196 7 Gaussian Distributions
Xn σ2X ¼ Xn σ2i ð7:46Þ
μX ¼ μi ð7:47Þ
i¼1 ( Xn Xn )i¼1
X$N μi; σi2
i¼1 i¼1
Proof Consider the case of n ¼ 3 as follows:
X ¼ X1 þ X2 þ X3 ð7:48Þ
Let
Y ¼ X1 þ X2 ð7:49Þ
By (7.34),
Y $ À þ μ2; σ21 þ σ22Á
N μ1
Substituting (7.49) into (7.48), we have
X ¼ Y þ X3
By (7.34),
X $ À þ μ3; σ2Y þ σ23Á ð7:50Þ
N μY
By (5.21),
μY ¼ EðYÞ ¼ EðX1 þ X2Þ ¼ EðX1Þ þ EðX2Þ ¼ μ1 þ μ2 ð7:51Þ
By (5.52), and, since Cov(X1, X2) ¼ 0 because X1 and X2 are independent, we
have
σY2 ¼ VarðYÞ ¼ VarðX1Þ þ VarðX2Þ ¼ σ12 þ σ22 ð7:52Þ
Substituting (7.51) and (7.52) into (7.50), we have
X $ À þ μ2 þ μ3; σ12 þ σ22 þ σ32Á
N μ1
This proves (7.47) for n ¼ 3. By mathematical induction, (7.48) is proven for an
arbitrary n.
Q.E.D.
7.3 Two Jointly Gaussian RVs 197
7.3 Two Jointly Gaussian RVs
Two RVs X and Y are said to be jointly normal, if its joint pdf is given by the
following equation:
& 2 À2ρðxÀμσXXÞσðYyÀμY Þþ 2'
f ðx; yÞ ¼ p1 ffiffiffiffiffiffiffiffiffiffiffiffiffi eÀ2ð1À1 ρ2 Þ xÀμX yÀμY ð7:53Þ
1 À ρ2 σX σY
XY 2π σ X σ Y
where μX, μY, σ2X, σ2Y, and À 1 ρ 1 are constants. When X and Y are jointly
normal, we write
ðX; YÞ $ À μY ; σX2 ; σY2 ; Á ð7:54Þ
N μX; ρ
The above pdf is called the bivariate normal pdf. The bivariate normal pdf
satisfies the following conditions.
Theorem 7.3.1 A bivariate normal pdf given by (7.53) satisfies the following
condition:
Z þ1 Z þ1 ð7:55Þ
f XYðx; yÞdxdy ¼ 1
À1 À1
This is a condition that any pdf must satisfy and is not a special condition for a
bivariate normal pdf. In other words, by the definition of a pdf, the integral of a pdf
over the entire real line(s) must be one.
Proof Rewrite (7.53) as follows:
f XY ðx; yÞ ¼ 2π σ X σ Y p1 ffiffiffiffiffiffiffiffiffiffiffiffiffi eEðx;yÞ ð7:56Þ
1 À ρ2
where the exponent is given by the following equation:
1 ( À μX 2 2ρðx À μX Þðy À μY Þ À μY 2)
À x σX σXσY y σY
Eðx; yÞ ¼ À2ð1 À þ
ρ2Þ
1 ( À μX 2 ðx À μXÞ ρðy À μY Þ À μY 2 À μY 2 À μY 2)
À x σX σX σY ρ2 y σY ρ2 y σY y σY
¼ À2ð1 À 2 þ À þ
ρ2Þ
¼ À2ð1 1 "& À À μY '2 þ À À ρ2Á y À μY 2#
À x À μX ρy σY 1 σY
σX
ρ2Þ
ð7:57Þ
Substituting (7.57) into (7.56), we obtain the following equation:
198 7 Gaussian Distributions
n o2 2 !
