FSKM/ MATEMATIK/UiTM Pahang
ONLINE ASSESSMENT 1/MAT438/NOV2021 (ODL)
UNIVERSITI TEKNOLOGI
MARA PAHANG
MAT438
ONLINE ASSESSMENT 1
3:00 pm – 4:00 pm (60 minutes) - Answer time
4:00 pm – 4:30 pm (30 minutes) – Submission time
Name : ________________________________________________
UiTM ID : ________________________________________________
Group : ________________________________________________
Lecturer : ________________________________________________
Instructions to candidates
• Answer ALL Questions.
• You are advised to take 60 minutes to complete a written exam and 30 minutes to
save in pdf format and upload your answers.
• Write your answer CLEARLY using a BLUE or BLACK pen. It is your responsibility
that the copy is legible.
• This assessment is an Open Book Test but not an Open Discussion Test. So you
are not allowed to share your answers with others.
• Any LATE submission will NOT BE EVALUATED.
• Upload all your answers in one file in pdf format in folder ‘ASSESSMENT 1
MAT438’ in google classroom.
• It is your responsibility to make sure that your file is openable. So please recheck
after the submission.
Quiz 1 Quiz 2 Test 1 Assessment 1
(5 Marks) (5 Marks) (20 Marks) TOTAL
(30 Marks)
ONLINE ASSESSMENT 1/ MAT438/ NOV 2021 (ODL)
Quiz 1
1. Simplify sin 2 tan−1 x using right triangle method. (5 Marks)
3
Quiz 2 (5 Marks)
2. By applying implicit differentiation, find dy of the following
dx
tan−1 ( x + y ) − sin(4x) = ey +3 + 3
Test 1
3. Differentiate with respect to x.
) = 3 ( −1(2 ))
−1( 2 ) (5 marks)
) = ( 2 ) (5 marks)
(5 marks)
4. Evaluate (5 Marks)
) ∫ 2(2 ) 1
2
0
4 + 2(2 )
) ∫ 2 ( ℎ ℎ )
√− 2 + 6 − 5
END OF QUESTION PAPER
ALL THE BEST!!!
ONLINE ASSESSMENT 1/ MAT438/ NOV 2021 (ODL)
APPENDIX 1 (1)
TABLE OF INTEGRALS
(ax + b)n +1 + C; n −1
+ 1) n = −1
1. (ax + b)n dx = a(n
1 ln | ax + b | +C;
a
2. 1 dx = ln | x | +C
x
3. sin(ax)dx = − 1 cos(ax) + C
a
4. cos(ax) dx = 1 sin(ax) + C
a
5. sec 2 (ax)dx = 1 tan(ax) + C
a
6. sec (ax)dx = 1 ln | sec (ax) + tan(ax) | +C
a
7. sec (ax) tan(ax)dx = 1 sec (ax) + C
a
8. sinh (ax) dx = 1 cosh(ax) + C
a
9. cosh(ax)dx = 1 sinh (ax) + C
a
10. sec h2 (ax)dx = 1 tanh (ax) + C
a
11. csc h2 (ax)dx = − 1 coth(ax) + C
a
12. sec h(ax) tanh (ax)dx = − 1 sec h(ax) + C
a
13. csc h(ax)coth(ax) dx = − 1 csc h(ax) + C
a
14. 1 dx = sin−1 x + C
a2 − x2 a
2
ONLINE ASSESSMENT 1/ MAT438/ NOV 2021 (ODL)
APPENDIX 1 (2)
15. a2 1 x2 dx = 1 tan −1 x +C
+ a a
16. 1 dx = 1 sec −1 x + Ca
x x2 − a2 a
17. 1 dx = sinh−1 x + C =ln | x + a2 + x2 | + C
a2 + x2 a
18. 1 dx = cosh−1 x + C =ln | x + x2 − a2 | + C, if x a
x2 − a2 a
1 tanh −1 x + C, if | x | a
a coth−1 a + C, if | x | a
19. 1 dx = 1 ln x +a + C = x
a2 − x2 2a x −a 1
a a
20. 1 dx = − 1 sec h−1 x + C = − 1 ln a + a2 − x2 + C, if 0 x a
x a2 − x2 a aa x
21. 1 dx = − 1 csc h−1 x + C = − 1 ln a + a2 + x2 + C, if x 0aaa x
x a2 + x2
TRIGONOMETRIC IDENTITIES
1. sin2 x + cos2 x = 1
2. sin 2x = 2 sin x cos x
3. cos 2x = cos2 x − sin2 x
HYPERBOLIC FUNCTIONS
