By Amirah Hana Mohamed Nor
Chapter 1 : Inverse Trigonometric Function
CHAPTER 1
INVERSE TRIGONOMETRIC FUNCTIONS
1.0 Introduction
1.0.1 Notation
If sin x = A, then x = sin−1A
If cos x = A, then x = cos−1A
If tan x = A, then x = tan−1A
If sec x = A, then x = sec−1A
If cosec x = A, then x = cosec−1A
If cot x = A, then x = cot−1A
1.0.2 Properties of Inverse Trigonometric Function
sin(sin−1x) = x, sin−1(sin x) = x
cos(cos−1x) = x, cos−1(cos x) = x
tan(tan−1x) = x, tan−1(tan x) = x
sec(sec−1x) = x, sec−1(sec x) = x
cosec(cosec−1x) = x, cosec−1(cosec x) = x
cot(cot−1x) = x, cot−1(cot x) = x
1.0.3 The graph of Inverse Trigonometric Function
© Amirah 2021 1
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
1.1 Evaluating Inverse Trigonometric Function using Triangle Method (without using
calculator)
Step 1 : let A = inverse trigonometric function
(or A = first inverse trigonometric function, and
B = second inverse trigonometric function
Step 2 : change inverse trigonometric function to ordinary trigonometric function
Step 3 : draw a right angle triangle and determine all the sides based on
trigonometric function obtained in Step 2.
Step 4 : find the relevant trigonometric ratios from a right angle triangle obtained in
Step 3
Step 5 : evaluate the given question (and refer useful formula)
Useful Formula © Amirah 2021
1. sin (A B) = sin A cos B cos A sin B
2. cos (A B) = cos A cos B sin A sin B
3. tan (A B) =
4. sin 2A = 2 sin A cos A
5. cos 2A = cos2 A − sin2 A
6. cos 2A = 2cos2 A − 1
7. cos 2A = 1 − 2sin2 A
8. tan 2A =
9. sec A =
10. cosec A =
11. cot A =
12. cos2 A + sin2 A = 1
13. 1 + tan2 A = sec2 A
14. cot2 A + 1 = cosec2 A
2
Simple Examples Ans : 4 Chapter 1 : Inverse Trigonometric Function
a) evaluate [ −1 (4)]
3 Try This !
3
Ans : 4
b) evaluate [ −1 (34)] 5
Solution :
© Amirah 2021 3
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
More Examples (from previous semester papers)
Example 1/page 111/ MAR 2013/ MAT238/ Q1a (7 marks)
Without using calculator, find the value of
i) [ + −1 1] (Ans : − √8)
23 3
ii) [2 −1 1] (Ans : − 2√8)
3 7
Solution :
i) Step 1 : let A = inverse trigonometric function
Let = −1 (1)
3
Step 2 : change inverse trigonometric function to ordinary trigonometric function
1 adjacent
= 3 hypotenuse
Step 3 : draw a right angle triangle and determine all the sides based on trigonometric
function obtained in Step 2.
3 √8 Using Pythagoras theorem :
ඥ32 − 12 = √9 − 1 = √8
1
Step 4 : find the relevant trigonometric ratios from a right angle triangle obtained in Step 3
√8
= 3
Step 5 : evaluate the given question (and refer useful formula)
+ −1 1 = + )
(2 (3)) (2
= 2 − 2
= (0) − (1)
= − Since we solve without using
calculator, so no need to write in
= − √8 #
3 decimal
4 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
• Notice that we have the same inverse trigonometric
ii) [2 −1 1] function −1 (1) from question (i).
3 3
Just let A=inverse-trigo (only) • So, we use step 1,2,3 from question (i)
because constant ‘2’ here means
we will use double-angle identity • So, we continue with step 4.
