111
DUM20132 Date : ………………….
UNIT 4: INTEGRATION
______________________________________________
INTRODUCTION
Every operation in mathematics has its inverse. In this chapter we learn how to
reverse the process of differentiation with the process of integration.
LEARNING OUTCOME
After completing this unit, students should be able to:
1. Find the integrals of functions by considering integration as a reverse of
differentiation.
2. Integrate indefinite integrals by rule of integration.
3. Integrate composite functions by using substitution method.
4. Integrate product of functions using integration by part.
5. Integrate quotient of functions using partial fraction method.
6. Evaluate the definite integrals.
4.1 INTEGRATION AS THE REVERSE OF DIFFERENTIATION
112
DUM20132 Date : ………………….
Integration is the reverse process of differentiation. The process of obtaining
dy
from y (a function of a) is known as differentiation. Hence, the process of
dx
dy
obtaining y from is known as integration. Integration of y with respect to x, is
dx
denoted by f(x) dx . The symbols f(x) dx denote the integral of f(x) with
respect to the variable x. For example:
y = x3 + c Differentiation dy = x2
3 Integration dx
4.2 INDEFINITE INTEGRAL OF FUNCTION
From which the derivative 5x4 was derived?. Take a look at these examples:
( )d x5 = 5x4 5x4 dx = x5
5x4 dx = x5 + 3
dx 5x4 dx = x5 − 1
( )also d x5 + 3 = 5x4
dx
( )and d x5 −1 = 5x4
dx
Any constant terms in the original expression becomes zero in the derivative.
Therefore the presence of such constant term is replaced by adding a symbol c to
the result of integration.
f'(x) dx = f(x) + c
c is known as the constant of integration and must always be included. Such integral
is called an indefinite integral.
4.2.1 INTEGRATION OF POLYNOMIALS
113
DUM20132 Date : ………………….
1. a dx = ax + c where a is a constant 4. (ax + b)n dx = (ax + b)n + 1 +c
2. xn dx = xn + 1 + c (n + 1) d (ax + b)
dx
(n + 1) (n −1)
; (n −1)
3. axn dx = a xn + 1 + c (n −1) 5. f(x) g(x) dx = f(x) dx g(x) dx
(n + 1)
Example 4.2.1.1 : Integrating a constant
Integrate the following with respect to x :
(a) 2 (b) −5 (c) 1
3
Solution :
(a) 2 dx = 2x + c
(b) − 5 dx = −5x + c
(c) 1 dx = 1 x + c
33
Example 4.2.1.2 : Integration of xn
Integrate the following with respect to x :
(a) x 5 (b) 1 (c) 1
x3 x
Solution : x 5 dx = 1 x 5+1 + c = 1 x 6 + c
(a) 5 +1 6
(b)
1 dx = x −3 dx = − 1 x −2 + c = − 1 + c
(c) x 3 2 2x 2
1 −1 1 − 1 +1 1
dx = x 2 dx = x 2 + c = 2x 2 + c = 2 x + c
x − 1 +1
2
Example 4.2.1.3 : Integration of axn
114
DUM20132 Date : ………………….
Find the following integrals:
(a) -4x2 (b) 2x3 (c) 3x5
Solution : − 4x 2 dx = −4 x2 dx = −4 x3 + c = − 4 x 3 +c
(a) 3 3
(b)
(c) 2x 3 dx = 2 x3 dx = 2 x4 + c = 1 x4 +c
4 2
3x 5 dx = 3 x5 dx = 3 x6 + c = 1 x 6 +c
6 2
Example 4.2.1.4 : Integral of (ax + b)n
Find:
(a) (2x + 3)4 dx (b) (3 − 6x)−4 dx (c) (1− x)− 1 dx
2
Solution :
(a) (2x + 3)4 dx = 1 (2x + 3)5 + c = 1 (2x + 3)5 + c
10
(5) (2)
(b) (3 − )6x −4 dx = (− 1 6) (3 − )6x −3 + c = 1 (3 − )6x −3 + c
18
3) (−
(c) (1 − x )− 1 dx = 1 (1− )1 + c = −2 (1− )1 + c
2
1 (− 1) x2 x2
2
Example 4.2.1.5 : Integral of sum and differences
115
DUM20132 Date : ………………….
