MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
4.1.1.2 Homogeneous equation
Procedure to solve Homogeneous equation
Method I :
Step I : write dy as a subject
dx
( )Step II : write dy into the form ofy and name as equation
dx x
(Note : if the expression has the same degree, dividing each expression by x deg ree )
Step III : let u = y
x
Therefore, y = ux
using product rule,
dy = x du + u ----------------
dx dx
Step IV : substitute into and separating variables x and u
LHS : f(u) du
RHS : f(x) dx
Step V : Integrating both sides (using an appropriate technique)
LHS : f (u) du
RHS : f (x) dx
Step VI : Replace u by y
x
(if the initial condition is given)
Step VII : Applying the given initial condition to find the value of C.
© Amirah 2022 246
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Procedure to solve Homogeneous equation
Method II :
Step I : write as a subject
Step II : Substitute = + and =
Step III : factorize and simplify x
Step IV : separating variables x and v
LHS : f(v) dv
RHS : f(x) dx
Step V : Integrating both sides (using an appropriate technique)
LHS : ∫ ( )
RHS : ∫ ( )
Step VI : Replace v by y
x
(if the initial condition is given)
Step VII : Applying the given initial condition to find the value of C.
© Amirah 2022 247
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Example 1 ( ) ( )ans : ln2
y +1 + tan−1 y = − 2ln x + C
Solve (x + 2y )dy = (y − 2x)dx x x
Solution : Method I
Step I : write dy as a subject Homogeneous equation : write as a subject.
dx
(x + 2y )dy = (y − 2x)dx
dy = y − 2x (homogeneous equation with degree 1)
dx x + 2y
( ) ( )Step II : write dy into the form ofy u= y and name as equation
dx x x
, replace
(Note : if the expression has the same degree, dividing each expression by x deg ree )
y − 2x
x
( )dy y
= x (dividing each term by x1) → to write into the form of x
dx x x + 2y x
( )dy =y −2
x
( )dx 1 + 2 y x
dy = u − 2 Step III :
dx 1+ 2u
dy = u − 2 ---------------- Where
dx 1+ 2u and
Step IV : substitute into and separating variables x and u Differentiate (using product rule)
-----------------
= : x du + u = u − 2
dx 1+ 2u
x du = u − 2 − u
dx 1+ 2u
x du = u − 2 − u(1+ 2u)
dx 1+ 2u
x du = u − 2 − u − 2u2
dx 1+ 2u
x du = − 2 − 2u2
dx 1+ 2u
( )x du = − 2 u2 + 1
dx 2u + 1
2u + 1du = − 2 dx
u2 +1 x
© Amirah 2022 248
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Step V : Integrating both sides (using an appropriate technique)
+ 1du
+1
2u = − 2 dx
u2 x
u 2u 1 du + u 1 1 du = −2 1 dx
2+ 2+ x
ln u2 + 1 + tan−1(u) = − 2ln x + C
Step VI : Replace u by y
x
( ) ( )ln
y 2 +1 + tan−1 y x = − 2ln x + C #
x
Solution : Method II
Step I : write as a subject
( + 2 ) = ( − 2 )
− 2
= + 2
Step II : Substitute = + and = ( )
( ) − 2
+ = + 2( )
− 2
+ = + 2
