The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by MOHD.NIZAM YAHYA, 2020-12-01 11:10:30

Softcopy for Teachers buku kerja + nota Nilam Publications

KANDUNGAN



CONTENTS







BEBERAPA KONSEP FIZIK DAN IMPLIKASINYA 1
SOME PHYSICS CONCEPTS AND ITS IMPLICATIONS

UNIT 1: GELOMBANG 3 UNIT 3: KEELEKTROMAGNETAN 79
WAVES ELECTROMAGNETISM
1.1 Gelombang 3.1 Kesan Magnet bagi Konduktor yang
Waves Membawa Arus / The Magnetic Field of a
1.2 Pantulan Gelombang Current-carrying Conductor
Reflection of Waves 3.2 Daya pada Konduktor Pembawa Arus dalam
1.3 Pembiasan Gelombang Satu Medan Magnet / The Force on a Current-
Refraction of Waves Carrying Conductor in a Magnetic Field
1.4 Belauan Gelombang 3.3 Aruhan Elektromagnet
Diffraction of Waves Electromagnetic Induction
1.5 Interferens Gelombang 3.4 Transformer / Transformers
Interference of Waves 3.5 Penjanaan dan Penghantaran Tenaga Elektrik
1.6 Gelombang Bunyi The Generation and Transmission of Electricity
Sound Waves Latihan Pengukuhan / Enrichment Exercise
1.7 Gelombang Elektromagnet
Electromagnetic Waves UNIT 4: ELEKTRONIK 127
Latihan Pengukuhan / Enrichment Exercise ELECTRONICS

4.1 Kegunaan Osiloskop Sinar Katod (OSK)
The Uses of the Cathode Ray Oscilloscope (C.R.O)
4.2 Diod Semikonduktor / Semiconductor Diodes
UNIT 2: KEELEKTRIKAN 47 4.3 Transistor / Transistors
ELECTRICITY 4.4 Get Logik / Logic Gates
Latihan Pengukuhan / Enrichment Exercise
2.1 Medan Elektrik dan Pengaliran Cas
Electric Field and Charge Flow UNIT 5: KERADIOAKTIFAN 159
2.2 Hubungan antara Arus Elektrik dan Beza RADIOACTIVITY
Keupayaan
The Relationship between Electric Current and 5.1 Nukleus Suatu Atom / The Nucleus of An Atom
Potential Difference 5.2 Reputan Radioaktif / Radioactive Decay
2.3 Litar Bersiri dan Litar Selari 5.3 Kegunaan Radioisotop
Series Circuit and Parallel Circuit The Uses of Radioisotopes
2.4 Daya Gerak Elektrik dan Rintangan Dalam 5.4 Tenaga Nuklear / Nuclear Energy
Electromotive Force and Internal Resistance 5.5 Kepentingan Pengurusan Bahan Radioaktif
2.5 Tenaga Elektrik dan Kuasa yang Betul / The Importance of Proper
Electrical Energy and Power Management of Radioactive Substances
Latihan Pengukuhan / Enrichment Exercise Latihan Pengukuhan / Enrichment Exercise

MODUL • Fizik TINGKATAN 5
Gelombang

1
Waves






Objektif pembelajaran / Learning objective

• Memahami gelombang. / Understanding waves.
• Menganalisis pantulan gelombang. / Analysing reflection of waves.
• Menganalisis pembiasan gelombang. / Analysing refraction of waves.
• Menganalisis pembelauan gelombang. / Analysing diffraction of waves.
• Menganalisis interferens gelombang. / Analysing interference of waves.
• Menganalisis gelombang bunyi. / Analysing sound waves. UNIT 1
• Menganalisis gelombang elektromagnet. / Analysing electromagnetic waves.



Gelombang
1.1 Waves


1 Maksud gelombang: Gangguan yang memindahkan tenaga antara dua titik melalui getaran zarah.
Meaning of waves : Disturbance that transmits energy between two points through particle vibration.

2 Apabila tenaga dipindahkan oleh gelombang daripada sumber yang bergetar kepada penerima, maka tidak ada pemindahan
zarah-zarah antara dua titik. / When energy is transferred by wave from a vibrating source to a distant receiver, there is no transfer
of particles between the two points.



Muka gelombang / Wavefront

Garisan atau permukaan yang menyambungkan titik-titik pada fasa yang sama.
The locus of points which vibrates in phase .

Muka gelombang
Definisi muka Wavefront
gelombang C Titik dalam fasa yang sama
Definition of Points in phase
wavefront
C = Puncak / Crest
T = Lembangan / Trough
T

Muka gelombang membulat Muka gelombang satah
Circular wavefront Plane wavefront

Jenis muka Arah perambatan gelombang
gelombang Arah perambatan The direction of wave
Types of gelombang propagation
wavefront The direction of wave
propagation
Muka gelombang
Muka gelombang / Wavefront Wavefront


Penjelasan Arah perambatan gelombang adalah berserenjang dengan muka gelombang.
Explanation The direction of the propagation of a wave is perpendicular to its wavefront.