Find the following integrals:
(a) x2 + 3 + 1 dx (b) (2x −1)2 dx (c) x+ 1 dx
x3 x3
Solution : x 2 + 3 + 1 dx = x 2 dx + 3 1 dx + x −3 dx
(a) x3
= 1 x 3 + 3x − 1 x −2 + c
32
( )(b) (2x − 1)2 dx = 4x 2 − 4x + 1 dx = 4 x 3 − 2x 2 + x + c
3
( )(c) x + 1 dx = x −2 + x −3 dx = x −1 + x −2 + c = − 1 − 1 + c
x3 −1 −2 x 2x 2
EXERCISE 4.2.1 b) 6 dx
x4
1. Find the following integrals:
a) −15 dx
( )c) 3x2−4x3 dx d) 3 − 4 + 6 dx
x2 x3
116
DUM20132 Date : ………………….
e) (1 + 4x − 6x2 ) dx f) x + 1 dx
x2
g) (3x + 2)(2x −1)dx h) 3x3 − 3x2 + 4 dx
x2
Answers: a) -15x + c, b) − 2 +c , c) x3 − x4 + c , d) 3x + 4 − 3 + c ,
x3 x x2
e) x + 2x2 − 2x3 + c , f) 1 x2 − 1 +c , g) 2x3 + x2 − 2x + c , h) 3 x2 −3x − 4 +c
2 2x
2x
2. Find the following integrals: b) (x − 9)8dx
a) (x + 1)3 dx
c) (4x + 7)5 dx d) (3x − 8)6 dx
117
DUM20132 Date : ………………….
e) 2(4 − 3x) −6 dx f) 5 dx
(4 − 3x)3
Answers: a) 1 (x + 1)4 + c , b) 1 (x − 9)9 +c , c) 1 (4x + 7)6 +c ,
d) 4
9 24
1 (3x −8)7 + c , e)
2 + c , f) 6(4 5 +c
21 15(4 − 3x)5 − 3x)2
1
4.2.2 INTEGRATION OF x
➢ 1 dx = ln x + c d ln u = 1 • d (u)
x
dx u dx
➢ 1 dx = ln ax + b +c
ax + b d (ax + b)
dx
Example 4.2.2 : (b) 1 dx (c) 3 dx
Find 2x + 3 5 − 2x
(a) 5 dx
x
Solution : 5 dx = 5 ln x + c
(a) x
(b)
(c) 1 dx = 1 ln 2x + 3 + c
2x + 3 2
3 dx = − 3 ln 5 − 2x + c
5 − 2x 2
118
DUM20132 Date : ………………….
EXERCISE 4.2.2 b) 1 dx
2x
Find the following integrals:
a) 3 dx
x
c) − 5 dx d) 7 dx
x 2x
3 f) 1 dx
2x + 1
e) 2 dx
3x
g) 4 dx h) − 10 dx
3x + 2 6 − 5x
Answers: a) 3 ln x + c, b) 1 ln x + c , c) – 5 ln x + c , d) 7 ln x + c , e) 1 ln x + c ,
2 22
f) 1 ln (2x + 1) + c , g) 4 ln (3x + 2) + c , h) 2 ln (6 − 5x) + c
23
119
DUM20132 Date : ………………….