p1 ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ2ð1À1 ρ2Þ xÀμX À ρ yÀμY þ ð1 À ρ2 Þ yÀμY
σX σY σY
f XYðx; yÞ ¼
2πσXσY 1 À ρ2
n o2 2
xÀμX yÀμY yÀμY
¼ pffiffiffiffiffi p1 ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ2ð1À1 ρ2Þ σX À ρ σY p1 ffiffiffiffiffieÀ21 σY
2πσX 1 À ρ2 σY 2π 2
n o2
¼ pffiffiffiffiffi p1 ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ2ð1À1ρ2Þσ2X ðx À μX Þ À ρσσXY ðy À μY Þ p1 ffiffiffiffiffi eÀ12 yÀμY
σY
2πσX 1 À ρ2 σY 2π
n ρσσXY μY o2 2
pffiffiffiffiffiffiffiffiffiffip1 ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ2ð1À1ρ2Þσ2X x ρσσXY y yÀμY
¼ À þ μX À p1 ffiffiffiffiffi eÀ12 σY
2πσX 1 À ρ2 2 σY 2π
¼ pffiffiffiffiffi p1 ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ2ð1À1ρ2Þσ2Xfx À Ag2 p1 ffiffiffiffiffi eÀ12 yÀμY
σY
2πσX 1 À ρ2 & '2 σY 2π
p1 ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ21 pxÀffiAffiffiffiffiffiffi yÀμY 2
σY
¼ pffiffiffiffiffi σX 1Àρ2 p1 ffiffiffiffiffi eÀ12
2πσX 1 À ρ2 σY 2π
ð7:58Þ
where
A ¼ ρσσXY y þ μX À ρσσXY μY ð7:59Þ
Substituting (7.58) into (7.55), we obtain the following equation:
Z þ1 8<Z þ1 n o2 9 2
=
Z þ1 Z þ1 p1 ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ21 pxÀffiAffiffiffiffiffi dx; eÀ12 yÀμY
σY
À1 À1 f XY ðx; yÞdxdy ¼ À1 : À1 pffiffiffiffiffi σX 1Àρ2 dy
pffiffiffiffiffi
2πσX 1 À ρ2 σY 2π
ð7:60Þ
By (7.14), the integral in braces with respect to x is equal to 1 and the outer
integral with respect to y is also equal to 1 to yield the right-hand side of the above
to be equal to 1.
Q.E.D.
Theorem 7.3.2 If RVs X and Y are jointly normal
ðX; YÞ $ À μY ; σ 2X ; σY2 ; Á ð7:61Þ
N μX; ρ
The marginal distributions of X and Y are normal with means and variances
μX, μY, σX2 and σ2Y, respectively, as follows:
2
X $ À σ 2X Á f X ðxÞ ¼ p1 ffiffiffiffiffi eÀ12 xÀμX ð7:62Þ
N μX; σX 2π σX
7.3 Two Jointly Gaussian RVs 199
2
Y $ À ; σ 2 Á f Y ðxÞ ¼ p1 ffiffiffiffiffi eÀ21 yÀμY ð7:63Þ
N μY Y σY 2π σY
This theorem states that, if two RVs X and Y are jointly normal, X and Y are
individually normal. However, the converse is not necessarily true. In other words,
two normally distributed RVs X and Y are not necessarily jointly normal.
Proof By (4.60), the marginal pdf of X is given by
Z þ1
f YðyÞ ¼ f XYðx; yÞdx
À1
& 2 2 '
Z þ1
¼ p1 ffiffiffiffiffiffiffiffiffiffiffiffiffi À2ð1À1 ρ2 xÀμX À 2ρðxÀμXÞðyÀμY Þ þ yÀμY
Þ σX σXσY σY dx
e
À1 2πσXσY 1 À ρ2
Through the process of (7.58) through (7.60), the bivariate normal pdf in the
above integral can be expressed by (7.58). Substituting (7.58) into the above
equation, we obtain the following equation:
& '2 2 !
Z1 p1 ffiffiffiffiffiffiffiffiffiffiffiffiffi À12 pxÀffiAffiffiffiffiffiffi p1 ffiffiffiffiffieÀ12 yÀμY
pffiffiffiffiffi σY dx
f YðyÞ ¼ e σX 1Àρ2
¼
À1 2πσX 1 À ρ2 σY 2π '2
&
2
yÀμY Z 1 À21 pxÀffiAffiffiffiffiffiffi
p1 ffiffiffiffiffieÀ21 σY p1 ffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi e σX 1Àρ2 dx ð7:64Þ
σY 2π À1 2πσX 1 À ρ2
The integrand pinffiffiffiffiffitffihffiffieffiffiffiffiffilast integral is in the form of a normal pdf with
μ ¼ A and σ ¼ σX 1 À ρ2. Therefore, as proven by (7.14), the integral is equal
to 1 and (7.64) becomes
2
f Y ðyÞ ¼ p1 ffiffiffiffiffi eÀ12 yÀμY
σY 2π σY
This proves (7.63). Eq. (7.62) is proven similarly.