Step III : factorize and simplify
( − 2)
+ = (1 + 2 )
− 2
+ = 1 + 2
© Amirah 2022 249
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Step IV : separating variables x and v Step V : Integrating both sides (using an
appropriate technique)
− 2 1 + 2 −2
= 1 + 2 −
− 2 − (1 + 2 ) ∫ 1 + 2 = ∫
=
1 + 2 1 2 1
− 2 − − 2 2 ∫ (1 + 2 + 1 + 2) = −2 ∫
= 1 + 2 1 2 1
∫ 1 + 2 + ∫ 1 + 2 = −2 ∫
−2 − 2 2
= 1 + 2 −1( ) + |1 + 2| = −2 +
−2(1 + 2) Step VI : Replace v by ( )
= 1 + 2 −1 ( ) + |1 + ( )2| = −2 + #
1 + 2 −2
1 + 2 =
Example 2
dy = y 2 − x 2 ( ) ( )ans : 1 ln2 +1
dx x 2 + 2xy + y 2 2
Solve y + tan−1 y x = −ln x + C
x
Solution : Method I
Step I : write dy as a subject
dx
dy = y 2 − x 2 (homogeneous equation with degree 2)
dx x 2 + 2xy + y 2
( ) ( )Step II : write dy into the form ofy u= y and name as equation
dx x x
, replace
(Note : if the expression has the same degree, dividing each expression by x deg ree )
dy y2 − x2 ( )(dividing each term by x2) → to write into the form ofy
dx x2 x2 x
=
x 2 + 2xy + y 2
x 2 xx x 2
( )dy= y2 −1
( ) ( )dx x
1+ + y 2
2 yx x
© Amirah 2022 250
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
dy = u2 − 1
dx 1 + 2u + u2
dy = u2 − 1
dx u2 + 2u + 1
dy = (u + 1)(u −1) Step III :
dx (u + 1)(u + 1)
Where
dy = u − 1 ---------------- and
dx u + 1
Differentiate (using product rule)
Step IV : substitute into and separating variables x and u -----------------
= : x du + u = u − 1
dx u + 1
x du = u − 1 − u
dx u + 1
x du = u −1− u(u + 1)
dx u + 1
x du = u −1− u2 − u
dx u + 1
x du = − u2 − 1
dx u + 1
( )x du = − u2 + 1
dx u + 1
uu2++11du =− 1 dx
x
Step V : Integrating both sides (using an appropriate technique)
uu2++11du = − 1 dx
x
u u1 du + u 1 du = − 1 dx
2+ 2+ 1 x
u 12u du + u 1 1 du = − 1 dx
2+ 1 2+ x
2
1 ln u2 + 1 + tan−1(u) = − ln x + C
2
Step VI : Replace u by y
x
( ) ( )1 ln2
2
y +1 + tan−1 y x = −ln x + C #
x
© Amirah 2022 251
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Solution : Method II
Step I : write as a subject
2 − 2
= 2 + 2 + 2
Step II : Substitute = + and = ( )
( )2 − 2
+ = 2 + 2 ( ) + ( )2
2 2 − 2
+ = 2 + 2 2 + 2 2
Step III : factorize and simplify
2( 2 − 1)
+ = 2(1 + 2 + 2)
2 − 1
+ = 2 + 2 + 1
( + 1)( − 1)
+ = ( + 1)( + 1)
− 1
+ = + 1
Step IV : separating variables x and v
− 1
= + 1 −
− 1 − ( + 1)
=
+ 1
− 1 − 2 −
=
+ 1
−1 − 2
= + 1
−(1 + 2)
= + 1
+ 1 −1
1 + 2 =
© Amirah 2022 252
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Step V : Integrating both sides (using an appropriate technique)
+ 1 −1
∫ 1 + 2 = ∫
1 1
∫ (1 + 2 + 1 + 2) = − ∫
1 1
∫ 1 + 2 + ∫ 1 + 2 = − ∫
1 2 1 1
2 ∫ 1 + 2 + ∫ 1 + 2 = − ∫
1 |1 + 2| + −1( ) = − +
2
Step VI : Replace v by ( )
1 |1 + ( )2| + −1 ( ) = − + #
2
Example 3 ( )ans : tan y x = ln x + C
Solve x dy = y + x cos 2 y dx
as a subject.
