The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

EE382N-4 Embedded Systems Architecture The ARM Instruction Set Architecture Mark McDermott With help from our good friends at ARM. Fall 2008

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-06-20 07:09:03

The ARM Instruction Set

EE382N-4 Embedded Systems Architecture The ARM Instruction Set Architecture Mark McDermott With help from our good friends at ARM. Fall 2008

EE382N-4 Embedded Systems Architecture

Load and Stores with User Mode Privilege

ƒ When using post‐indexed addressing, there is a further form of 
Load/Store Word/Byte:

– <LDR|STR>{<cond>}{B}T Rd, <post_indexed_address>

ƒ When used in a privileged mode, this does the load/store with 
user mode privilege.

– Normally used by an exception handler that is emulating a memory access 
instruction that would normally execute in user mode.

8/22/2008 51

EE382N-4 Embedded Systems Architecture

Example Usage of Addressing Modes

ƒ Imagine an array, the first element of which is pointed to by the contents of r0.

ƒ If we want to access a particular element, element Memory
then we can use pre‐indexed addressing: Offset

– r1 is element we want.

– LDR r2, [r0, r1, LSL #2]

3 12

ƒ If we want to step through every Pointer to 2 8
element of the array, for instance start of array 1 4
to produce sum of elements in the 0 0
r0

array, then we can use post‐indexed addressing within a loop:

– r1 is address of current element (initially equal to r0).
– LDR r2, [r1], #4

ƒ Use a further register to store the address of final element,

so that the loop can be correctly terminated.

8/22/2008 52

EE382N-4 Embedded Systems Architecture

Offsets for Halfword and Signed Halfword / Byte Access

ƒ The Load and Store Halfword and Load Signed Byte or Halfword 
instructions can make use of pre‐ and post‐indexed addressing in 
much the same way as the basic load and store instructions.

ƒ However the actual offset formats are more constrained:

– The immediate value is limited to 8 bits (rather than 12 bits) giving an offset 
of 0‐255 bytes.

– The register form cannot have a shift applied to it.

8/22/2008 53

EE382N-4 Embedded Systems Architecture

Effect of endianess

ƒ The ARM can be set up to access its data in either little or big 
endian format. 

ƒ Little endian:

– Least significant byte of a word is stored in bits 0‐7 of an addressed word.

ƒ Big endian:

– Least significant byte of a word is stored in bits 24‐31 of an addressed word.

ƒ This has no real relevance unless data is stored as words and then 
accessed in smaller sized quantities (halfwords or bytes).

– Which byte / halfword is accessed will depend on the endianess of the 
system involved.

8/22/2008 54

EE382N-4 Embedded Systems Architecture

YA Endianess Example

r0 = 0x11223344

31 24 23 16 15 8 7 0

11 22 33 44

STR r0, [r1]

31 24 23 16 15 8 7 0 Memory 31 24 23 16 15 8 7 0

r1 = 0x100 11 22 33 44 44 33 22 11 r1 = 0x100

Little-endian LDRB r2, [r1] Big-endian

31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0

00 00 00 44 00 00 00 11

r2 = 0x44 r2 = 0x11

8/22/2008 55

EE382N-4 Embedded Systems Architecture

Block Data Transfer (1)

ƒ The Load and Store Multiple instructions (LDM / STM) allow 
betweeen 1 and 16 registers to be transferred to or from 
memory.

ƒ The transferred registers can be either:

– Any subset of the current bank of registers (default).
– Any subset of the user mode bank of registers when in a priviledged mode 

(postfix instruction with a ‘^’).

31 28 27 24 23 22 21 20 19 16 15 0

Cond 1 0 0 P U S W L Rn Register list

Condition field Base register Each bit corresponds to a particular

Up/Down bit Load/Store bit register. For example:

0 = Down; subtract offset from base 0 = Store to memory • Bit 0 set causes r0 to be transferred.
1 = Up ; add offset to base 1 = Load from memory • Bit 0 unset causes r0 not to be transferred.

