The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by varniethan, 2020-04-06 05:06:04

Pearson_Mechanics_2

Pearson_Mechanics_2

Answers

35 a The period of motion is 6 s. b 6.25 m s−2 c 0.68 m s−1 (2 s.f.)

T = _​2 ω_π_   ​ d As it passes through C, P is moving away from O
ω = ​_3π _  ​ towards B.
Measuring the time, t seconds, from an instant
40 a When P is at the point X, AX = x metres and the
force of the spring be T newtons.

when C is at Q and the displacement from the Hooke’s Law:

centre of the oscillation, O: x = a cos ωt T = ​_λ _lx _ ​ =  ​_2_1_2._6 _x_​  = 10.8x
​_3π _  ​ R(→): F = ma
The amplitude is 2l and ω =
After 0.75 s, C is at P:
__ − T = 0.3 x​​¨  ​
x = 2l cos​( ​_3π_  ​× 0.7_5_ )​= (​22l −co√​s _2 ​_ ω4_ _ )​ ​l  ​= − 10.8x = 0.3 x​​¨ ​ 
b = a_−_ x = 2l − ​√ 2 ​  l = √​  2 ​  l

b v = ​_​√  _ 23_ _ ​π ​_l    ​x¨ ​ = − 36x = − ​6​ 2​  x
Comparing with the standard formula for simple
c 0.28 s (2 d.p.) harmonic motion, this is simple harmonic motion

36 a At C: ​v​  2​= ​ω​  2(​ a​  2​− x​ ​  2)​ with ω = 6. c  ​_1π_8_    ​ s d 1.16 m (3 s.f.)
0 = ω​  ​ 2(​ a​  2​ − 1.2​ ​ 2)​ ⇒ a = 1.2 b 9T m=  s_​2 ω−_π1_    ​= _​2 6_π_ ​  = _​ 3π_  ​
At A: ​v​  2​= ω​ ​  2(​ a ​ 2​− x​  ​ 2​) 41 a 4 mg

(​ _ ​13_0   ​ √ _3_  ​) ​2​= ω​ ​  2(​ 1.2​ ​  2​ − 0.6​ ​  2)​ b Hooke’s Law:
ω​ ​  2​ = _​ 12_078_   ​ = _​ 41_  ​ ⇒ ω = _​21 _  ​
_​12 _  ​  T = _​λ _le _ ​ = _ ​ 4_m__g_(​​ _41_l_    ​ _l _+__x_)​​ = mg + ​_4  _m_l_ g_x_  ​ 
Checking a = 1.2 and ω = at B (1)
​v ​ 2​= ​ω​  2(​ a​  ​ 2​− ​x​  2​)​ Newton’s second law:

O==,_​_ ​5114 __x  ​   (​√1 _=5._ 2​ ​ 0​  2:​ − 0.8​ ​ 2​) = _ ​51_  ​ R(↓): F = ma
mg − t = m ​ _​dd_​  2​t_​ ​  x2_ ​​  
b v (2)
At
​v​  2​ = _ ​14_ ​( 1.2​ ​  2​ − 0​ ​  2​) = 0.36
v = 0.6 ms−2 Substitute (1) into (2):
mg − ​(mg + _​4  _m_l_ g_x_ ) ​ ​ = m ​ _d​ d_​  2​t_​ ​ x2_ ​ ​
c 0.15 m s−2 d 0.412 s (3 s.f.)
37 a  ​_4π_  ​ m h−1
b 4 hours − ​ _4_m_l_ g_x_  ​ = m ​ _​dd_​  2t​_​ ​  x2_​  ​

38 a Let the piston be modelled by the particle P.

Let O be the point where AO = 0.6 m  ​_d​ d_​  2t​_​ ​  x2_​ ​ = − ​ _4_gl_ x_  ​

When P is at a general point in its motion. c _ ​12 ​  √_3_g__l_   ​

Let OP = x metres and the force of the spring on P
be T newtons.
d First P moves freely under gravity until it returns
Hooke’s Law: to B. Then it moves with simple harmonic motion
T = ​_λ _lx _ ​ =  ​_40_8._6x_  ​= 80x
about O.
42 a _ ​92_a_  ​
R(→): F = ma b When P is at a general point X, let OX = x.