4.2.3 INTEGRATION OF TRIGONOMETRIC FUNCTIONS
sin(ax n ) dx = − cos(ax n ) +c
d (ax n )
dx
d sin(axn ) = cos(axn ) d (axn )
cos(ax n ) dx = sin(ax n ) +c dx dx
d (ax n ) d cos(axn ) = − sin(axn ) d (axn )
dx dx dx
d tan (axn ) = sec2 (axn ) d (axn )
dx dx
sec2 (ax n ) dx = tan (ax n ) + c
d (ax n )
dx
Example 4.2.3 :
Find the following integrals :
(a) sin 3x (b) 3cos 2x (c) 2cos (3x − 1)
(d) sec 2 (1− 4x) dx (e) cos 3x − sin 1 x
2
Solution :
(a) sin 3x dx = − 1 cos 3x + c
3
(b) 3 cos 2x dx = 3 cos 2x dx = 3 1 sin 2x + c = 3 sin 2x + c
2 2
(c) 2cos (3x − 1) dx = 2 cos (3x − 1) dx = 2 sin(3x −1) + c
3
(d) sec2 (1− 4x) dx = − 1 tan (1− 4x) + c
4
(e) cos 3x − sin 1 x dx = 1 sin 3x − 1 cos 1 x +c = 1 sin 3x + 2 cos 1x+c
2 3 −1 3 2
2
2
120
DUM20132 Date : ………………….
EXERCISE 4.2.3 b) cos 4x dx
Find the following integrals:
a) sin 2x dx
c) sec 2 5x dx d) sin 1 x dx
e) sin 2 x dx 2
3 f) sec 2 3 x dx
4
g) sin (3x + ) dx h) cos 5x − dx
2
i) sec 23x + dx j) sin 3 x − dx
6 4 2
Answers: a) − 1 cos2x +c , b) 1 sin 4x + c , c) 1 tan 5x + c , d) − 2 cos 1 x + c ,
2 4 5 2
e) − 3 cos 2 x + c , f) 4 tan 3 x + c , g) − 1 cos( 3x + ) + c ,
23 34 3
h) 1 sin( 5x − ) + c , i) 1 tan( 3x + ) + c ,j) − 4 cos( 3 x − ) + c
5 2 3 6 3 42
121
DUM20132 Date : ………………….
4.2.4 INTEGRATION OF EXPONENTIAL FUNCTION
➢ ex dx = ex + c
➢ eax + b dx = eax + b +c d (ex ) = ex
dx
d (ax + b)
dx
Example 4.2.4 :
Find the int egral of the following functions :
(a) e −3x (b) 2e1−2x (c) ( )e−x + e x 2
(d) 5e x (e) 1
e2x
Solution :
(a) e−3x dx = − 1 e−3x + c
3
(b) 2e1−2x dx = 2 − 1 e1−2x + c = − e1−2x + c
2
(c) (e−2x + 2 + e2x ) dx = − 1 e−2x + 2x + 1 e2x + c
22
(d) 5 ex dx = 5 ex dx =5 ex + c
(e) 1 e−2x dx = − 1 e−2x + c
e2x dx = 2
EXERCISE 4.2.4
Find the integral with respect to x of:
a) e4x dx b) e−5x dx
122
DUM20132 Date : ………………….
1x −1x
c) e3 dx d) e 5 dx
e) e3x+2 dx f) e−4x+5 dx
3−4x ( )( )h) e2x + 3 e−x − 4 dx
g) e5 7 dx
Answers: a) 1 e4x + c , b) − 1 e−5x + c , c) 1x −1x
45
3 e3 + c , d) − 5e 5 + c
e) 1 e3x+2 + c , f) − 1 e−4x+5 +c, g) − 7 (3−4x) +c ,
34 4 e5 7
h) ex − 2e2x − 3e−x −12x + c
123
DUM20132 Date : ………………….
4.3 TECHNIQUES OF INTEGRATION
To integrate functions which are not in standard form, we need to use a few
other techniques to make the process of integration easier. There are three
techniques:
4.3.1 Integration by Substitution
4.3.2 Integration by Part
4.3.3 Integration by Partial Fraction
4.3.1 INTEGRATION BY SUBSTITUTION Object
Image
f(x) dx = fg(u) g' (u) du
The substitution technique is simplified as follows:
a. Choose u = g(x)
b. Find du = g'(x)
dx
c. Substitute u = g(x), du = g ‘(x) dx. In this part, the integrand
must be in terms of u only, meaning there is no x terms left.
