−1 = 1 ℎ−1 = 1
1 − 2 1 + 2
−1 =− 1 ℎ−1 = 1
1 − 2 2 − 1
−1 1 ℎ−1 1
= 1 + 2 = 1 − 2
−1 1 ℎ−1 1
= − 1 + 2 = 2 − 1
−1 = 1 ℎ−1 =− 1
2 − 1 1 − 2
−1 =− 1 ℎ−1 =− 1
2 − 1 1 + 2
MOOC MAT438/ UiTM
MOOC MAT438/ UiTM
.
.
Given = ℎ−1 4 . Differentiate wrt x.
From = ℎ−1 4
1 4= 4 #
= 1 + 4 2
1 + 16 2
ℎ−1 = 1
1 + 2 4 = 4
MOOC MAT438/ UiTM
.
.
Given = ℎ−1 . Differentiate wrt x.
2
From = ℎ−1
2
1 1 11 11 = 21
= 2 = 2 − 4 ∙ 2 = 2 − 4 ∙ 2 2 − 4 ∙ 2
2
2 42
−1
1 1 1
1 2 = 2 = 2 =#
2 − 1
2 − 4
ℎ−1 =
MOOC MAT438/ UiTM
.
.
Given = ℎ−1 2 . Differentiate wrt x.
From = ℎ−1 2 From =
1 → 2 2 = 2∙2 = 2 2
= 1 − 2 2
2 2 2 2
= 1 − 2 2 #
ℎ−1 1 = 2 = 2
= 1 − 2
MOOC MAT438/ UiTM
Given = ℎ−1 2 . Differentiate wrt x. Ans : = 2 2
1− 2 2
MOOC MAT438/ UiTM
MOOC MAT438/ UiTM
= ℎ−1
2
= = ℎ−1
2
Differentiate (using product rule),
Differentiate using composite function rule,
1 1
′ = 2 2 2
= = 2
′ = 1 1+
′ 2
=
′ = ′ + ′ ′ = 1 ∙ 2 1
2 2 2 ∙2
′ = + 1 ∙ 2 1 1
2 ∙2 = 2 2
′ =
2
MOOC MAT438/ UiTM
Solution :
From = ℎ−1
2
Differentiate implicitly wrt x
1
+ = 2 2
Multiplying each terms by 2 (to eliminate denominator 2)
1
2 + 2 = 2 2 2
2 + 2 = 2
Separating the term containing and not containing
2 = 2 − 2
Write as a subject,
2
− 2
= 2 #
MOOC MAT438/ UiTM
MOOC MAT438/ UiTM
3 = ℎ−13 + ℎ
= 3 = ℎ ℎ−−113 1 = ℎ
= 1 − 2
Differentiate (using ln rule), Differentiate using
Differentiate using product rule, exponential rule,
1 = = ℎ−13 ′ = ℎ ∙ ℎ
3
′ = ∙ 3 2 ′ = ′ = 1 ∙3
3
1 − 2
3 ′ = ′ + ′ Copy the
′ =
whole function
′ = ℎ−13 3 =
+ 1 − 9 2
Differentiate power
cosh = ℎ
MOOC MAT438/ UiTM
Solution :
From 3 = ℎ−13 + ℎ
Differentiate implicitly wrt x
3 ℎ−13 3 + ℎ ∙ ℎ
= + 1 − 9 2
Separating the term containing and not containing
3 3 − ℎ ℎ = ℎ−13
− 1 − 9 2
Write as a subject,
Multiplying each terms by 1 − 9 2 (to eliminate denominator and 1 − 9 2
3 − 3 − ℎ ℎ 1 − 9 2 3 1 − 9 2 3 − 1 − 9 2 ℎ ℎ = 1 − 9 2 ℎ−13
1 − 9 2 − 1 − 9 2
= ℎ−13 #
3 1 − 9 2 − 3 − 1 − 9 2 ℎ ℎ = 1 − 9 2 ℎ−13
3 1 − 9 2 − 3 − 1 − 9 2 ℎ ℎ #
=
1 − 9 2 ℎ−13
MOOC MAT438/ UiTM
MOOC MAT438/ UiTM