Theorem 7.3.3 If RVs X and Y are jointly normal
ðX; YÞ $ À μY ; σX2 ; σ2Y ; Á ð7:65Þ
N μX; ρ
ρ is the correlation coefficient of X and Y, and the covariance of X and Y is given by
qffiffiffiffiffiffiffiffiffiffi
cXY ¼ CovðX; YÞ ¼ ρ σ2XσY2 ¼ ρσXσY ð7:66Þ
200 7 Gaussian Distributions
ρ ¼ cXY ð7:67Þ
σXσY
Proof By (5.33), we have the following equation: ð7:68Þ
cXY ¼ CovðX; YÞ ¼ EðXYÞ À μXμY
Z þ1Z þ1
EðXYÞ ¼ xyf XYðx; yÞdxdy
À1 À1
& 2 2 '
Z þ1Z þ1 p1 ffiffiffiffiffiffiffiffiffiffiffiffiffi À2ð1À1 ρ2 xÀμX À 2ρðxÀμXÞðyÀμY Þ þ yÀμY
¼ xy Þ σX σXσY
e σY dxdy
À1 À1 2πσXσY 1 À ρ2
ð7:69Þ
Through the process of (7.58) through (7.60), the last integral can be expressed
as the following where A is given by (7.59)
Z þ1 <8Z þ1 n o2 9 2
EðXYÞ ¼ À1 : À1 px ffiffiffiffiffiffiffiffiffiffiffiffiffieÀ21 σX pxÀffiAffiffiffiffiffi =
pffiffiffiffiffi dx;σ py ffiffiffiffiffi eÀ12 yÀμY dy
2πσ 1 À ρ2 1Àρ2 2π σY
X Y
ð7:70Þ
Through the process of (7.21) through (7.24), the integral in braces in the above
integral is the expected value of X given Y fixed at y as follows:
Z þ1 n o2
pffiffiffiffiffi
px ffiffiffiffiffiffiffiffiffiffiffiffiffi eÀ21 pxÀffiAffiffiffiffiffi dx ¼ A
σX 1Àρ2
À1 2πσX 1 À ρ2
where A is given by (7.59) ð7:71Þ
A ¼ ρσσXY y þ μX À ρσσXY μY
Substituting (7.71) into (7.70), we obtain
Z þ1 & ' yÀμY 2
ρσσXY y σY σY
EðXYÞ ¼ À1 þ μX À ρσσXY μY py ffiffiffiffiffieÀ21 dy
2π
2 2
Z þ1 yÀμY & ' Z þ1 yÀμY
σX py2ffiffiffiffiffieÀ12 σY μX ρσσXY μY py ffiffiffiffiffieÀ12 σY
¼ ρ σY À1 dy þ À À1 dy
σY 2π σY 2π
ð7:72Þ
7.4 Vector Gaussian RV 201
By (7.32), the first and the second integral in the above equation are, respec-
tively, given by the following:
Z þ1 2
À1 py2ffiffiffiffiffi yÀμY EÀY2Á
σY 2π σY
e dyÀ21 ¼ ¼ σY2 þ μY2 ð7:73Þ
ð7:74Þ
Z þ1 2
À1 py ffiffiffiffiffi yÀμY
σY 2π σY
e dyÀ21 ¼ EðYÞ ¼ μY
Substituting (7.73) and (7.74) into (7.72), we have
EðXYÞ ¼ ρσσXY Àσ2Y þ μY2 Á þ μY ¼ ρσ X σ Y þ μX μY ð7:75Þ
μX À ρσσXY μY
Substituting (7.75) into (7.68), we have
cXY ¼ CovðX; YÞ ¼ EðXYÞ À μXμY ¼ ρσXσY þ μX μY À μXμY ¼ ρσXσY
The above proof also proves that the coefficient ρ is the correlation coefficient
ρ ¼ cXY
σXσY
Hence, both (7.66) and (7.67) are proven.
Q.E.D.
7.4 Vector Gaussian RV
In the general discussion of RVs in earlier chapters, the RVs are not a function of
time. However, in this section, we will consider the RVs of the specific time points
of a stochastic process. The vector RVs discussed in this section follow the
definitions given in Sect. 6.3 and, therefore, have the time points as the arguments.