Step 4 : find the relevant trigonometric ratios from a right angle triangle obtained in Step 3
√8
= 1 = √8
Step 5 : evaluate the given question (and refer useful formula)
(2 −1 1 = (2 )
(3))
2
= 1 − 2
2√8
= 1 − (√8)2
2√8
=1−8
= 2√8
−7
No need to write in decimal,
= − 2√8 # because we solve without using
7
calculator!
© Amirah 2021 5
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
Example 2/ page 119/ SEP 2013/ MAT238/ Q1a/ (6 marks)
Simplify [ −1 ( + 1) + −1 ] in terms of x. (Ans : √√ 2 2 −2+1+2 ++11)
Solution :
Let = −1 ( ) opposite Let = −1( ) opposite
adjacent Let = = hypotenuse
+1
1
Let =
1
+1 → =
Right-angle-triangle
Using Pythagoras theorem : Right-angle-triangle 1
+ 1
ඥ( + 1)2 + 2 = ඥ 2 + 2 + 1 + 2
= ඥ2 2 + 2 + 1 Using Pythagoras theorem : ඥ 2 − 1
ඥ( )2 − 12 = ඥ 2 − 1
trigo-ratios (based on right-angle-triangle in
step ) trigo-ratios (based on right-angle-triangle in
step )
= 1
√2 2 + 2 + 1 =
+ 1 √ 2 − 1
= =
√2 2 + 2 + 1
evaluate the given question (and refer useful formula)
( −1 ( 1) + −1( )) = ( + )
+
= +
√ 2 − 1 + 1 1
=∙ + ∙
√2 2 + 2 + 1 √2 2 + 2 + 1
√ 2 − 1 + + 1
=#
√2 2 + 2 + 1
6 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Example 3/ MAR 2014/ MAT238/ Q1a (6 marks)
Use the Right Triangle method to find the value of [ −1 √2 + −1 √2]
3
ans : √14−√2
3√3
Solution :
Try This !
© Amirah 2021 7
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL) ans : − 1
2
Example 4a/ SEP 2014/ MAT238/ Q1a (4 marks)
Without using calculator, evaluate [2 −1 √23]
Solution :
Try This !
8 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Example 4b/ SEP 2014/ MAT238/ Q1b (5 marks) ans : − 1
Simplify [ −1 2 + ] √1−4 2
Solution :
i) Step 1 : let A = inverse trigonometric function
Let = −1(2 )
Step 2 : change inverse trigonometric function to ordinary trigonometric function
2 opposite
= 2 = 1 hypotenuse
Step 3 : draw a right angle triangle and determine all the sides based on trigonometric
function obtained in Step 2.
1 2
Using Pythagoras theorem :
ඥ1 − 4 2 ඥ12 − (2 )2 = ඥ1 − 4 2
Step 4 : find the relevant trigonometric ratios from a right angle triangle obtained in Step 3
= √1 − 4 2 = ඥ1 − 4 2
1
Step 5 : evaluate the given question (and refer useful formula)
( −1(2 ) + ) = ( + )
1
= ( + )
1
= −
1
= (−1) − (0)
1
= −
1
= −
1
=− #
√1 − 4 2
© Amirah 2021 9
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
Example 5/ page 134/MAR 2015/ MAT238/ Q1a (5 marks) ans : 2√
Express [2 −1 (√ 2 + )] in terms of x.
Solution : −1
Try This !
