTEGRATION
(d)
0
∫ ( + 1)( + 2)
−2
(e)
3 2 − 1
∫ 2
1
(f)
⁄2
∫ 2
0
135