Pre/Post indexing bit Write- back bit At least one register must be
transferred as the list cannot be empty.
0 = Post; add offset after transfer, 0 = no write-back
1 = Pre ; add offset before transfer 1 = write address into base

8/22/2008 PSR and force user bit

0 = don’t load PSR or force user mode
1 = load PSR or force user mode

56

EE382N-4 Embedded Systems Architecture

Block Data Transfer (2)

ƒ Base register used to determine where memory access should 
occur.

– 4 different addressing modes allow increment and decrement inclusive or 
exclusive of the base register location.

– Base register can be optionally updated following the transfer (by appending 
it with an ‘!’.

– Lowest register number is always transferred to/from lowest memory 
location accessed.

ƒ These instructions are very efficient for

– Saving and restoring context

• For this useful to view memory as a stack.

– Moving large blocks of data around memory

• For this useful to directly represent functionality of the instructions.

8/22/2008 57

EE382N-4 Embedded Systems Architecture

Stacks

ƒ A stack is an area of memory which grows as new data is 
“pushed” onto the “top” of it, and shrinks as data is “popped” off 
the top.

ƒ Two pointers define the current limits of the stack.

– A base pointer 

• used to point to the “bottom” of the stack (the first location).

– A stack pointer

• used to point the current “top” of the stack. 

PUSH 3 POP Result of
{1,2,3} 2 2 pop = 3
1 SP
SP BASE 1

SP BASE
BASE

8/22/2008 58

EE382N-4 Embedded Systems Architecture

Stack Operation

ƒ Traditionally, a stack grows down in memory, with the last “pushed” value at 
the lowest address. The ARM also supports ascending stacks, where the stack 
structure grows up through memory. 

ƒ The value of the stack pointer can either:

– Point to the last occupied address (Full stack)

• and so needs pre‐decrementing (ie before the push)

– Point to the next occupied address (Empty stack)

• and so needs post‐decrementing (ie after the push)

ƒ The stack type to be used is given by the postfix to the instruction:

– STMFD / LDMFD : Full Descending stack
– STMFA / LDMFA : Full Ascending stack.
– STMED / LDMED : Empty Descending stack
– STMEA / LDMEA : Empty Ascending stack

ƒ Note: ARM Compiler will always use a Full descending stack.

8/22/2008 59

EE382N-4 Embedded Systems Architecture

Stack Examples

STMFD sp!, STMED sp!, STMFA sp!, STMEA sp!,
{r0,r1,r3-r5} {r0,r1,r3-r5} {r0,r1,r3-r5} {r0,r1,r3-r5}

Old SP Old SP SP r5 SP 0x418
r4
SP r5 r5 Old SP r3 r5
r4 r4 r1 r4
r3 r3 r0 r3
r1 r1 r1
r0 SP r0 Old SP
r0 0x400

0x3e8

8/22/2008 60

EE382N-4 Embedded Systems Architecture

Stacks and Subroutines

ƒ One use of stacks is to create temporary register workspace for subroutines. 
Any registers that are needed can be pushed onto the stack at the start of the 
subroutine and popped off again at the end so as to restore them before 
return to the caller :

STMFD sp!,{r0-r12, lr} ; stack all registers
........ ; and the return address
........
LDMFD sp!,{r0-r12, pc} ; load all the registers
; and return automatically

ƒ See the chapter on the ARM Procedure Call Standard in the SDT Reference 

Manual for further details of register usage within subroutines.

ƒ If the pop instruction also had the ‘S’ bit set (using ‘^’) then the transfer of the 

PC when in a privileged mode would also cause the SPSR to be copied into the 

CPSR (see exception handling module).

8/22/2008 61

EE382N-4 Embedded Systems Architecture

Direct functionality of Block Data Transfer

ƒ When LDM / STM are not being used to implement stacks, it is 
clearer to specify exactly what functionality of the instruction is:

– i.e. specify whether to increment / decrement the base pointer, before or 
after the memory access.