10 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Example 6/ SEP 2015/ MAT238/ Q1a (6 marks)
Simplify ( −1 + −1 2 )
Solution : let A = first inverse trigonometric function
let A = first inverse trigonometric function Let B = −1 2
Let A = sin−1 x
change to ordinary trigonometry change to ordinary trigonometry
opposite tan B = 2 = 2 opposite
= = 1 hypotenuse adjacent
1
draw a right angle triangle and find draw a right angle triangle and find
all the three sides all the three sides
1 ඥ1 + 4 2 2
A B
ඥ1 − 2 1
find the relevant trigo-ratios find the relevant trigo-ratios
sin A = x
cos A = 1− x 2 2
→ =
√1 + 4 2
1
→ =
√1 + 4 2
Therefore,
[ −1 + −1 2 ] = ( + )
= −
= ඥ1 − 2 ∙ 1 2
− ∙
√1 + 4 2 √1 + 4 2
√1 − 2 − 2 2
=#
√1 + 4 2
© Amirah 2021 11
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
1.2 Derivative of Inverse Trigonometric Functions
1. ( −1 )= 1 2. ( −1 )= −1
− √1 − 2
√1 2
3. ( −1 )= 1 4. ( −1 )= 1 −1
+ 2 + 2
1
5. ( −1 )= 1 6. ( −1 )= −1 1
√ 2 √ 2 −
− 1
Simple Examples 2 2
Differentiate with respect to x. =
a) y = sin−1(2x)
b) y = tan−1(3x2) √1 − 4 2
c) y = cos−1( )
2
d) y = sin−1(e4x)
e) y = sec−1(ln x2)
solution :
a) y = sin−1(2x)
= 1
ඥ1 − (2 )2
( −1 ) = √1 1 2
− (2 ) = 2
b) y = tan−1(3x2) 6
= 1 6 = 1 + 9 4
1 + (3 2)2
( −1 ) = 1 (3 2) = 6
+ 2
1
12 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
c) y = cos−1( )
2
1 1 11 = 11
= √1 − ( 2 )2 2 ∙
= ∙ 2 (√4 − 2) 2
√4 − 2 2
4
−1 1 1
( −1 ) √1 − 2 (2 ) = 2
=
21 1
= √4 − 2 ∙ 2 =#
√4 − 2
d) y = sin−1(e4x)
= 1 4 4 4 4
=#
√1 − 8
ඥ1 − ( 4 )2
(4 ) = 4
( −1 ) = 1 ( ) =
−
√1 2
e) y = sec−1(ln x2) 1 2
= 1 2 2 =#
1 2ඥ( 2)2 − 1
( ) =
2ඥ( 2)2 − 1
( 2) = 2
1
( −1 ) = √ 2 − 1
© Amirah 2021 13
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
More Examples (from previous semester papers)
page 26/ OCT 2007/ MAT238/ Q1b (5 marks)
Differentiate = √ −1 2 + −1 2 with respect to x.
ans : ඥ( −1 1 + −1 2 + 2
2 )(1−4 2) 1+ 4
Solution :
= = −1 2
= ඥ −12 = ( −12 )12 = −1 2 ′ = ′ = 1 + 1 ∙ 2
( 2)2
Using generalized power rule Using product rule
(combine with inverse-trigo rule) (combine with exponential rule and
inverse-trigo rule)
′ = 1 ( −12 )−21 ∙ ඥ1 1 ∙ 2 ′ = ′ + ′
2 − (2 )2
11 1 ′ = −1 2 + ∙ 1 ∙ 2
′ = 2 ∙ √ −12 ∙ √1 − 4 2 ∙ 2 1 + ( 2)2
1 ′ = −1 2 + 2
′ = 1 + 4
ඥ( −12 )(1 − 4 2)
= ඥ −12 + −1 2
= +
Differentiate wrt x:
= ′ + ′
→ = 1 + −1 2 + 2 #
ඥ( −12 )(1 − 4 2) 1 + 4
14 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