x
Solution : Method I
Step I : write dy as a subject Homogeneous equation : write
dx
x dy = y + x cos 2 y dx
x
y + x cos2 y
dy = x
dx x
( ) ( )Step II : write dy into the form of y u= y and name as equation
dx x x
, replace
( )dy
=y + x cos2 y
x
dx x x
( ) ( ) ( )dy = y
x
dx
y + cos2 y x → to write into the form of
x
dy = u + cos2 u ---------------- Where
dx and
Step IV : substitute into and separating variables x and u Differentiate (using product rule)
= : x du + u = u + cos2 u -----------------
dx
© Amirah 2022 253
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
x du = cos2 u
dx
1 du = 1 dx
cos2 u x
sec2 u du = 1 dx
x
Step V : Integrating both sides (using an appropriate technique)
sec2 u du = 1 dx
x
tanu = ln x + C
Step VI : Replace u by y
x
( )tan y = ln x + C #
x
Solution : Method II
Step I : write as a subject
= ( + 2 ( ))
= + 2 ( )
Step II : Substitute = + and = ( )
+ = ( ) + 2( )
+ 2( )
+ =
Step III : factorize and simplify
( + 2( ))
+ =
+ = + 2 ( )
Step IV : separating variables x and v
= + 2( ) −
= 2( )
© Amirah 2022 254
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
11
2( ) =
2( ) = 1
Step V : Integrating both sides (using an appropriate technique)
∫ 2( ) = ∫ 1
( ) = +
Step VI : Replace v by ( )
( ) = + #
Example 4 – with initial condition
( )Solve x 3 + 6xy 2 y' = 8y 3 + 2x 2y , when x = 1, y = 2.
( ) ( )ans : ln
2yx 3 + y = ln x + ln18
x
Solution : Method I
Step I : write dy as a subject Homogeneous equation : write as a subject.
dx
( )x3 + 6xy 2 y' = 8y 3 + 2x 2y
( )x3 + 6xy 2 dy = 8y 3 + 2x 2y
dx
dy = 8y 3 + 2x 2y (homogeneous equation with degree 3)
dx x 3 + 6xy 2
( ) ( )Step II : write dy into the form of y u= y and name as equation
dx x x
, replace
(Note : if the expression has the same degree, dividing each expression by x deg ree )
dy = 8y 3 + 2x2y ( )(dividing each term by x3) → to write into the form ofy
dx x3 x2x x
x3 + 6xy 2
x3 xx 2
( ) ( )dy8y 3 + 2 y
( )dx x
= x
1+ 6 y 2
x
© Amirah 2022 255
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
dy = 8u3 + 2u ---------------- Where
dx 1+ 6u 2 and
Step IV : substitute into and separating variables x and u Differentiate (using product rule)
-----------------
=: x du + u = 8u3 + 2u
dx 1 + 6u2
x du = 8u3 + 2u −u
dx 1 + 6u2
( )x du 8u3 + 6u 2
dx
= 2u − u 1 +
1 + 6u2
x du = 8u3 + 2u − u − 6u3
dx 1 + 6u2
x du = 2u3 + u
dx 6u2 + 1
6u 2 + 1 du = 1 dx
2u3 + u x
Step V : Integrating both sides (using an appropriate technique)
6u2 + 1 du = 1 dx
2u3 + u x
Therefore, the general solution is,
ln 2u3 + u = ln x + C
Step VI : Replace u by y
x
( ) ( )ln2y3+ y = ln x + C ------------------
x x
Step VII : Applying the given initial condition to find the value of C.
By substituting x = 1, y = 2 into ,
ln 2(2)3 + (2) = ln1 + C
ln18 = 0 + C
C = ln18 (into )
Thus, the particular solution is,
( ) ( )ln
2yx 3 + y = ln x + ln18 #
x
© Amirah 2022 256
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Solution : Method II
Step I : write as a subject
( 3 + 6 2) ′ = 8 3 + 2 2
( 3 + 6 2) = 8 3 + 2 2
8 3 + 2 2
= 3 + 6 2
Step II : Substitute = + and = ( )
8( )3 + 2 2( )
+ = 3 + 6 ( )2
8 3 3 + 2 3
+ = 3 + 6 2 3
Step III : factorize and simplify
3(8 3 + 2 )
+ = 3(1 + 6 2)
8 3 + 2
+ = 1 + 6 2
Step IV : separating variables x and v
8 3 + 2
= 1 + 6 2 −
8 3 + 2 − (1 + 6 2)
=
1 + 6 2
8 3 + 2 − − 6 3
=
1 + 6 2
2 3 +
= 1 + 6 2
6 2 + 1 1
2 3 + =
Step V : Integrating both sides (using an appropriate technique)
6 2 + 1 1
∫ 2 3 + = ∫
|2 3 + | = +
© Amirah 2022 257
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Step VI : Replace v by ( )
|2 ( )3 + ( )| = + #
Step VII : Initial condition = 1, = 2
ln |2 (2)3 + (2)| = (1) +
11
|16 + 2| = 0 +
= (18)
Particular solution :
|2 ( )3 + ( )| = + (18) #
© Amirah 2022 258
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Example 5 – with initial condition
Solve (3x − y )dx + (x + y )dy = 0 , when x = 3 , y = 0.