But if this happen, make another substitution for u.
d. Solve the integration
e. Back substitute u with g(x) therefore the final answer is in
terms of x.
124
DUM20132 Date : ………………….
Example 4.3.1 :
By using a suitable substitution, find the following integration:
(a) (5x − 4)6 dx ( )(b) 3x 2 x3 − 1 dx
dx 2 1
(c) (1 − x)3 (d) 9 x (1 − x3 )2 dx
Solution :
(a) (5x − 4)6 dx
Let u = 5x − 4 du = 5 and dx = 1 du
dx 5
(5x − 4)6 dx = u6 1 du
5
= 1 u7 + c
5
7
= (5x − 4)7 + c
35
( )(b) 3x 2 x3 − 1 dx
Let u = (x3 − 1) du = 3x 2 dx
3x 2 (x3 − 1)3 dx = u du
= u2 + c
2
= (x3 − 1)2 + c
2
125
DUM20132 Date : ………………….
dx
(c) (1 − x)3
Let u = (1 − x) du = − dx
−du = dx
dx = (1 − x) −3 dx
(1 − x) 3
= u −3 (− du)
= − u −2 + c
− 2
= (1 − x) −2 + c
2
= 1 +c
2(1 − x) 2
2 1
(d) 9 x (1 − x3 )2 dx
Let u = 1 − x3 du = − 3x 2 dx
− 3du = 9x 2 dx
1
9x 2(1 − x3 ) dx = u 2 (−3du)
1
= − 3 u 2 du
3
= − 3 u 2 + c
3
2
3
= − 2(1 − x3 )2 + c
126
DUM20132 Date : ………………….
EXERCISE 4.3.1
By using a suitable substitution, find the following integrals.
a) x2 (1 + x3 )4 dx b) x dx
1− 4x2
c) x(1 − x2 )1 dx ( )d) 4x 2x2 − 3 6 dx
2
e) dx 4x + 6
3−x x2 + 3x + 7 4 dx
( )f)
Answers: a) (1+ x3 )5 + c , b) − 3
15
1− 4x 2 + c , c) − (1− x2 )2 + c , d) (2x2 − 3)7 + c ,
4 37
e) − ln(3 − x) + c , f) −2 +c
3(x2 + 3x+ 7)3
127
DUM20132 Date : ………………….
4.3.2 INTEGRATION BY PART
This is a method of integrating the product of two functions. The
product were either function not the derivative of the other, for
example: x2 ln x dx, xex dx , ex sin x dx etc.
Consider the product rule for differentiation:
d (uv) = u dv dx + v du, u and v are functions of x.
dx dx dx
Integrate both sides with respect to x, WHEN & HOW TO USE
uv = u dv dx + v du dx, * If substitution doesn’t work.
dx dx * f(x).g(x) dx match with
Rearranging the term, u dv .
* choose u & dv and
u dv dx = uv − v du dx,
dx dx find du & v
This is known as integration by part udv = uv − v du
The procedures:
a. Split the function into two simpler functions, one called u and
dv
the other .
dx
b. To decide which one will be u and dv.
(i) u should be a function which becomes a simpler function
after differentiation.
There is a simple acronym to remember which function
to equate u: L – P – E – T
1. L = Logarithm
2. P = Polynomial
3. E = Exponential
4. T = Trigonometry
dv
(ii) must be a function that is possible to integrate to obtain
dx
128
DUM20132 Date : ………………….
Example 4.3.2 :
Find the following integrals using the integration by part techniques.