page 22/ APR 2007/ MAT238/ Q1b (6 marks)
Find the derivative of the function = −1 ( 2 ) ans : 2 −2 2 2
√4 2− 2 2
2
Solution :
= −1 2
( 2 )
Differentiate wrt x: = 2 = 2
′ = 22 ∙ 2 ′ = 2
−1 ′ − ′ ′ = 2 22
= √1 − ( 2 2 )2 ∙
2
−1 4 22 − 2 2
= ∙
22 (2 )2
√1 − 4 2
−1 4 22 − 2 2
= ∙
√4 2 − 22 4 2
4 2
−1 4 22 − 2 2
= (√4 2 −2 22 ) ∙
4 2
−2 4 22 − 2 2
= √4 2 − 22 ∙
2 ∙ 2
−1 4 22 − 2 2
= √4 2 − 22 ∙
2
−(4 22 − 2 2 )
= 2 √4 2 − 22
−2(2 22 − 2 )
= 2 √4 2 − 22
−(2 22 − 2 )
= √4 2 − 22
2 − 2 22
= √4 2 − 22 #
© Amirah 2021 15
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
page 18/ OCT 2006/ MAT238/ Q1b (6 marks) ans : 3 3 (1+4 2) −1 2
Find if = 3 −1(2 ) 1+4 2−2 3
Solution : = 3 = −1(2 )
= 3 −1(2 ) ′ = 3 3 ′ = 1 + 1 ∙ 2
(2 )2
Differentiate implicitly wrt x: ′ 2
+ 4 2
= 1
′ + ′
=
3 3 −1(2 ) + 2 3
= 1 + 4 2
2 3 3 3 −1(2 )
− 1 + 4 2 =
2 3 3 3 −1(2 )
(1 − 1 + 4 2) =
1 + 4 2 − 2 3 3 3 −1(2 )
( 1 + 4 2 ) =
3 3 (1 + 4 2) −1(2 )
= #
1 + 4 2 − 2 3
16 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
page 99/ SEP 2011/ MAT238/ Q1b (5 marks) ans : = 10 −1 5 + 4
Differentiate = ( −1 5 )2 + 4 −1 √2 with respect to x. 1+25 2 √2 −4 2
Solution :
= ( −15 )2 = 4 −1√2
Using generalized power rule Using product rule
(combine with inverse-trigo rule) (combine with exponential rule and
inverse-trigo rule)
1
′ = 2( −15 )1 ∙ 1 + (5 )2 ∙ 5 1 1 = √2 = (2 )12
∙
10 −1(5 ) ′ = 4 ∙ √1 − (√2 )2 √2
′ = 1 + 25 2
′ = 1 (2 )−21 ∙ 2
2
4
′ =
√2 √1 − 2 ′ = (2 )−21
′ = 4 ′ = 1
√2
ඥ2 (1 − 2 )
′ = 4
√2 − 4 2
= ( −15 )2 + 4 −1√2
= +
Differentiate wrt x:
= ′ + ′
10 −1(5 ) 4
→ = 1 + 25 2 +#
√2 − 4 2
© Amirah 2021 17
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
MAR 2013/ MAT238/ Q1b (4 marks)
Find if = −1(3√ ) • ( ) + −1 2
ans : = + −1(3√ ) − 2
32√1− 2 √1−4 2
3
3
Solution :
= −1(3√ ) ∙ = 3√ = 1
3
Using product rule ′ = 1 −23
(combine with inverse-trigo rule and ln 3
rule) = −1( 3√ ) = −1 1 =
′ = ′ + ′
( 3 )
′ = + −1 ( 3√ ) ′ = 1 1 −32 ′ = 1
∙ 3
12
2 √1 − 2 √1 −
( 3)
3 3 3
1
′ =
= −12 3 23√1 − 2
3
Using inverse-trigo rule
′ = −1
∙2
ඥ1 − (2 )2
′ = −2
√1 − 4 2
= −1(3√ ) ∙ + −12
= +
Differentiate wrt x:
= ′ + ′
−1(3√ ) −2
= + +
√1 − 4 2
3 23√1 − 2
3
−1(3√ ) 2
→ = + −#
√1 − 4 2
3 32√1 − 2
3
18 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
SEP 2014/ MAT238/ Q1c (5 marks) ans : = 2 −1 (4) − 8
Find the derivative of if = 2 −1 (4) √ 2−16
Solution :
Try This !