− T = 0.2 x​​¨  ​ At this point the extension of the string is 0.5a + x.
− 80x = 0.2 x​​¨  ​
​x¨ ​ = − 400x = − ​20​ 2 ​ x Hooke’s Law: (1)
Comparing with the standard formula for simple
harmonic motion, this is simple T = _​λ _le _ ​ = _ ​ 8_m__g_(​_​ _12a_  _  ​ a __+__x_)​​ = mg + ​_2  _m_a_g _x_  ​ 

harmonic motion with ω = 20. Newton’s second law:
T = _​22  _0π_  ​ = _ ​1π_0_  ​ 
c  ​_1π_5_    ​ s R(↓): F = ma (2)
b 6 m s−1 mg − t = m ​ _d​ d_​  2​t_ ​ ​ x2_ ​​  

39 a Let E be the point where OE = 0.6 m Substitute (1) into (2):

When P is at a general point in its motion, let EP = x mg − ​(mg + _​2  _m_a_g _x_  )​ ​ = m ​ _d​d_​  2​t_​ ​ x2_ ​ ​
metres and the force of the
− ​ _2_m_a_g _x_  ​ = m ​ _​dd_ ​ 2t​_​  ​x2_ ​ ​
spring on P be T newtons. _ ​d​d_​  2t​_​  ​x2_​ ​ = − ​ _2_ag_x _  ​

Hooke’s Law:

T = _​λ _lx _ ​ = ​ _10_2._6x_  ​= 20x
R(→): F = ma

− T = 0.8 x​​¨ ​  Comparing with the standard formula for simple
− 20x = 0.8 x​​¨  ​ harmonic motion, this is simple harmonic motion
x​ ¨ ​ = − 25x = − ​5​ 2​  x ___
Comparing with the standard formula for simple ​2_ ​2πa_g _ ​  ​  __ ​2a__g__   ​  =
harmonic motion, this is simple √  √  √  with ω = ___
T = _​2 ω_π_   ​= π ​
harmonic motion with ω = 5. _ ​2_√​1__2 __  ​   ​ a ​ _2g_a_  ​  
T = _​2 ω_π_   ​= _​2 5_π_   ​
c

244 On line Full worked solutions are available in SolutionBank.

Answers

d As a . _ ​12   ​ a, the string will become slack during its Exam-style practice: A level
motion. The subsequent motion of P will be partly
under gravity, partly simple harmonic motion.  1 a i  12.5 hours ii 5 m

b 2.46 m h–1

Challenge c 7.05 hours (3 s.f.)

 1 a  ​_dd_vt_  ​ = − ​e​  2kv​  2 a i ​ _11_1_2a_ ​  ii ​ _51_a2_  ​

0∫  ∫ ​ −2kv​  dv = − ​ t b 24o

 ​ ​​e ​  ​ ​dt​  3 a ​ _41_  ​  ln(​ ​_ ​k​k_​ 2_​ ​2+​_+_4_​U_ U​_ ​2_​  ​2​ ​ )​  m

u0
− ​ _21_k_   ​ [​e​  0
−2kv​] ​ − t
u ​ ​=

t = _​2 1_k_   (​ 1 − ​e​  −2ku​)​ U 2 ​ U ​​_k​ _​  2_​+1__ ​v_ ​ _2 ​ ​  dv = t
∫  ∫  b ​ 
− ​ ​  2​  dt​

0

=  ​_21_k_   (​ ​_ e​ _​  2_​ek_u​  2_​k−_u​ _1_  )​​ [​ _ ​1k_  ​ arctan ​ _kv_ ]​​ U2U​  ​ = − ​[2t] ​ 0t  ​ ​
_​ 1k_  ​ arctan ​ _2k_U_   ​ − _​ 1k_ ​  arctan ​ _Uk_  ​= − 2t
b ​​ _​  _1_ _ ​ − _​  1__+__2_k_u_   ​  ​ m
(4 k​ ​  2​ 4 ​k ​ 2​ e​  2ku​) So t = _​2 1_k_  ( ​ arctan ​ _Uk_  ​ − arctan ​ _2k_U_  ) ​ ​

 2 a = 8x ​ _dd_xt_  ​  4 a 47.4 m s–1
Using a = v ​ _dd_xv_  ​  and v = _​dd  _xt_  ​
v ​ _dd_xv_  ​= 8xv b 23.4 , v , 77.4