ƒ In order to do this, LDM / STM support a further syntax in 
addition to the stack one: 

– STMIA / LDMIA : Increment After
– STMIB / LDMIB : Increment Before
– STMDA / LDMDA : Decrement After
– STMDB / LDMDB : Decrement Before

8/22/2008 62

EE382N-4 Embedded Systems Architecture

Example: Block Copy

ƒ Copy a block of memory, which is an exact multiple of 12 words long from the 
location pointed to by r12 to the location pointed to by r13. r14 points to the 
end of block to be copied.

; r12 points to the start of the source data

; r14 points to the end of the source data

; r13 points to the start of the destination data

loop LDMIA r12!, {r0-r11} ; load 48 bytes

STMIA r13!, {r0-r11} ; and store them r13

CMP r12, r14 ; check for the end Increasing
BNE loop Memory
r14

; and loop until done

– This loop transfers 48 bytes in 31 cycles r12
– Over 50 Mbytes/sec at 33 MHz

8/22/2008 63

EE382N-4 Embedded Systems Architecture

Swap and Swap Byte Instructions

ƒ Atomic operation of a memory read followed by a memory write 
which moves byte or word quantities between registers and 
memory. 

ƒ Syntax:

– SWP{<cond>}{B} Rd, Rm, [Rn]

Rn 1
temp

23
Memory

Rm Rd

ƒ To implement an actual swap of contents make Rd = Rm.
ƒ The compiler cannot produce this instruction.

8/22/2008 64

EE382N-4 Embedded Systems Architecture

Software Interrupt (SWI)

3322222222221111111111 Instruction Type
10987654321098765432109876543210
Software Interrupt
Condition 1 1 1 1 SWI NUMBER

ƒ In effect, a SWI is a user‐defined instruction.

ƒ It causes an exception trap to the SWI hardware vector (thus 
causing a change to supervisor mode, plus the associated state 
saving), thus causing the SWI exception handler to be called.

ƒ The handler can then examine the comment field of the 
instruction to decide what operation has been requested.

ƒ By making use of the SWI mechanism, an operating system can 
implement a set of privileged operations which applications 
running in user mode can request.

ƒ See Exception Handling Module for further details.

8/22/2008 65

EE382N-4 Embedded Systems Architecture

Backup

8/22/2008

EE382N-4 Embedded Systems Architecture

Assembler: Pseudo‐ops

AREA ‐> chunks of data ($data) or code ($code)

ADR ‐> load address into a register
ADR R0, BUFFER

ALIGN ‐> adjust location counter to word boundary usually after a 
storage directive

END ‐> no more to assemble

8/22/2008 67

EE382N-4 Embedded Systems Architecture

Assembler: Pseudo‐ops

DCD ‐> defined word value storage area
BOW  DCD  1024, 2055, 9051

DCB ‐> defined byte value storage area
BOB DCB 10, 12, 15

% ‐> zeroed out byte storage area
BLBYTE % 30

8/22/2008 68

EE382N-4 Embedded Systems Architecture

Assembler: Pseudo‐ops

IMPORT ‐> name of routine to import for use in this routine
IMPORT _printf ; C print routine

EXPORT ‐> name of routine to export for use in other routines
EXPORT add2 ; add2 routine 

EQU ‐> symbol replacement
loopcnt EQU 5

8/22/2008 69

EE382N-4 Embedded Systems Architecture

Assembly Line Format

label <whitespace> instruction <whitespace> ; comment

label: created by programmer, alphanumeric
whitespace: space(s) or tab character(s)
instruction: op-code mnemonic or pseudo-op with required fields

comment: preceded by ; ignored by assembler but useful
to the programmer for documentation

NOTE: All fields are optional.