© Amirah 2021 19
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
MAR 2015/ MAT238/ Q1b (5 marks) ans : = 3 + 6 3 −1 √ − 3 2 3
Differentiate = 2 3 −1 √ − 3 √ (1+ )
Solution :
Try This !
20 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
1.3 Integration of Inverse Trigonometric Functions
Appendix (given in Final Examination)
1. ∫ 1 2 = −1 + 14. ∫ 2 = −1 +
√ 2 − ( ) √ 2 − ( )
2. ∫ 2 1 2 = 1 −1 + 15. ∫ = 1 −1 +
+ ( ) 2 + 2 ( )
3. ∫ 1 2 = 1 −1 + 16. ∫ 2 = 1 −1 +
√ 2 − ( ) √ 2 − ( )
Where =
= ( )
MAR 2014/ MAT238/ Q1cii (4 marks) ans : √2 −1(√2 ) +
Evaluate
2
∫
√1 − 2 2
Solution :
21
∫ = 2 ∫
√1 − 2 2 = 1 Where =
√(1)2 − (√2 )2 = ( )
= √2
= 2∫ 1
∙ = √2
√ 2 − 2 √2
21 =
=∫
√2 √ 2 − 2 √2
= √2 −1 + 2
( ) = √2
√2
−1 √2 Because,
(1)
= √2 +
2
2 (√2) √2√2
= = = √2
√2 √2 √2
= √2 −1(√2 ) + #
© Amirah 2021 21
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
SEP 2014/ MAT238/ Q2c (5 marks)
Solve the following integral
2
∫ 4 + 3 2
ans : 1 −1 (√3 ) +
√3 2
Solution :
21
∫ = 2 ∫
4 + 3 2 (2)2 2 = 2 Where =
+ = ( )
(√3 ) = √3
1 = √3
= 2 ∫ 2 + 2 ∙ √3
21 =
= √3 ∫ 2 + 2
√3
= 2 ∙ 1 −1 +
√3 ( )
= 2 ∙ 1 −1 √3 ) +
√3 2 (2
= 1 −1 (√23 ) + #
√3
22 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
MAR 2013/ MAT238/ Q1c (4 marks) Ans : √5 −1 ( −5) +
Evaluate the integral
√5
5
∫ ( − 5)2 + 5
Solution :
51
∫ = 5 ∫
( − 5)2 + 5 5)2 2 = √5 Where =
( − + = − 5 = ( )
(√5)
= 1
1 =
= 5 ∫ 2 + 2
= 5 ∙ 1 −1 +
( )
=5∙ 1 −1 − 5 +
( )
√5 √5
5
= 5 −1 − 5 + = √5
( )
√5 √5 √5
Because,
= √5 −1 − 5 + # 5 (√5)2 √5√5
( )
√5 = = = √5
√5 √5 √5
© Amirah 2021 23
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
MAR 2015/ MAT238/ Q1c (5 marks) Ans : 2 −1 ( 2 ) +
Use the substitution u = e2x to solve
33
4 2
∫ 4 + 9
Solution :
4 2 2
∫ 4 + 9 = 4 ∫ ( 2 )2 + (3)2
= 3 Where =
= ( )
= 2
2
= 4 ∫ 2 + 2 ∙ 2 2 = 2 2
1
= 2 ∫ 2 + 2 = 2 2
= 2 ∙ 1 −1 +
( )
( 2 )2 = 4
= 2 ∙ 1 −1 2 + Because,
3 (3)
( ) =
2 2
= 3 −1 (3 ) + #
24 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Evaluate
2
∫
ඥ4 − ( )2
Solution :
2 1
∫ =2∫ Where =
ඥ4 − ( )2 ඥ(2)2 − ( )2 = 2 = ( )
=
= 2∫ 1 ∙ 1
=
√ 2 − 2 =
= 2∫ 1
√ 2 − 2
= 2 −1 +
( )
= 2 −1 + #
(2)
Evaluate
3 3
∫ 8 + 9
Solution :
3 3 3
∫ 8 + 9 = 3 ∫ ( 4)2 + (3)2 = 3 Where =
= ( )
= 4
3
= 3 ∫ 2 + 2 ∙ 4 3 = 4 3
31
= 4 ∫ 2 + 2 = 4 3
3 ∙ 1 −1 +
=4 ( )
3 ∙ 1 −1 4 ) +
=4 3 (3
= 1 −1 4 + #
4 (3)
© Amirah 2021 25
