ประวัติของพีชพี คณิต ณิ จัดทำ โดย สาขาวิชาคณิตศาสตร์ ห้อง 1 รหัสนักศึกษา 641102022128 นางสาวธนสรณ์ แก่นจันทร์
พีชคณิตคือะไร พีชคณิตเป็นสาขาหนึ่งของคณิตศาสตร์ที่ใช้ ตัวอักษรหรือ สัญลักษณ์ (เช่น x และ y) แทนตัวเลข เพื่อช่วยให้เราแก้ปัญหาและดำ เนิน การเป็นรูปแบบ เพื่อทำ ให้คณิตศาสตร์ง่ายขึ้นและช่วยแก้ปัญหาได้ นอกจากนี้ ยังเป็นการศึกษาเกี่ยวกับโครงสร้าง ความสัมพันธ์และ จำ นวน เช่น การบวกลบคูณหาร เลขยกกำ ลัง การถอดราก การศึกษา สัญลักษณ์ ตัวแปร และเซต เป็นต้น เป็น 1 ใน 3 สาขาหลักทาง คณิตศาสตร์ ค้นพบโดย มุฮัมมัด อิบน์ มูซา อัลคอวาริซมีย์ ศัพท์ Algebra (พีชคณิต) นั้นมีรากศัพท์มาจาก ชื่อหนังสือ Al-Jabr wa-al-Muqabilah ของเขา ซึ่งอัลเคาะวาริซมีได้รับการ ยกย่องให้เป็นบิดาของพีชคณิตอีกด้วย นอกจากนั้นหนังสือ Liber Algoritmi de numero Indorum ทำ ให้เกิดศัพท์ algorithm ( อัลกอริ ทึม ) ขึ้นในคณิตศาสตร์ คำ ว่า “พีชคณิต” มีรากศัพท์เป็นภาษาสันสกฤษ ในภาษาอังกฤษ อ่านว่า algebra ในภาษาอาหรับ อ่านว่า algabr เรื่องน่ารู้เกี่ยวกับคำ ว่า พีชคณิต
พีชคณิต (Algebra) เป็นบทพื้นฐานในคณิตศาสตร์ที่หยั่งรากลึก และแตกฉานอยู่ในศาสตร์แขนงอื่น ๆ แบบเลี่ยงไม่ได้ โดยว่าด้วยเรื่อง ของกฎเกณฑ์การคำ นวณ การใช้สัญลักษณ์ และกำ หนดตัวแปรที่ไม่ ทราบค่าสำ หรับการแก้ปัญหาในชีวิตประจำ วัน หากลองมองที่คำ ว่า “Algebra” หลายท่านคงเดาไม่ยากว่าต้นกำ เนิดในการเคลมศาสตร์นี้คือ ชาวอาหรับแถบตะวันออกกลาง ที่มักจะใช้คำ ว่า “อัล (Al)” เป็นคำ นำ หน้าสำ หรับเรียกสิ่งต่าง ๆ แต่ความจริงพีชคณิตริเริ่มมาก่อนยุคทองของตะวันออกกลางเสีย อีก มีเพียงคนส่วนน้อยเท่านั้นที่จะรับรู้ข้อเท็จจริงเหล่านี้ การตั้งโจทย์ เพื่อหาปริมาณบางอย่างที่เราไม่ทราบค่า มีมาตั้งแต่สมัยอียิปต์ โดยมี หลักฐานสำ คัญอย่างโจทย์ปัญหาต่าง ๆ ใน Rhind Mathematical Papyrus หรือในสมัยบาบิโลนก็ได้ค้นพบแผ่นดินเหนียวที่สลักค่า ประมาณของรากที่สองของ 2 ด้วยวิธีการเชิงตัวเลขหรือ Numerical method แผ่นดินเหนียวของชาวบาบิโลน จารึกเกี่ยวกับพีชคณิต
ต่อมา ชายชาวกรีกนามว่า “ไดโอแฟนทัส แห่งอเล็กซานเดรีย” (Diophantus of Alexandria) เป็นผู้นำ ชุดตัวอักษรของกรีกมาใช้ แทนตัวแปรที่ไม่ทราบค่า ซึ่งก็อาจเคลมได้ว่าไดโอแฟนทัสเป็นผู้คิดค้น ตัวแปร (Variable) นั่นเอง แถมยังสร้างโจทย์ปัญหาที่เน้นเฉพาะผล เฉลยที่เป็นจำ นวนเต็มอย่างสมการไดโอแฟนไทน์ อันนำ ไปสู่บ่อเกิด ของโจทย์สุดหินที่ท้าทายให้นักคณิตมาพิชิตพวกมัน เช่น Pell’s equation, Hardy–Ramanujan number (Taxicab number), Catalan’s conjecture และ Fermat’s Last Theorem อันโด่งดังที่ ใช้เวลาแก้กันข้ามศตวรรษ!