( )ans : 1 ln y 2 + 3 + 1 tan−1 y = ln 3 − ln x
2 x 3 3x
Solution : Method I
Step I : write dy as a subject Homogeneous equation : write as a subject.
dx
(3x − y )dx + (x + y )dy = 0
(x + y )dy = − (3x − y )dx
(y + x)dy = (y − 3x)dx
dy = y − 3x (homogeneous equation with degree 1)
dx y + x
( ) ( )Step II : write dy into the form ofy u= y and name as equation
dx x x
, replace
(Note : if the expression has the same degree, dividing each expression by x deg ree )
dy = y − 3x ( )(dividing each term by x1) → to write into the form of y
dx x x x
y + x
x x
=( )dyy −3
( )dx x
y +1
x
dy = u − 3 ---------------- Where
dx u + 1 and
Step IV : substitute into and separating variables x and u Differentiate (using product rule)
= : x du + u = u − 3 -----------------
dx u + 1
x du = u − 3 − u
dx u + 1
x du = u − 3 − u(u + 1)
dx u + 1
x du = u − 3 − u2 − u
dx u + 1
x du = − u2 − 3
dx u + 1
© Amirah 2022 259
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
( )x du = − u2 + 3
dx u + 1
u + 1 du = − 1 dx
u2 + 3 x
Step V : Integrating both sides (using an appropriate technique)
u +1 du = − 1 dx
u2 + 3 x
u
u2 + 3 du
+ 1 = − 1 dx
u2 + 3 du x
( ) 12u du + 1 = − 1 dx
u2 + u2 + x
2
3 2 du
3
1 ln u2 + 3 + 1 tan−1 u = − ln x +C
2 3 3
Step VI : Replace u by y
x
Therefore, the general solution is,
( ) ( )1 lny2+ 3 + 1 tan−1 y = − ln x +C
x 3 x
2
3
( )1 lny 2 + 3 + 1 tan−1 y = − ln x + C ------------------
x 3 3x
2
Step VII : Applying the given initial condition to find the value of C.
By substituting x = 3 , y = 0 into ,
1 ln 02 + 3 + 1 tan−1(0) = − ln 3 + C
23
1 ln 3 + 0 = − ln 3 + C
2
1
ln 3 2 = − ln 3 + C
ln 3 = − ln 3 + C
( )C = ln 3 + ln 3 = 2 ln 3 = ln 3 2 = ln 3 (into )
Thus, the particular solution is,
( )1 lny 2 + 3 + 1 tan−1 y = ln 3 − ln x #
x 3 3x
2
© Amirah 2022 260
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Solution : Method II
Step I : write as a subject
(3 − ) + ( + ) = 0
( + ) = −(3 − )
−(3 − )
= +
− 3
= +
Step II : Substitute = + and = ( )
( ) − 3
+ = ( ) +
− 3
+ = +
Step III : factorize and simplify
( − 3)
+ = ( + 1)
− 3
+ = + 1
Step IV : separating variables x and v
− 3
= + 1 −
− 3 − ( + 1)
=
+ 1
− 3 − 2 −
=
+ 1
−3 − 2
= + 1
−(3 + 2)
= 1 +
1 + −1
3 + 2 =
© Amirah 2022 261
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Step V : Integrating both sides (using an appropriate technique)
+ 1 −1
∫ 2 + 3 = ∫
1 1
∫ ( 2 + 3 + 2 + 3) = − ∫
1 1
∫ 2 + 3 + ∫ 2 + 3 = − ∫
1 2 1 1
2 ∫ 2 + 3 + ∫ 2 + (√3)2 = − ∫
1 | 2 + 3| + 1 −1 ( ) = − + #
2 √3
√3
Step VI : Replace v by ( )
1 |( )2 + 3| + 1 −1 (( )) = − +
2 √3 √3
1 |( )2 + 3| + 1 −1 ( ) = − + #
2 √3
√3
Step VII : Initial condition = √3, = 0
1 |( 0 2 + 3| + 1 −1 ( 0 ) = − √3 +
2 √3 √3√3
√3 )
1 |3| + 1 −1(0) = − √3 +
2 √3
321 + 0 = − √3 +
√3 = − √3 +
= 2 √3
2
= (√3)
= (3)
Particular solution :
1 |( )2 + 3| + 1 −1 ( ) = − + (3) #
2 √3 √3
© Amirah 2022 262
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
More Examples from Previous Semester Papers
June 2019/ MAT235/ Q4c/ 8 marks
Find the general solution of the homogeneous differential equation dy = y 2 + x 2 + xy .