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
Evaluate
5 5
∫
√25 − 2 5
Solution :
5 5 5 5 Where =
∫ = ∫
√25 − 2 5 ඥ(5)2 − ( 5 )2 = ( )
= 5
5 5 = 5
= ∫ √ 2 − 2 ∙ 5 5 5
= ( 5 5 ) ∙ 5
11
= 5 ∫ √ 2 − 2
= 5 5 5
= 1 −1 +
5 ( )
= 1 −1 5 + #
5 (5)
Evaluate
3 3
∫
√1 − 2 3
9
Solution : Where =
= ( )
3 3
∫ = ∫ = 1
√1 − 2 3 ඥ(1)2 − ( 3 )2 = 3
3 = (− 3 ) ∙ 3
= ∫ √ 2 − 2 ∙ −3 3
11 = −3 3
= − 3 ∫ √ 2 − 2
= 1 −1 +
−3 ( )
= 1 −1 3 +
−3 (1)
= 1 −1( 3 ) + #
−3
26 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Continue…
Hence,
3 1 1
− 2 [− 3 3 −3[
∫ 3 = −1( = −1( 3 )] 3
3 )]
√1 3 9
9 9
= − 1 [ −1 ( (3 ∙ − −1 ( (3 ∙
3 3)) 9))]
= − 1 [ −1( ( )) − −1 (
3 (3))]
= − 1 [ −1(−1) − −1 1
3 (2)]
2 Set your calculator
= 0.6981 # ( 9 ) in mode ‘radian’
Evaluate
∫
ඥ25 − ( + 2)2
Solution :
1
∫ =∫
ඥ25 − ( + 2)2 ඥ(5)2 − ( + 2)2 = 5 Where =
= + 2 = ( )
1 = 1
= ∫ =
√ 2 − 2
= −1 +
( )
= −1 + 2 + #
( 5 )
© Amirah 2021 27
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
1.4 Integration of Inverse Trigonometric Functions involving Completing the Square Method
Procedure completing the square method,
arrange based on the highest power of x, such that
2 + +
coefficient of x2 must positive 1. If coefficient of x2 not equal to positive 1, then factorize
coefficient of x as follow
[ 2 + +
]
put + ( )2 − ( )2 after the term containing x, where the expression inside ( ) must be 1 •coefficient
2
of x = 1 • = (as follow)
2 2
[ 2 + + 2 − 2 +
(2 ) (2 ) ]
write the first three terms into the form of ( )2 and simplify the next terms
Or, using formula,
2 + + = [( + 2 − ( 2 + ]
) )
2 2
When we use completing the square method?
When:
i) numerator is a constant, and
ii) denominator is in the form of quadratic expression with the
term containing ‘x’
28 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Example 1
Evaluate
∫
√21 − 4 − 2
Solution :
Using completing the square,
21 − 4 − 2 = − 2 − 4 + 21 Re-arrange : 2 + +
= −( 2 + 4 − 21) coefficient of x2 must positive 1
(factorize coefficient of x2 if necessary)
= −( 2 + 4 + (2)2 − (2)2 − 21)
= −(( + 2)2 − 25) put + ( )2 − ( )2 after the term containing x,
= 25 − ( + 2)2
where the expression inside ( ) must be 1 •coef x
2
Hence, write the first three terms into the form of ( )2
and simplify the remaining terms
∫ =∫
√21 − 4 − 2 ඥ25 − ( + 2)2
Complete this integral.