(a) x cos x dx (b) x ln x dx (c) x2 ex dx
Solution :
(a) Let u = x dv = cos x dx
du = 1, v = cos x dx = sin x omit the integratio n constant
dx
Substitutin g into udv = uv − v du gives
x cos x dx = x sin x − sin x (1) dx
= x sin x − (− cos x) + c
= x sin x + cos x + c
(b) Let u = ln x dv = x dx
du = 1 , v = x dx = x2 omit the integratio n constant
dx x 2
Substituti ng into udv = uv − v du gives
x ln x dx = x2 ln x − x2 1 dx
2 2x
= x2 ln x − 1 1 x2 + c
2 22
= x2 ln x − x2 + c
24
(c) Let u = x2 dv = ex dx
du = 2x v = ex dx = ex omit the integratio n constant
dx
Substituti ng into u dv = uv − v du gives
x2 ex dx = x2 ex − ex (2x) dx
= x2 ex − 2x ex dx again by part
u = 2x and dv = ex
du = 2 and v = ex dx = ex
dx
= x2 ex − 2xe x − ex (2) dx
= x2 ex − −2xe x + 2ex + c
( )= ex x2 − 2x + 2 + c
129
DUM20132 Date : ………………….
EXERCISE 4.3.2
Use the formula for differentiation by parts to complete the integration.
a) xex dx b) x cos 3x dx
c) xe −2x dx d) x sin x dx
2
130
DUM20132 Date : ………………….
e) ln x dx f) x2ln x dx
2 h) ln 3x dx
g) x sin x dx
Answers: a) xe x − ex + c , b) x sin 3x + cos 3x + c , c) xe−2x − e−2x + c ,
39 −2 4
d) − 2x cos x + 4 sin x + c , e) x ln x − x + c , f) x3 ln x − x3 + c ,
22 39
g) –x2cos x + 2x sin x + 2 cos x + c, h) x ln 3x –x + c
131
DUM20132 Date : ………………….
4.3.3 INTEGRATION BY PARTIAL FRACTION
In general, the integration in the form of f(x) dx where f(x) and g(x)
g(x)
are polynomials in terms of x, we have to express f (x ) as a partial
g(x)
fraction before integration is attempted. Only proper fractions can be
converted directly into partial fraction.
➢ nonrepeated linear factor (ax + b) f(x) dx
g(x)
f(x) = A + B + C
(x + a)(x + b)(x + c) (x + a) (x + b) (x + c) STEPS
* determine the shape of the
partial fractions
( numbers of factor g ( x) )
* find value A, B & C
* evaluate the integral
Example 4.3.3 : dx (b) (2x x+7 + 2) dx
Find:
− 3)(x
(a) 1
(x − 2)(x − 3)
Solution :
(a). Let 1 = A+B
(x − 2)(x − 3) x − 2 x − 3
So 1 = A(x − 3) + B(x − 2)
Substitute x = 2, 1 = − A A = −1
Substitute x = 3 , 1 = B B = 1
Thus 1 = −1 − 1
(x − 2)(x − 3) x − 2 x − 3
Hence 1 = −1 + 1 dx
2)(x x−2 −
(x − − 3) x 3
= − ln x − 2 + ln x − 3) + c
132
DUM20132 Date : ………………….
(b) Let (2x x+7 + 2) dx A 3 + x B 2
2x − +
− 3)(x
x + 7 A (x + 2) + B (2x − 3)
Substitute x = −2 5 = −7B B=−5
7
x=3 17 = 7 A A = 17
2 22 7
Thus
17 5
(2x x+7 + 2) 7 3 − x 7 2
2x − +
− 3)(x
Hence
17 5
x+7 dx = ( 7 3 − 7) dx
2x − x+2
(2x − 3)(x + 2)
17 ln 2x −3 5 ln (x + 2)
7
= − +c
27
= 17 ln 2x − 3 − 5 ln (x + 2) + c
14 7
EXERCISE 4.3.3
Express the functions in each of the following integrals in partial fractions and hence
perform the integration.
a) (1− 1 − 2) dx
x)(3x
133
DUM20132 Date : ………………….
b) (x 2x + 3 2) dx
− 4)(5x +
c) 3x dx
x2 − x − 2
134
DUM20132 Date : ………………….
d) 3 dx
(x − 1)(2x − 1)
e) 1 dx
(4x − 1)(4x + 1)
Answers: a) -ln (1-x) + ln(3x-2) + c, b) 1 ln (x − 4) − ln(5x + 2) + c ,
2 10
c) 2 ln (x − 2) + ln (x + 1) + c , d) 3 ln (x − 1) − 3 ln( 2x − 1) + c , e) ln( 4x − 1) − ln( 4x + 1) + c
88
135
DUM20132 Date : ………………….