The vector RV X(t1, t2, . . . , tn) is said to be jointly normal if its n-dimensional
joint pdf is given by the following equation:
f Xðt1, t2, ..., tnÞðx1, x2, . . . :, xn; t1, t2, . . . , tnÞ ¼ pðffiffi2ffiffiffiπffiffiÞffiffin1ffiffidffiffiffieffiffitffiffiffiffiXffiffiffiXffiffi eÀ12ðxÀμXÞTÀXX1 ðxÀμXÞ
ð7:76Þ
where the vector of specific values x and the vector RV X are as defined by (6.32a)
and (6.35), respectively, and the mean vector μX and the autocovariance matrix XX
202 7 Gaussian Distributions
are given by (6.164a) and (6.168), respectively. By (2.33) and (2.41), we have the
following equations for the terms occurring in (7.76):
detXX≜ X ðÀ1ÞtðjÞC1j1 C2j2 : : :Cnjn ð7:77Þ
j
ÀXX1 ¼ 1 adjXX ð7:78Þ
detXX
where adj XX is defined by (2.40) and t( j) is the total number of inversions of the
permutation j defined by (2.34).
Consider the dimensions of the matrices in the following matrix multiplication
term in the exponent in (7.76):
ðx À μXÞTXÀX1 ðx À μXÞ ð7:79Þ
The following are the dimensions of the three matrices in the above multiplication:
ðx À μXÞT 1  n XÀX1 n  n ðx À μXÞ n  1
The multiplication of ðn  nÞ matrix XÀX1 and ðn  1Þ matrix ðx À μXÞ yields
a n  1 column vector. Therefore, multiplication of ð1  nÞ row vector ðx À μXÞT
and ðn  1Þ column vector fÀXX1 ðx À μXÞg yields a scalar. The determinant detXX
is a scalar. Therefore, the multivariate joint normal pdf given by (7.76) is a scalar
function.
By evaluating the matrix multiplication as discussed above, we may rewrite the
multivariate joint pdf given by (7.76) as follows with the exponent in an expanded form:
f Xðt1, t2, ..., tnÞðx1, x2, . . . :, xn; t1, t2, . . . , tnÞ
Pn Pn
¼ pffiðffi2ffiffiffiπffiffiÞffiffin1ffiffidffiffieffiffiffitffiffiffiffiXffiffiffiXffiffi eÀ12Âdet1XX i¼1 ðxi Àμi ÞAij ðxj Àμj Þ
ð7:80Þ
j¼1
where detXX and cofactor Aij are gYiÀvetn10 ; by t(0mÀ7Á.7a7re) and (2.39), respectively.
Two vector RVs Xðt1; ::; tnÞ and ::; jton;int10tl;y::G; tam0 uÁssidaenfi,nifedtheb(ym(þ6.3n3))-
dimensional concatenated vector RV ZXY t1; ::;
consisting of m and n RVs have the following (m þ n)-dimensional multivariate
normal pdf
f ZXYðt1, ::, tn, t10 , ::, tm0 Þðx1, ::, xn, y1, ::, ym; t1, ::, tn, t10 , ::, tm0 Þ ð7:81Þ
¼ pðffiffi2ffiffiffiπffiffiÞffiffinffiffidffiffi1ffieffiffitffiffiffiffiZffiffiffiXffiffiYffiffiZffiffiXffiffiYffi eÀ21ðzXYÀμZXY ÞTÀZX1 YZXY ðzXYÀμZXY Þ
where zXY is the vector of specific values of the vector RV ZXY defined by (6.35) and
μZXY and ZXYZXY are defined by (6.165) and (6.191), respectively.
7.5 Characteristic Function of a Gaussian RV 203
Example 7.4.1 "# ð7:82Þ
Consider the case of n ¼ 3. μ1
" X1 # μX ¼ EðXÞ ¼ μμ23
X ¼ X2
X3
XX ¼ n À μXÞðX À o ¼ EÀXXTÁ À μXμXT
E ðX μXÞT
where
" X1 # X2 2 X1X2 3
XXT ¼ X2 ½X1 X1X1 X2X2 X1X3
X2X3 5
X3 ¼ 4 X2X1
X3 X3X1 X3X2 X3X3
2 3
"# μ1μ1 μ1μ2 μ1μ3
μ1 μ2μ2 μ2μ3 5
μXμXT ¼ μμ23 ½ μ1 μ2 μ3 ¼ 4 μ2μ1 μ3μ2 μ3μ3
μ3μ1
82 39
< ðX1 À μ1ÞðX1 À μ1Þ ðX1 À μ1ÞðX2 À μ2Þ ðX1 À μ1ÞðX3 À μ3Þ =
¼ E:4 5
XX 2 ðX2 À μ2ÞðX1 À μ1Þ ðX2 À μ2ÞðX2 À μ2Þ ðX2 À μ2ÞðX3 À μ3Þ ;
ðX3 À μ3Þð3X1 À μ1Þ ðX3 À μ3ÞðX3 À μ3Þ ðX3 À μ3ÞðX1 À μ1Þ
c11 c12 c13
¼ 4 c21 c22 c23 5
c31 c32 c33
ð7:83Þ
7.5 Characteristic Function of a Gaussian RV
This section derives the characteristic function of a Gaussian RV first for a scalar
RV and then for a vector RV.