1. sinh x = e x − e −x
2
2. cosh x = ex + e−x
2
3. cosh2 x − sinh2 x = 1
3
ONLINE ASSESSMENT 1/MAT438/ Solution NOV 2021 (ODL)
Name: ___________________________________________
ID UiTM : ___________________
Group : _________________
PART A (6 marks)
( −1 1 − (6 marks)
(2 ) 4)
Solution :
= −1 (21 ) 1 ඥ1 − 4 2
1
A
= 2 2
2
= 1 = 2
√1 − 4 2
= 2
4 = 1
Therefore,
( −1 (21 ) − 4 ) =
( − 4)
= −
4
1 + 4
(√1 − 4 2 ) − 1 (√1 − 4 2 − 22 )
2 2
==
(√1 − 4 2 (22 + √1 2− 4 2)
1 + 2 ) (1)
√1 − 4 2 − 2 2
=( )∙( )
2 2 + √1 − 4 2 6
√1 − 4 2 − 2
=#
√1 − 4 2 + 2
1
ONLINE ASSESSMENT 1/MAT438/ Solution NOV 2021 (ODL)
Name: ___________________________________________
ID UiTM : ___________________
Group : _________________
PART B (6 marks)
Solve the hyperbolic equation (6 marks)
2 ℎ2(2 ) + 10 = 10 ℎ(2 )
Solution :
2 ℎ2(2 ) + 10 = 10 ℎ(2 )
2 (1 + ℎ2(2 )) + 10 = 10 ℎ(2 )
2 (1 + 2) + 10 = 10 ℎ = ℎ(2 )
2 + 2 2 + 10 = 10
2 2 − 10 + 12 = 0
2 − 5 + 6 = 0
( − 2)( − 3) = 0
− 2 = 0, − 3 = 0
= 2 = 3
ℎ(2 ) = 2 ℎ(2 ) = 3
2 = ℎ−1(2) 2 = ℎ−1(3)
= 0.7218 # = 0.9092 #
6
2
ONLINE ASSESSMENT 1/MAT438/ Solution NOV 2021 (ODL)
Name: ___________________________________________
ID UiTM : ___________________
Group : _________________
PART C (20 marks) (5 marks)
Question 3 :
a) Differentiate = 3 ( −1(2 )) ℎ .
Solution :
= 3 ( −1(2 ))
= 3 = ( −1(2 ))
′ = 3 ∙ − 3 ∙ 3
′ = −3 3 3 ′ = 1 ∙ 1 + 1 ∙ 2
−1(2 ) (2 )2
′ = (1 + 2
4 2) −1(2 )
= ′ + ′
3 ( −1(2 )) 3 + 2 3 #
= −3 (1 + 4 2) −1(2 )
5
3
ONLINE ASSESSMENT 1/MAT438/ Solution NOV 2021 (ODL)
Name: ___________________________________________
ID UiTM : ___________________
Group : _________________
Question 3 : (5 marks)
−1( 2 )
b) Differentiate = ( 2 ) ℎ .
Solution :
−1( 2 ) = ( (2 ))
= ( 2 )
′ = 1 ∙ − (2 ) ∙ 2
= −1( 2 ) (2 )
′ = 1 ∙ 2 ∙ 2
′ = −2 (2 )
ඥ1 − ( 2 )2
′ = 2 2
ඥ1 − 4
′ − ′
= 2
2 2 ( (2 )) −2 (2 ) −1( 2 ))
( √1 − 4 −
= #
2
5
( ( (2 )))
(2 2 ( (2 )) + 2 √1 − 4 (2 ) −1( 2 ) )
= √1 − 4
2
( ( (2 )))
2 2 ( (2 )) + 2 √1 − 4 (2 ) −1( 2 ) #
=
√1 − 4 2( (2 ))
4
ONLINE ASSESSMENT 1/MAT438/ Solution NOV 2021 (ODL)
Name: ___________________________________________
ID UiTM : ___________________
Group : _________________
Question 4 :
a) Evaluate ∫ 2(2 ) (5 marks)
2
0
4 + 2(2 )
Solution :
2(2 ) = ∫ 2(2 )
∫ 4 + 2(2 ) (2)2
+ ( (2 ))2 = 2
2(2 ) = (2 )
= ∫ 2 + 2 ∙ 2 2(2 ) 2(2 )
= ∙ 2
11
= 2 ∫ 2 + 2 = 2 2(2 )
= 1 ∙ 1 −1 +
2 ()
= 1 ∙ 1 −1 (2 ) +
2 2 (2)
= 1 −1 (2 ) +
4 (2)
Hence,
2(2 )
+ 2(2 )
∫ 2 = 1 −1 (2 ) 2
[ ( 2 )]
0 4 4 0
= 1 −1 ( ) − 1 −1 (0) 5
4 (2) 4 (2)
=0 #
5
ONLINE ASSESSMENT 1/MAT438/ Solution NOV 2021 (ODL)
Name: ___________________________________________
ID UiTM : ___________________
Group : _________________
Question 4 :
b) ∫ 2 ( ℎ ) (5 marks)
√− 2 + 6 − 5
Solution 4b :
Using completing the squares,
− 2 + 6 − 5 = −( 2 − 6 + 5)
= −[ 2 − 6 + (−3)2− (−3)2 + 5]
= −(( − 3)2 − 4)
= 4 − ( − 3)2
Therefore,
∫ 21 = 2
= 2 ∫ = − 3
√− 2 + 6 − 5 ඥ4 − ( − 3)2
= 1
= 2∫ 1 =
ඥ(2)2 − ( − 3)2 5
= 2∫ 1
√ 2 − 2
= 2 −1 +
()
= 2 −1 −3 + #
( )
2
6