MOOC MAT438/ UiTM
Definition and Identities of Hyperbolic Functions
Proving the Hyperbolic Function using Identities and Definition
Solving the Hyperbolic Equations using Identities and Definition
Derivatives of Hyperbolic Functions
Integration of Hyperbolic Functions
MOOC MAT438/ UiTM
Example 1
Solve the hyperbolic equation 6 ℎ2 + 7 ℎ = 8.
Use identities
Solution :
6 ℎ2 + 7 ℎ = 8 2 − 1 = 0 3 − 2 = 0
6 1 − ℎ2 + 7 ℎ = 8 2
1
= 2 = 3
6 1 − 2 + 7 = 8 Where = ℎ 1 2
6 − 6 2 + 7 = 8 ℎ = 2 ℎ = 3
0 = 2 − 7 + 6 2 = ℎ−1 1 = ℎ−1 2
6 2 − 7 + 2 = 0 2 3
2 − 1 3 − 2 = 0 = 0.5493 # = 0.8047 #
MOOC MAT438/ UiTM
Example 2
Solve the hyperbolic equation 2 ℎ 2 + ℎ = 7.
Solution : Use double-angle
identities
2 ℎ 2 + ℎ = 7 − 1 = 0 4 + 5 = 0
2 1 + 2 ℎ2 + ℎ = 7 = 1 5
2 1 + 2 2 + = 7
ℎ = 1 = − 4
2 + 4 2 + = 7 = ℎ−1 1
4 2 + − 5 = 0 Where = ℎ 5
= 0.8814 # ℎ = − 4
= ℎ−1 5
−4
− 1 4 + 5 = 0 = −1.0476 #
MOOC MAT438/ UiTM
Example 3
Solve the hyperbolic equation 3 ℎ2 − 1 + ℎ − 1 = 5.
Use identities
Solution :
3 ℎ2 − 1 + ℎ − 1 = 5 + 1 = 0 3 − 2 = 0
= −1
3 1 + ℎ2 − 1 + ℎ − 1 = 5 ℎ ( − 1) = −1 2
= 3
3 1 + 2 + = 5 Where = ℎ − 1
2
3 + 3 2 + = 5 ℎ ( − 1) = 3
3 2 + − 2 = 0 − 1 = ℎ−1 −1 − 1 = ℎ−1 2
3
+ 1 3 − 2 = 0 = 0.1186 # = 1.6251 #
MOOC MAT438/ UiTM
MOOC MAT438/ UiTM
Definition and Identities of Hyperbolic Functions
Proving the Hyperbolic Function using Identities and Definition
Solving the Hyperbolic Equations using Identities and Definition
Derivatives of Hyperbolic Functions
Integration of Hyperbolic Functions
MOOC MAT438/ UiTM
Example 1
Solve the equation by using the definition of hyperbolic functions: 4 ℎ + ℎ − 4 = 0.
Use definition
Solution : 5 + 3 − − 8 = 0
4 ℎ + ℎ − 4 = 0 5 + 3 − 8 = 0
+ − − − 3 Where =
4 2 + 2 −4=0 5 + − 8 = 0
Multiplying each term by u (to eliminate denominator u)
Multiplying each term by 2 (to eliminate denominator 2) 3
+ − − − 5 + − 8 = 0
2 2
24 +2 − 2 4= 2 0 5 2 + 3 − 8 = 0
4 + − + − − − 8 = 0 5 2 − 8 + 3 = 0
4 + 4 − + − − − 8 = 0 − 1 5 − 3 = 0
MOOC MAT438/ UiTM
Example 1 (continue…)
Solve the equation by using the definition of hyperbolic functions: 4 ℎ + ℎ − 4 = 0.
Solution : 5 − 3 = 0
− 1 5 − 3 = 0 3
− 1 = 0
= 1 = 5
= 1 = 3
5
= 1
= 3
= 0 # 5
MOOC MAT438/ UiTM
= −0.5108 #
Example 2
Solve the equation by using the definition of hyperbolic functions: 2 ℎ 2 = 1 + 4 ℎ 2 .
Solution : Use definition − 2 + 3 − 1 = 0
2 ℎ 2 = 1 + 4 ℎ 2 2
We not use double-
angle identities 3 Where = 2
− + − 1 = 0
because the angles
are same!
2 + −2 2 2 − −2
2 2 =1+4 2
Multiplying each term by u (to eliminate denominator u)
2 + −2 = 1 + 2 2 − −2 3
2 + −2 = 1 + 2 2 − 2 −2 − + − 1 = 0
2 − 2 2 + −2 + 2 −2 − 1 = 0
− 2 + 3 − = 0
2 + − 3 = 0
− 2 + 3 −2 − 1 = 0
MOOC MAT438/ UiTM
Example 2 (continue…)
Solve the equation by using the definition of hyperbolic functions: 2 ℎ 2 = 1 + 4 ℎ 2 .
Solution : = −2.3028
2 + − 3 = 0
= 1.3028
2 = 1.3028 2 = −2.3028
2 = 1.3028 2 = −2.3028
( )
= 0.13225 #
MOOC MAT438/ UiTM
Example 3
Solve the equation by using the definition of hyperbolic functions: 2 ℎ 4 − ℎ 4 = 2 −4 .
Use definition 2 4 + 2 −4 − 4 + −4 − 4 −4 = 0
Solution :
2 ℎ 4 − ℎ 4 = 2 −4 4 − −4 = 0
4 + −4 4 − −4 = 2 −4 4 − 1 = 0
2 2 4
2 −
1
− = 0 Where = 4
Multiplying each term by 2 (to eliminate denominator 2) Multiplying each term by u (to eliminate denominator u)
4 + −4 −2 4 − −4 = 2 2 −4 1
22 2 2 − = 0
2 4 + −4 − 4 − −4 = 4 −4 2 − 1 = 0
+ 1 − 1 = 0
MOOC MAT438/ UiTM
Example 3 (continue…)
Solve the equation by using the definition of hyperbolic functions: 2 ℎ 4 − ℎ 4 = 2 −4 .
Solution : = 1
+ 1 − 1 = 0
= −1
4 = −1 4 = 1
4 = −1 4 = 1
( ) = 0 #
MOOC MAT438/ UiTM
MOOC MAT438/ UiTM