7.5.1 Characteristic Function of a Scalar Gaussian RV
We first consider a scalar RV X. The characteristic function of the normal distri-
bution is, by definition, given by
204 7 Gaussian Distributions
EÈejωX É Z þ1 ejωx p1ffiffiffiffiffi e ð ÞÀ21xÀμ2 Z þ1 p1ffiffiffiffiffi e ð ÞjωxÀ21xÀμ2
σ 2π σ σ 2π σ
ΨXðωÞ ¼ ¼ À1 dx ¼ À1 dx
ð7:84Þ
To evaluate the above integral, complete the square in the exponent in the
integral as follows:
¼¼¼¼¼¼¼jωxÀÀÀÀÀÀÀÀ12222222111111σσσσσσ21x222222 ÂnnnÀnÀxxxÂÂÂx2xxxÀ2ÀðσÀjÀÀÀÀωÀμσjjσ 2ÀÀÀωω2jjjÀ2ωωω2σjþ¼ωσ2σσσ2σþ222μxj2ωÞþþþÀμ!þxÁ2μμμ2ÃÀμþÁÁÁ2μÃÃÃÁx2À222xj1ωσþÀþþþ122μÀωμωωÀÀxÀj22j222ωωÁσσσ12Àσ2σ44¼ω2þ2ÀÀ22þÀþμσj22x2ω2μμjj1σþωωμÁÁ222μμÈμþσσÀx222Á2μÀÀÀÀ2jωo2σμμÀ222jωþþþσμ2μÁμ2þ22oðþμþÁμxμ2Þþo2oμ2É
Substituting the last expression in the exponent in (7.84), we obtain the follow-
ing equation:
Z þ1 p1ffiffiffiffiffieÀ12 xÀðjωσ2þμÞ!2 þ jωμ À 21ω2σ2
¼
ΨXðωÞ σ dx
À1 σ 2π xÀðjωσ2þμÞ!2
ω2 σ 2 Z þ1 p1ffiffiffiffiffieÀ21 σ
2
¼ ejωμÀ dx ð7:85Þ
À1 σ 2π
By (7.15) through (7.19), we have shown that the last integral, which is the
Gaussian integral, is equal to 1. Therefore, we have the following characteristic
function of the normal scalar RV X:
ψXðωÞ ¼ ejωμÀω22σ2 ð7:86Þ
7.5.2 Characteristic Function of a Gaussian Vector RV
In this section, the time points as the arguments of the RV X(t1, .., tn) are not shown
for simplicity. By the definition given by (6.62), the characteristic function of a
Gaussian vector RV X is as follows:
7.5 Characteristic Function of a Gaussian RV 205
ΨXðω1, ω2, . . . , ωnÞ≜EfejωTXg ¼ Efejðω1X1þω2X2þÁÁÁþωnXnÞg ð7:87Þ
Z þ1 Z þ1 ð7:88Þ
¼ . . . ejωTxpðffiffi2ffiffiffiπffiffiÞffiffin1ffiffidffiffiffieffiffitffiffiffiffiffiXffiffiXffiffi eÀ21ðxÀμXÞTXÀX1 ðxÀμXÞdx1dx2 . . . dxn
À1 À1
To evaluate the above integral, let us first evaluate the following simpler integral
and then return to complete the above integral:
Z þ1 Z þ1 ð7:89Þ
ΨXðω1; ω2; . . . ; ωnÞ ¼ . . . ejωTxeÀ12xTxdx1dx2 . . . dxn
À1 À1
Consider the second exponent without -½ in the above integral, xTx, in which
is assumed to be an (n  n) symmetric matrix. Since À1 ¼ , by
pre-multiplying and post-multiplying by À1, we have the following expression:
xTx ¼ xT ÀℙℙÀ1 ÁÀℙℙÀ1 Á ¼ xTℙÀℙÀ1ℙÁℙÀ1x
x
In the above equation, we choose ℙ to diagonalize so that ÀℙÀ1 Á ¼ ,
yielding the following expression:
xTx ¼ xTℙÀ1x ð7:90Þ
where
¼ ℙÀ1, det ℙ ¼6 0 ð7:91Þ
is a diagonal matrix with the eigenvalues of as the diagonal elements as
follows:
23 ð7:92Þ
λ1 Á Á Á 0