∫  5 a V=  ​_4π_ ​  = π[​  _​12_  ​  sin  2x]​  ​  ​_4π_ ​  = π(​ ​_21_  ​− 0)​ = _ ​2π_  ​

_​ dd_xv_  ​= 8x π​ ​  c​ os 2x dx​ 0

0
b ​ _4π_  ​ − _ ​21_ ​ 
​∫​ dv = ∫​ ​ 8xdx​ c α = 74° (2 s.f.)

v = 4 x​ ​  2​ + c  6 a At P, K.E. = _​32 _ ​  ag and P.E. = mg(a – a cos 60°) = _​12 _  ​  mg
so total energy is 2amg.
t = 0, x = 0, v = −k: −k = c
​ _dd_xt_  ​= 4 x​ ​  2​ − k
Displacement When the string makes angle θ with OQ,

has maximum when  _​dd  _xt_  ​= 0 total energy = _​21 _   ​ mv 2 + amg(1 – cos θ)
__ ⇒ v2 = 2ag(1 + cos θ)
2​ − k = 0 ⇒ x = _​√​ 2_ k_   ​ ​
4 x​ ​  maximum displacement is _​21 _ ​  ​√ _k_ ​  T – mg cos θ = _​ m_rv_ ​_2​  
So ⇒ T = mg cos θ + 2mg(1 + cos θ)

 3 ​ _2_1g_k _   ​ ln(​  _​44_+_+_4_k_k U​_ ​U_​ 2​ _2​ ​ )​ ​ = mg(2 + 3 cos θ)

Exam-style practice: AS level String goes slack when T = 0, so 2 + 3 cos θ = 0
⇒ cos θ = – ​ _23_  ​
⇒ θ = –131.8°

sv(e​ o=​ _​ 2t_   ​​ v–_​ 1=_1​e2_​ )_ ​2​et_ ​_1  _​​  ,​ + _​_2t(__2  ​​ ​e__–(1​  _​_2​et_(_  ​​ 1​e __ ​+​ _​2t_​  ​ ​​ _ ​ 2_ t_ – ​​ 1_+_1) 1_​)​  ),⇒1_ ​2((e​e​_ m​  _​​ 2_ _​t2t__   ​ ​  ​​_+– s_−1_11_))  ​ , 1 This corresponds to an angle of 48.2° with the
upward vertical.
 1 a
b P does not make complete circles, as the string goes
slack before P reaches the top of the circle.

 2 a R(→): T  cos 60° = m × 2a cos 60° × _​4k  _ag_   ​ ⇒ T = _​m  _2_k_ g_ ​ 

__
b mg​(1 − _​√​  _ 34_ ​   k_ ​ )​ c k < _​ 4____  ​ 
√​  3  ​
_​3 a_g_  ​
d R(→): T cos θ = m × 2a cos θ ×
⇒ T = 6mg

R(↑): T sin θ = mg ⇒ 6mg sin θ = mg

⇒ sin θ = _​16 _  ​ = _​3a _  ​
QX = 2a sin θ

__
∴QOQX= :2 QaO si=n 6 _​031 _  ​ °: ​√= _3_ a​ = √​  13  :​  3 ​√ _3_  ​

  3 a i 1.1a ii 3.25 a

b a

c 20.5°

d Weight acts through midpoint.