8/22/2008 70

EE382N-4 Embedded Systems Architecture

Example: C assignments

ƒ C: 

x = (a + b) - c;

ƒ Assembler:

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

SUB r3,r3,r2 ; complete computation of x

ADR r4,x ; get address for x

STR r3,[r4] ; store value of x

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 71

EE382N-4 Embedded Systems Architecture

Example: C assignment

ƒ C:

y = a*(b+c);

ƒ Assembler:

ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MUL r2,r2,r0 ; compute final value for y
ADR r4,y ; get address for y
STR r2,[r4] ; store y

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 72

EE382N-4 Embedded Systems Architecture

Example: C assignment

ƒ C: (b & 15);

z = (a << 2) |

ƒ Assembler:

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

MOV r0,r0,LSL 2 ; perform shift

ADR r4,b ; get address for b

LDR r1,[r4] ; get value of b

AND r1,r1,#15 ; perform AND

ORR r1,r0,r1 ; perform OR

ADR r4,z ; get address for z

STR r1,[r4] ; store value for z

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 73

EE382N-4 Embedded Systems Architecture

Example: if statement

ƒ C: 

if (a > b) { x = 5; y = c + d; } else x = c - d;

ƒ Assembler:

; compute and test condition
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
ADR r4,b ; get address for b
LDR r1,[r4] ; get value for b
CMP r0,r1 ; compare a < b
BLE fblock ; if a ><= b, branch to false block

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 74

EE382N-4 Embedded Systems Architecture

if statement, cont’d.

; true block
MOV r0,#5 ; generate value for x
ADR r4,x ; get address for x
STR r0,[r4] ; store x
ADR r4,c ; get address for c
LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
ADD r0,r0,r1 ; compute y
ADR r4,y ; get address for y
STR r0,[r4] ; store y
B after ; branch around false block

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 75

EE382N-4 Embedded Systems Architecture

if statement, cont’d.

; false block
fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value for d
SUB r0,r0,r1 ; compute a-b
ADR r4,x ; get address for x
STR r0,[r4] ; store value of x
after ...

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 76

EE382N-4 Embedded Systems Architecture

Example: Conditional instruction implementation

; true block
MOVLT r0,#5 ; generate value for x
ADRLT r4,x ; get address for x
STRLT r0,[r4] ; store x
ADRLT r4,c ; get address for c
LDRLT r0,[r4] ; get value of c
ADRLT r4,d ; get address for d
LDRLT r1,[r4] ; get value of d
ADDLT r0,r0,r1 ; compute y
ADRLT r4,y ; get address for y
STRLT r0,[r4] ; store y

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 77

EE382N-4 Embedded Systems Architecture

Conditional instruction implementation, cont’d.

; false block
ADRGE r4,c ; get address for c
LDRGE r0,[r4] ; get value of c
ADRGE r4,d ; get address for d
LDRGE r1,[r4] ; get value for d
SUBGE r0,r0,r1 ; compute a-b
ADRGE r4,x ; get address for x
STRGE r0,[r4] ; store value of x

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 78

EE382N-4 Embedded Systems Architecture

Example: switch statement

ƒ C: 

switch (test) { case 0: … break; case 1: … }

ƒ Assembler:

ADR r2,test ; get address for test
LDR r0,[r2] ; load value for test
ADR r1,switchtab ; load address for switch table
LDR r1,[r1,r0,LSL #2] ; index switch table
switchtab DCD case0
DCD case1
...

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 79

EE382N-4 Embedded Systems Architecture

Example: FIR filter

ƒ C:

for (i=0, f=0; i<N; i++)
f = f + c[i]*x[i];

ƒ Assembler

; loop initiation code
MOV r0,#0 ; use r0 for I
MOV r8,#0 ; use separate index for arrays
ADR r2,N ; get address for N
LDR r1,[r2] ; get value of N
MOV r2,#0 ; use r2 for f

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 80

EE382N-4 Embedded Systems Architecture

FIR filter, cont’.d

ADR r3,c ; load r3 with base of c
ADR r5,x ; load r5 with base of x
; loop body
loop LDR r4,[r3,r8] ; get c[i]
LDR r6,[r5,r8] ; get x[i]
MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4 ; add into running sum
ADD r8,r8,#4 ; add one word offset to array index
ADD r0,r0,#1 ; add 1 to i
CMP r0,r1 ; exit?
BLT loop ; if i < N, continue

© 2008 Wayne Wolf Computers as Components 2nd ed.

8/22/2008 81

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (1/4)

82

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (2/4)

83

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (3/4)

84

EE382N-4 Embedded Systems Architecture

ARM Instruction Set Summary (4/4)

85


Click to View FlipBook Version