¼ 4 ⋮ ⋱ ⋮ 5 , λi ¼ eigenvalue, i ¼ 1, . . . , n:
0 Á Á Á λn
From (7.91), we have
¼ ℙÀ1 ð7:93Þ
Taking the transposition of both sides of the above and using the matrix identity
(2.20d), we have
T ¼ ÀℙℙÀ1ÁT ¼ ÀℙÀ1ÁTTℙT ¼ ÀℙÀ1ÁTℙT ð7:94Þ
Since is symmetric, T ¼ , and, so, by equating (7.93) with (7.94), we obtain
the following equation:
ℙÀ1 ¼ ÀℙÀ1ÁTℙT ð7:95Þ
or
206 7 Gaussian Distributions
¼ ℙÀ1ÀℙÀ1ÁTℙTℙ ð7:96Þ
From the above, we derive the following relationship that holds true with the
diagonalizing matrix ℙ:
ℙTℙ ¼
By left multiplying both sides, we obtain ð7:97Þ
ℙÀ1 ¼ ℙT
The above result shows that the matrix ℙ diagonalizing is an orthogonal matrix
if is a symmetric matrix. In (7.90), let
23
z1
6466666 7777577
z ¼ z2 ¼ À1x ð7:98Þ
:
zi
:
zn
Then, we have
zT ¼ ÀℙÀ1xÁT ¼ xTÀℙÀ1ÁT ð7:99Þ
Substituting (7.97) into the above equation, we have ð7:100Þ
zT ¼ ½ z1 z2 : zi : zn ¼ xTÀℙTÁT ¼ xTℙ
Substituting (7.98) and (7.100) into (7.90), we obtain the following equation:
Xn ð7:101Þ
xTx ¼ zTz ¼ λizi2
i¼1
Following the method described in Sect. 2.2.6, we can find the diagonalizing
matrix ℙ as follows. First, find n eigenvalues of by solving the following
equation:
det ð À λÞ ¼ 0 ð7:102Þ
Then, obtain the eigenvectors corresponding to the eigenvalues from the fol-
lowing n linearly independent relationships:
bi ¼ λibi, i ¼ 1, . . . :, n ð7:103Þ
where the components of the eigenvectors are denoted as follows:
7.5 Characteristic Function of a Gaussian RV 207
23
b1i
6666664 7777577,
bi ¼ b2i i ¼ 1, : : :, n ð7:104Þ
:
bki
:
bni
For the symmetric matrix , its diagonalizing matrix ℙ is orthonormal. The
eigenvectors are orthogonal to each other and their norms are unity. Therefore, the
inner products, h., .i, of the eigenvectors are given by
Xn ð7:105Þ
bi; bj ¼ bkibkj ¼ δij ð7:106Þ
ð7:107Þ
k¼1
The diagonalizing matrix ℙ is given by
23
b11 : b1i : b1n
64666 77775
ℙ ¼ ½b1 b2 : : : bn ¼ : : : : :
: :
bk1 : bki : bkn
: : :
bn1 : bni : bnn
2 3
b11 : bk1 : bn1
66466 57777
ℙT ¼ ℙÀ1 ¼ : : : : :
: :
b1i : bki : bni
: : :
b1n : bkn : bnn
Substituting (7.107) into (7.98), the transformation of x by ℙT to z is given by
23 2 32 3
z1 b11 : bj1 : bn1 x1
46666 77757 66646 7777566664 77577
z ¼ : ¼ ℙTx ¼ : : : : : :
: :
zi b1i : bji : bni xj
: : : : :
zn b1n : bjn : bnn xn
2 Xn 3
¼ 2 b11x1 þ :: þ bj1xj þ :: þ bn1xn 3 ¼ 66664666666666 bj1xj 57777777777777 ð7:108Þ
66664 b1ix1 þ :: þ : þ :: þ bnixn 57777
b1nx1 þ :: þ þ :: þ bnnxn j¼1 :
bjixj
: :
Xn
bjnxj
bjixj
j¼1 :
:
Xn
bjnxj
j¼1
Now, consider the first exponent in (7.89)