dx x 2
∶ −1 ( ) = +
Solution :
2 + 2 + =
=
2
( )2 + 2 + ( ) Find (using product rule)
+ = 2 = =
= + ′ = 1
2 2 + 2 + 2
+ = ′ =
2
2( 2 + 1 + )
+ =
2
+ = 2 + 1 +
= 2 + 1 + −
= 2 + 1
11
2 + 1 =
Integrating both sides
11
∫ 2 + 1 = ∫
−1( ) = +
−1 ( ) = + #
© Amirah 2022 263
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Dec 2018/ MAT235/ Q4c/ 8 marks
Find the general solution of the homogeneous differential equation dy = xy .
dx x 2 + 4y 2
1
Solution : ∶ 8( )2 − ( ) = +
=
= 2 + 4 2
( ) Find (using product rule)
+ = 2 + 4( )2
2
+ = 2 + 4 2 2 = =
2 = + ′ = 1
+ = 2(1 + 4 2)
′ =
+ = 1 + 4 2
= 1 + 4 2 −
− (1 + 4 2)
= 1 + 4 2
− − 4 3
= 1 + 4 2
−4 3
= 1 + 4 2
1 + 4 2 1
−4 3 =
Integrating both sides
1 + 4 2 1 1 ( )
∫ −4 3 = ∫ 8( )2 − = + #
1 4 2 1 1
∫ (−4 3 + −4 3) = ∫ 8( 22)
− ( ) = +
∫ (− 1 −3 − 1 = ∫ 1 1 − ( ) = +
4 ) (8 22)
1 −2 2 − ( ) = + #
− 4 ∙ −2 − = + 8 2
1
8 2 − = +
1 − ( ) = + #
8( )2
© Amirah 2022 264
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
June 2018/ MAT235/ Q4c/ 8 marks
Find the general solution of the homogeneous differential equation dy = xy − 4y 2 .
1 dx x 2
∶ 4( ) = +
Solution :
− 4 2 =
= 2 Find (using product rule)
( ) − 4( )2
+ =
2
= +
2 − 4 2 2 = =
+ = ′ = 1
2
′ =
2( − 4 2)
+ =
2
+ = − 4 2
= − 4 2 −
= −4 2
11
−4 2 =
Integrating both sides
11
∫ −4 2 = ∫
∫ − 1 −2 = ∫ 1
4
1 −1
− 4 ∙ −1 = +
1
4 = +
1
4( ) = + #
1
(4 ) = +
4 = + #
© Amirah 2022 265
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Jan 2018/ MAT235/ Q4a/ 14 marks ∶ ) 3 − 7 = 1 −1 5 +
Solve the following first order differential equations : 3 4 (4)
( )i) 25x2 + 16 dy = 5 dx . (solution in page 242)
y2 −7
(Hint : dx = 1 tan−1 x + C ) (7 marks)
x2 + a2 a a
(7 marks) (solution in page 266)
✔ii) dy = 2y 2 − 2x2 ∶ ) − |( )2 + 1| = +
dx 4xy
Solution :
2 2 − 2 2 =
= 4 Find (using product rule)
2( )2 − 2 2
+ = 4 ( )
2 2 2 − 2 2 = + = =
+ = 4 2 ′ = 1
2(2 2 − 2) ′ =
+ = 4 2
2 2 − 2
+ = 4
2 − 1
+ = 2
2 − 1
= 2 −
2 − 1 − (2 )
=
2
2 − 1 − 2 2
=
2 Integrating both sides
− 2 − 1 −2 1
= 2 ∫ 2 + 1 = ∫
2 1 2 1
− 2 − 1 = − ∫ 2 + 1 = ∫
2 1 − | 2 + 1| = +
−( 2 + 1) = − |( )2 + 1| = + #
−2 1
2 + 1 =
© Amirah 2022 266
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Mar 2017/ MAT235/ Q4a/ 7 marks
( )Solve the homogeneous differential equation 3x3 + y 3 dy = 3x2y .