4.4 THE DEFINITE INTEGRAL
An integral with limits is called a definite integral
b F x)
f(x) F(b)− F(a)
dx = ( b =
a
a
b is known as the upper limit and a is known as the lower limit of the integral.
In the definite integral there is no constant of integration.
Example 4.4.1 :
Evaluate.
2 (b) ( )2 25
(a) 6x2 dx 1+ 2x + x2 dx (c) x dx
0 1
−1
(d) 3 x2 − 1 dx (e)
2 x2 −1 x − 1 2 dx
−2 x
Solution : ( )2 6x3 2 x3 2 = 2(8) = 16
(a) 6x 2 0
(b) 0
0
(c) dx = 3 = 2 = 2 23 − 0
( )2 dx = + x2 + x3 2
1+ 2x + x2 x 3
−1
−1
= 2 + 4 + 8 − − 1+ 1− 1
3 3
=9
25 1 3 25
dx = x 2 x2
25x dx = 2
11 3 1
= 2 2532 − 1
3
( )= 2 53 −1
3
= 82 2
3
136
DUM20132 Date : ………………….
3 x2 − 1 dx = 3 x2 − x−2 x3 x−1 3 x3 13
( )(d) dx = 3 − = 3 +
2 x2 − 1 x
2 2 2
= 1 (27) + 1 − 8 + 1
3 3 3 2
=61
6
−1 x − 1 2 −1 x3 x−1 −1
x2
( )(e)
−2 x dx = − 2 + x−2 dx = 3 − 2x + − 1
−2 − 2
= x3 − 2x − 1 −1
3 x − 2
= − 1 + 2 + 1 − − 8 + 4 + 1
3 3 2
= 2 2 −15
36
=5
6
EXERCISE 4.4
1. Evaluate the following definite integral.
9
a) x dx
4
137
DUM20132 Date : ………………….
8
b) 3 x dx
1
c) 9 1 dx
1x
27 1 − 1
3
d) x dx
2
1
( )4
e) 6x − 3 x dx
1
Answers: a) 38 , b) 45 , c) 4, d) 6, e)31
34
138
DUM20132 Date : ………………….
2. Evaluate the following definite integral.
0
a) (x + 1)(x + 2) dx
−2
b)3 x2 −1 dx
1 x2
c)2 3x 2 + 2 x dx
1 x2
139
DUM20132 Date : ………………….
2
d) x (x − 1)(x − 2) dx
1
−2
e) (3x − 1)(2x + 1) dx
−1
Answers: a) 2 4 1
, b) , c) 4.17, d) - , e)
3 3 4
140
DUM20132 Date : ………………….
SUMMARY
4.0
INTEGRATION
Definition. Integral of The integral of The definite Techniques of
polynomial trigonometric integral integration
Inverse of and exponent
differentiation and 1/x
f'(x) dx = f(x) + c
Integration of xn. cos x dx = sin x + c b By
sin x dx = − cos x + c
xn dx = 1 x n+1 +c sec2 x dx = tan x + c f (x) dx = F (x)ba Substitution
+
(n 1) a f(x) dx = fg(u) g'(u) du
= F (b)− F (a)
Integration of cos (ax + b) dx = 1 sin (ax + b) + c By
a Part
kx n dx udv = uv − vdu
sin (ax + b) dx = − 1 cos(ax + b)+ c
= kx n+1 + c a L-P-E-T
n +1
sec2 (ax + b) dx = 1 tan (ax + b)+ c By
a Partial
Fraction
Integrating a ex dx = ex + c
constant eax+b dx = 1 eax+b + c A+B +C
(x + a) (x + b) (x + c)
a dx = ax + c a
f '(x) e f (x) dx = e f (x) + c
Integral of
(ax + b)n
= (n 1 (ax + )b n+1 + c
+1)(a)
Integration of
1
x
= ln x + c
141