You can Refer page
27, no.
© Amirah 2021 29
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
Example 2 ans : 1 −1 ( −3) +
Evaluate
42
∫ 2 2 − 12 + 26
Solution :
Try This !
30 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Example 3 ans : 5 −1 (√2 ( + 1)) +
Evaluate
√14 √7
5
∫ 2 2 + 4 + 9
Solution :
Using completing the square,
2 2 + 4 + 9 = 2 [ 2 + 2 + 9
2]
= 2 [ 2 + 2 + (1)2 − (1)2 + 9
2]
= 2 [( + 1)2 7
+ 2]
= 2 [( + 1)2 + √7 2
( )]
√2
Hence,
51 Where =
∫ 2 2 + 4 + 9 = 5 ∫ 2 = ( )
2 [( + 1)2 + (√7) ]
√2 √7
=
= 51
∫ √2
2 2 = + 1
( + 1)2 +
(√7) = 1
√2 =
Note :
51
= 2 ∫ 2 + 2
√ √ = (√ ) 5 1
2 ( )
=
= ∙ −1 +
5 ∙ 1 = 5 ∙ √2 5 1 + 1
2 (√√72) 2 (√7) (√7)
2 √7 = ∙ −1 +
Note :
= 5 ∙ √2 √2 ( √2 ) + 1 = ( + 1) ÷ (√7)
(√7) √2
√2√2 √7 5 (√2( + 1)
= −1 ) + √2
= 5∙1
√14 √7 = ( + 1) ∙ (√2)
√2 √7 1 √7
=5 = 5 −1 (√2 ( + 1)) + # = √2 ( + 1)
√14 √7 √7
√14
© Amirah 2021 31
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
Example 4
Evaluate
∫
√6 − 2
Solution :
Using completing the square,
− 2 + 6 = −( 2 − 6 )
= −( 2 − 6 + (−3)2 − (−3)2)
= −(( − 3)2 − 9)
= 9 − ( − 3)2
Hence,
1
∫ = ∫
√6 − 2 ඥ9 − ( − 3)2
1 = 3 Where =
= ∫ = − 3 = ( )
ඥ(3)2 − ( − 3)2 = 1
=
1
= ∫
√ 2 − 2
= −1 +
( )
= −1 − 3 + #
( 3 )
32 © Amirah 2021
Chapter 1 : Inverse Trigonometric Function
Example 5
Evaluate
∫ 4
2 2 − 6 + 13
ans : 1 −1 ( −3) +
22
Solution :
Using completing the square,
2 − 6 + 13 = 2 − 6 + (−3)2 − (−3)2 + 13
= ( − 3)2 + 4
therefore,
1
∫ 2 − 6 + 13 = ∫ ( − 3)2 + 4
1 Where =
= ∫ ( − 3)2 + 4 = ( )
1 = 2
= ∫ ( − 3)2 + (2)2
1 = − 3
= ∫ 2 + 2
= 1
= 1 −1 + =
( )
= 1 −1 − 3 +
2 ( 2 )
Hence,
∫ 4 = 1 −1 − 34
[2 ( 2 )]
2 2 − 6 + 13
2
= 1 [ −1 − 34
2 ( 2 )]
2
= 1 [ −1 4 − 3 − −1 2 − 3
2 ( 2 ) ( 2 )]
= 1 [ −1 1 − −1 −1
2 (2) ( 2 )]
= 0.4636 # Set your calculator
in mode ‘radian’
© Amirah 2021 33
MAT238/ MAT438 : Foundation of Applied Mathematics (Notes & Workbook for ODL)
Example 6 ans : 4 −1 (√3( −1)) +
Evaluate
√3 √10
4
∫
√7 + 6 − 3 2
Solution :
Try This !
END OF CHAPTER 1
34 © Amirah 2021