dx
Solution : ∶ 1 − ( ) = +
( )3
(3 3 + 3) = 3 2
=
3 2 Find (using product rule)
= 3 3 + 3
3 2( ) = =
+ = 3 3 + ( )3 = + ′ = 1
3 3 ′ =
+ = 3 3 + 3 3
3 3
+ = 3(3 + 3)
3 Integrating both sides
+ = 3 + 3
3 + 3 1
∫ − 4 = ∫
3
= 3 + 3 − 3 3 1
3 − (3 + 3) ∫ (− 4 + − 4) = ∫
= 3 + 3 ∫ (−3 −4 − 1 = ∫ 1
)
3 − 3 − 4
= 3 + 3 −3
−3 ∙ −3 − = +
− 4 −3 − = +
= 3 + 3
1
3 + 3 1 3 − = +
− 4 = 1 − ( ) = + #
( )3
© Amirah 2022 267
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Oct 2016/ MAT235/ Q5a/ 9 marks
Solve the first order homogeneous differential equation xy dy = 2y 2 − x2 .
dx
Solution : ∶ 1 |( )2 − 1| = +
2
= 2 2 − 2
=
2 2 − 2
= Find (using product rule)
2( )2 − 2 = =
+ = ( ) = + ′ = 1
2 2 2 − 2 ′ =
+ = 2
2(2 2 − 1)
+ = 2
2 2 − 1
+ =
2 2 − 1
= −
2 2 − 1 − ( )
=
2 2 − 1 − 2
=
2 − 1
=
1
2 − 1 =
Integrating both sides
1 = 2 − 1
∫ 2 − 1 = ∫ ∶ ∫ 2 − 1
= 2
1 | 2 − 1| = +
2 ∫ 2 − 1 = ∫ ∙ 2
= 2
1 |( )2 − 1| = + # 11
2 = 2 ∫
= 1 | | +
2
= 1 | 2 − 1| +
2
© Amirah 2022 268
MAT235- CALCULUS II FOR ENGINEERS / Chapter 4 : Ordinary Differential Equations (ODE)
Sep 2015/ MAT235/ Q4a(ii)/ 8 marks
Solve the first order homogeneous differential equation dy = x2−y 2 .
dx xy
Solution : ∶ 1 |1 − 2 ( )2| = +
− 4
2 − 2 =
=
2 − ( )2 Find (using product rule)
+ = ( )
2 − 2 2 = =
+ = 2 = + ′ = 1
2(1 − 2) ′ =
+ = 2
1 − 2
+ =
1 − 2
= −
1 − 2 − ( )
=
1 − 2 − 2
=
1 − 2 2
=
1
1 − 2 2 =
Integrating both sides = 1 − 2 2
∶ ∫ 1 − 2 2
1 = −4
∫ 1 − 2 2 = ∫
∫ 1 − 2 2 = ∫ ∙ −4
− 1 |1 − 2 2| = + = −4
4
11
1 |1 − 2 ( )2| = + # = − 4 ∫
− 4
= − 1 | | +
4
= − 1 |1 − 2 2| +
4
© Amirah 2022 269