ต้นกำ เนิดของพีชคณิตสามารถโยงไปถึงสมัยโบราณชาว บาบิโลน ต้องการอ้างอิง ที่พัฒนาตำ แหน่งระบบตัวเลขที่ได้รับ ความช่วยเหลืออย่างมากพวกเขาในการแก้สมการพีชคณิตของ พวกเขาวาทศิลป์ ชาวบาบิโลนไม่สนใจวิธีแก้ปัญหาที่แน่นอน แต่เป็นการประมาณดังนั้นพวกเขาจึงมักใช้การแก้ไขเชิงเส้นเพื่อ ประมาณค่ากลาง หนึ่งในแท็บเล็ตที่มีชื่อเสียงที่สุดคือ แท็บเล็ตPlimpton 322 ซึ่งสร้างขึ้นเมื่อประมาณ 1900–1600 ปี ก่อนคริสตกาลซึ่งให้ตารางของ ythagorean สามเท่าและแสดง ถึงคณิตศาสตร์ขั้นสูงบางอย่างก่อนคณิตศาสตร์กรีก พีชคณิตบาบิโลนก้าวหน้ากว่าพีชคณิตของอียิปต์ในยุคนั้น มาก ในขณะที่ชาวอียิปต์ส่วนใหญ่เกี่ยวข้องกับสมการเชิงเส้น ชาวบาบิโลนมีความกังวลกับสมการกำ ลังสองและลูกบาศก์ มากกว่า ชาวบาบิโลนได้พัฒนาการดำ เนินการเกี่ยวกับพีชคณิต แบบยืดหยุ่นซึ่งพวกเขาสามารถบวกเท่ากับและคูณทั้งสองข้าง ของสมการด้วยปริมาณที่เหมือนกันเพื่อกำ จัดเศษส่วนและ ตัวประกอบ พวกเขาคุ้นเคยกับรูปแบบเรียบง่ายหลายแฟ , สมการกำ ลังสองสามคำ ที่มีรากบวกและสมลูกบาศก์หลาย ถึงแม้มันจะไม่เป็นที่รู้จักว่าพวกเขาสามารถที่จะลดทั่วไป ลูกบาศก์ สมการ บาบิโลน
พีชคณิตอียิปต์โบราณจัดการกับสมการเชิงเส้นเป็นหลักใน ขณะที่ชาวบาบิโลนพบว่าสมการเหล่านี้เป็นพื้นฐานมากเกินไป และพัฒนาคณิตศาสตร์ให้อยู่ในระดับที่สูงกว่าชาวอียิปต์ Rhind Papyrus หรือที่เรียกว่า Ahmes Papyrus เป็นต้นปาปิรัส ของอียิปต์โบราณที่เขียนว่า c. 1650 ปีก่อนคริสตกาลโดย Ahmes ผู้ถอดความจากงานก่อนหน้านี้ที่เขาลงวันที่ระหว่าง 2000 ถึง 1800 ปีก่อนคริสตกาล เป็นเอกสารทางคณิตศาสตร์ ของอียิปต์โบราณที่กว้างขวางที่สุดที่นักประวัติศาสตร์รู้จัก Rhind Papyrus มีปัญหาที่สมการเชิงเส้นของรูปแบบ a + ax = b และ x + ax + bx = c ได้รับการแก้ไขโดยที่ a , b และ c เป็นที่รู้จักและ x ซึ่งเรียกว่า "aha" หรือ heap คือสิ่งที่ไม่รู้จัก วิธี แก้ปัญหาอาจเป็นไปได้ แต่ไม่น่าจะมาถึงโดยใช้ "method of false position" หรือregula falsi โดยอันดับแรกค่าเฉพาะจะถูก แทนที่ในด้านซ้ายมือของสมการจากนั้นการคำ นวณทาง คณิตศาสตร์ที่จำ เป็นคือ เสร็จแล้วประการที่สามผลลัพธ์จะถูก เปรียบเทียบกับด้านขวามือของสมการและในที่สุดก็พบคำ ตอบที่ ถูกต้องโดยใช้สัดส่วน ในปัญหาบางอย่างผู้เขียน "ตรวจสอบ" วิธีแก้ปัญหาของเขาด้วยเหตุนี้จึงเขียนหนึ่งในข้อพิสูจน์ง่าย ๆ ที่ ทราบกันดีที่สุด อียิปต์โบราณ
