Integration of Trigonometric Functions Integration of Hyperbolic Functions
. න = + . න = +
. න = − + . න = +
. න = + . න = +
. න = + . න = − +
. න = − + . න = − +
. න = − + . න = − +
MOOC MAT438/ UiTM
න 2 ℎ 4 ℎ 4
Solution :
න 2 ℎ 4 ℎ 4 = ℎ 4
= න 2 ℎ 4 ℎ 4 ∙ 4 ℎ 4 = 4 ℎ 4
12
= 2 න ℎ 4 = 4 ℎ 4
1 Integrate wrt u,
= 2 න using power rule
(because no more
1 2
= 2 2 + hyperbolic
function)
1 ℎ24 Replace = ℎ 4
4
= + #
MOOC MAT438/ UiTM
ℎ 1 ℎ 1
න
2
Solution :
ℎ 1 ℎ 1 = 1 = −1
න
2
= න ℎ ℎ ∙ − 2 = − −2 = − 1
2
2
= − 2
= − න ℎ ℎ
= − − ℎ + Integrate wrt u, Refer from 1
using hyperbolic rule appendix 13. න csch coth = − csch +
(because there is a
hyperbolic function) If = 1,
→ න csch coth = − csch +
= ℎ +
1
= ℎ + #
MOOC MAT438/ UiTM
3
න ℎ ℎ3
2
MOOC MAT438/ UiTM
3
න ℎ ℎ3
Solution : 2 If you are unable to memorize
the derivative formula, you can
3 retrieve from the integration
formula provided in the appendix
න ℎ ℎ3 = ℎ
(final examination paper)
2
1
3 12. න ℎ ℎ = − ℎ +
= − ℎ ℎ
= න ℎ2 ℎ ℎ If = 1, then
න ℎ ℎ = − ℎ +
2
= − ℎ ℎ Thus,
= 3
− ℎ ℎ ℎ = − ℎ ℎ
= න 2 ∙ ℎ ℎ ∙
= 2
=0.6 From = ℎ ,
When = 3, = ℎ 3 = 0.6
= − න 2 When = 2, = ℎ 2 = 0.8
=0.8
MOOC MAT438/ UiTM
Solution :
3 =0.6 Integrate wrt u, using
power rule (because no
න ℎ ℎ3 = − න 2
more hyperbolic
2 =0.8 function)
3 0.6
= − 3 0.8
0.6 3 0.8 3 0.8 3 0.6 3
there is no need to =− 3 − 3 = 3−3
replace = ℎ
because 0.6 and 0.8
are the values for u
= 0.0987 #
MOOC MAT438/ UiTM
ℎ 2
3− ℎ 2
MOOC MAT438/ UiTM
ℎ 2
න 3 − ℎ 2
Solution :
ℎ 2 = 3 − ℎ 2
න 3 − ℎ 2
ℎ 2
= න ∙ −2 ℎ2 = −2 ℎ2
11
= − 2 න = −2 ℎ2
1 Integrate wrt u,
= − 2 + C using ln rule
(because no more
hyperbolic function)
1 Replace = 3 − ℎ 2
= − 2 3 − ℎ 2 + C #
MOOC MAT438/ UiTM
MOOC MAT438/ UiTM