245

Index

Index

acceleration dynamics 171–211 Newton’s laws
circular motion  5–8, 19 horizontal oscillation  193–6 gravitation 181–3
horizontal circular path  5–8 motion in straight line with variable motion 172
straight line motion  147–52, 155–9, oscillation
force 172–8 horizontal 193–6
161–5, 172 Newton’s law of gravitation  181–3 vertical 198–203
varying with displacement  155–9 simple harmonic motion  184–91, 194, pendulums 11
varying with time  147–52 period, S.H.M.  185–91
varying with velocity  161–5 200 plane of symmetry  87
vertical circles  19 vertical oscillation  198–203 potential energy (P.E.)  19, 27
amplitude 185 elastic strings/springs  193–203 reference circle  187
angular speed  2–3 horizontal oscillation  193–6 resolving forces  11–15
axis of symmetry  48, 87 vertical oscillation  198–203 rigid bodies
calculus elemental strip  78 in equilibrium  103–7
acceleration  147–52, 155–9, 161–5 energy toppling and sliding  110–13
centres of mass  78–85 kinetic  19, 27 see also solids
centre of oscillation  184 potential  19, 27 rods, non-uniform  99–100
centres of mass  36–76, 77–123 equilibrium semicircles 81–2
calculus use to find  78–85 frameworks in  64–5 simple harmonic motion (S.H.M.) 
composite lamina  47–51 laminas in  58–61, 103
framework  48, 54–6 rigid bodies in  103–7 184–91, 194, 200
frameworks in equilibrium  64–5 escape velocity  210 sliding 110–13
lamina in equilibrium  58–61, 103 frameworks 54 solids
non-uniform bodies  98–100 centres of mass  48, 54–6 non-uniform 98–100
non-uniform frameworks  68, 69–70 in equilibrium  64–5 of revolution  88–94
non-uniform laminas  68–9 non-uniform  68, 69–70 uniform 87–94
particles in plane  39–42 friction 7 see also rigid bodies
particles on straight line  37–8 frustum 94 speed
rigid bodies in equilibrium 103–7 hemispheres  90–1, 98–9, 104, 110–11 angular 2–3
standard uniform plane laminas  43–6 hemispherical shells  92–3 circular motion  2–3, 5–8, 11–15, 19–23
uniform bodies  87–94 Hooke’s law  194–6, 199–202 terminal (limiting)  162–3
uniform laminas  43, 78–85 horizontal circular motion  5–15 see also velocity
centroid 45 acceleration 5–8 spheres  87, 107
circles three-dimensional problems  11–15 springs see elastic strings/springs
arcs 84–5 integration straight line motion  146–70
sectors 83–4 constant of  147–8, 156, 157, 164, 172 simple harmonic motion  184–91, 194,
semicircles 81–2 straight line motion  147–52, 156–8,
circular motion  1–35 200
acceleration  5–8, 19 161–4 with variable force  172–8
angular speed  2–3 inverse square law  181 see also kinematics
horizontal 5–15 kinematics 146–70 strings see elastic strings/springs
object not staying on path  26–8 acceleration varying with displacement  tension  194–5, 199–202
three-dimensional problems  11–15 time, acceleration varying with  147–52
vertical 19–23 155–9 toppling 110–13
coefficient of friction  7 acceleration varying with time  147–52 vector notation  19
cones  89–90, 98–9, 106 acceleration varying with velocity  velocity
conical pendulum  11 acceleration varying with  161–5
conical shells  93–4 161–5 straight line motion  147–52, 155–9,
constant of gravitation  181–2 kinetic energy (K.E.)  19, 27
constant of integration  147–8, 156, 157, laminas 161–5
composite uniform  47–51 terminal (limiting)  149, 162–3
164, 172 in equilibrium  58–61, 103 see also speed
cubes 111–13 non-uniform composite  68–9 velocity–time graphs  148–9, 150–1, 152
cylinders  88–9, 99–100, 104–5, 110–11, 113 standard uniform  43–6 vertical circular motion  19–23
density 78 uniform  43, 78–85 acceleration 19
differentiation, straight line motion  147, mass, centre see centres of mass weight, line of action  110
medians 44 work–energy principle  19
149–50, 155–8, 161, 163–4 modulus of elasticity  194, 199
displacement
acceleration varying with  155–9
straight line motion  147–52, 155–9,

163–4

246246

Edexcel AS and A level Further Mathematics

Further Mechanics 2

Series Editor: Harry Smith

Pearson’s market-leading books are the most trusted resources for Edexcel AS and A level Further
Mathematics.

This book covers all the content needed for the optional Edexcel AS and A level Further Mechanics 2
exams.

• Fully updated to match the 2017 specifications, with more of a focus on problem-solving and modelling.
• FREE additional online content to support your independent learning, including full worked solutions

for every question in the book (SolutionBank) and GeoGebra interactives.
• Includes access to an online digital edition (valid for 3 years once activated).
• Includes worked examples with guidance, lots of exam-style questions, practice papers and plenty of

mixed and review exercises.

Pearson Edexcel AS and A level Mathematics books

Year 1/AS Year 2

Pearson Edexcel AS and A level Further Mathematics books

Compulsory Options

For more information visit: www.pearsonschools.co.uk/edalevelmaths2017

www.pearsonschools.co.uk
[email protected]


Click to View FlipBook Version