บางครั้งถูกกล่าวหาว่าชาวกรีกไม่มีพีชคณิต แต่ไม่ถูกต้อง เมื่อ ถึงเวลาของเพลโตคณิตศาสตร์ของกรีกได้รับการเปลี่ยนแปลง อย่างรุนแรง ชาวกรีกได้สร้างพีชคณิตเรขาคณิตโดยที่คำ ต่าง ๆ แสดงด้วยด้านของวัตถุทางเรขาคณิตโดยปกติจะเป็นเส้นที่มีตัว อักษรเกี่ยวข้องและด้วยพีชคณิตรูปแบบใหม่นี้พวกเขาสามารถหาคำ ตอบของสมการได้โดยใช้ a กระบวนการที่พวกเขาคิดค้นขึ้นเรียกว่า "การประยุกต์ใช้พื้นที่" "แอพลิเคชันของพื้นที่" เป็นเพียงส่วนหนึ่ง ของพีชคณิตเรขาคณิตและจะได้รับการคุ้มครองอย่างทั่วถึง ในEuclid 's องค์ประกอบ ตัวอย่างของพีชคณิตเรขาคณิตจะแก้สมการเชิงเส้นขวาน = BC ชาวกรีกโบราณจะแก้สมการนี้โดยการมองไปที่มันเป็นความเท่า เทียมกันของพื้นที่มากกว่าเป็นความเท่าเทียมกันระหว่าง อัตราส่วน : ข และ ค : x ชาวกรีกจะสร้างรูปสี่เหลี่ยมผืนผ้าที่มีด้าน ของความยาวขและคแล้วขยายด้านข้างของสี่เหลี่ยมผืนผ้าความ ยาวและในที่สุดพวกเขาก็จะเสร็จสมบูรณ์สี่เหลี่ยมขยายเพื่อหาด้าน ของรูปสี่เหลี่ยมผืนผ้าที่มีการแก้ปัญหา คณิตศาสตร์กรีก
นักคณิตศาสตร์ที่เกี่ยวข้องกับพีชคณิต ฮัมมัด อิบน์ มูซา อัลคอวาริซมีย์ หรือ อัลคอวาริซมีย์ เป็นชาวเอเชีย เป็นผู้มีชื่อเสียงในเกี่ยวกับการเป็นนักแปล ผลงานด้านเกี่ยวกับวิธีการคำ นวณคณิตศาสตร์ของเขา เป็นการ สังเคราะห์ความรู้และความสามารถของชาวฮินดูและชาวกรีก อีกทั้ง ความรู้ที่สำ คัญในด้านคณิตศาสตร์และวิทยาศาสตร์ของเขายังสร้าง ผลงานที่โดดเด่น นั่นก็คือการสร้างระบบทศนิยม (Decimal System) ซึ่งเขาได้พบว่าตัวเลขของอาหรับนั้นดีกว่าตัวเลขในแบบละตินและ อินเดีย อัลคอวาริซมีย์ได้รับการยกย่องจากนักคณิตศาสตร์จากทั่ว โลกในการนำ ตัวเลขอารบิกไปใช้ และยังมีการใช้เครื่องหมายลบ (-) และตัวเลขศูนย์ (0) ในการคำ นวณอีกด้วย เขาได้รับการยกย่องว่าเป็น บิดาแห่งพีชคณิต ด้วยผลงานที่ชื่อว่า Al-Kitab al-mukhtasar fi hisab al-jabr wa’l-muqabala หรือเรียก อีกอย่างว่า หลักพื้นฐานว่าด้วยการคืนค่าละการทดแทน (ปัจจุบันเรียก ว่า สมการ) โดยคำ ว่า Al-jabr นั้นได้ดัดแปลงมาจากคำ ว่า Algebra หรือ พีชคณิตในภาษาอังกฤษนั่นเอง
อ้างอิง เมขลิน อมรรัตรัน์ . (2563). รู้จัรู้กจักับนักนัวิทวิย์-ย์คณิต จากทุกทุมุมโลก ตอนที่ 15 มูฮัมหมัดมัอิบน์ มูซา อัลคอวาริซริมีย์มี .ย์สืบสืค้นเมื่อมื่ 27 กันยายน 2566. จาก https://theprincipia.co/ ประวัติวั ติพีชพีคณิตณิ . (2566).จากhttps://hmong.in.th/wiki/History_of_algebra Anut Phadongkit. (2022). Algebra อาหรับรัคิดชาติแรกจริงริหรือรื. สืบสืค้นเมื่อมื่ 27 กันยายน 2566 .จาก https://theprincipia.co/