3 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


Perbandingan antara gelombang melintang dan gelombang membujur:
Comparison between transverse wave and longitudinal wave:

Gelombang melintang Gelombang membujur
Transverse waves Longitudinal waves


Gelombang melintang ialah gelombang di mana Gelombang membujur ialah gelombang yang mana
zarah-zarah mediumnya bergetar pada arah yang zarah-zarah mediumnya bergetar pada arah yang
Takrif berserenjang dengan arah perambatan gelombang. selari dengan arah perambatan gelombang.
Definition Transverse waves are waves in which the direction Longitudinal waves are waves in which the direction
of vibration of the particles of the medium is of vibration of the particles of the medium is
perpendicular to the direction of wave propagation. parallel to the direction of wave propagation.



Arah perambatan gelombang
Arah getaran zarah Direction of wave propagation
UNIT 1
The direction of vibration of the particles
C C
Arah
Rajah perambatan
Diagram gelombang
The direction C R C R C
T T of wave
propagation Arah getaran zarah C = Mampatan / Compression
C = Puncak / Crest Direction of vibration of R = Renggangan / Rarefaction
T = Lembangan / Trough the particles

Panjang gelombang, λ Amplitud, a
Wavelength, λ



Direction of the vibration
Sesaran ayunan Dsiplacement of oscillation Amplitude, a Arah getaran spring
Jarak dari
of the spring
sumber
Distance
from
Titik dalam fasa yang sama
Points in phase source λ



Contoh Gelombang air, gelombang cahaya Gelombang bunyi
Example Water wave, light wave Sound wave













Video







Gelombang
Waves
https://goo.gl/vOTHAh

© Nilam Publication Sdn. Bhd. 4

MODUL • Fizik TINGKATAN 5



Peristilahan dalam gelombang
Terminology in waves
Amplitud, a Maksud : Sesaran maksimum dari kedudukan keseimbangan.
Amplitude, a Meaning : Maximum displacement from the equilibrium position.
(i) Unit SI / SI unit : m
(ii) Petunjuk kepada purata tenaga gelombang.
a kedudukan Indicator for the average energy of waves.
keseimbangan (iii) Amplitud semakin bertambah, tenaga gelombang semakin bertambah.
the equilibrium As amplitude increases, the energy of waves increases.
a position
(iv) Tenaga gelombang berkadar langsung dengan kuasa dua amplitud.


Energy of waves is directly proportional to the square of the amplitude.
Panjang gelombang, λ Maksud : UNIT 1
Wavelength, λ Meaning :

Puncak (i) Bagi gelombang melintang; jarak di antara dua puncak atau dua
Crest lembangan berturutan dalam suatu gelombang.
Lembangan
λ Trough For transverse wave, distance between two consecutive peak or two

consecutive troughs of waves.

(ii) Bagi gelombang membujur; panjang gelombang ialah jarak di antara


titik tengah dua renggangan yang berturutan atau jarak di antara dua

λ titik tengah dua mampatan yang berturutan.

For longitudinal waves; the wavelength is distance between the centre


Gelombang melintang of two consecutive rarefaction or distance between two consecutive
Transverse wave compression.
λ R: Renggangan / Rarefaction (iii) Mampatan : Kawasan di mana zarah-zarah rapat antara satu sama lain
dan mengalami tekanan tinggi serta mempunyai ketumpatan tinggi.
Compression : The region where the particles are closest together and
undergoes high pressure and has maximum density.
(iv) Renggangan : Kawasan di mana zarah-zarah jauh antara satu sama
lain dan mengalami tekanan rendah serta mempunyai ketumpatan
λ
C: Mampatan rendah.
Compression
Gelombang membujur Rarefaction : The region where the particles are further and undergoes
Longitudinal waves low pressure and has minimum density.

Maksud tempoh ayunan, T : Maksud frekuensi, f : Formula yang menghubungkaitkan T dan f :
Meaning of period, T : Meaning of frequency, f : Formula which relates T and f :


• Masa yang diambil untuk membuat • Bilangan ayunan lengkap dalam masa 1





satu ayunan lengkap / Time taken for satu saat / Number of oscillation in T =
f



one complete oscillation 1 second
• Unit SI / SI unit : s • Unit SI / SI unit : Hz (s )
–1
Halaju • Jarak perambatan gelombang dalam satu saat.
The distance propagated by a wave in one second.
gelombang, v • Halaju gelombang bergantung pada medium di mana gelombang merambat menerusinya.

Wavespeed, v
The wavespeed depends on the medium the waves are travelling through.
Puncak Titik pada gelombang dengan sesaran positif yang maksimum.
Crest A point on a wave with the maximum positive displacement.
Lembangan Titik pada gelombang dengan sesaran negatif yang maksimum.
Trough A point on a wave with the maximum negative displacement.



5 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


Sistem ayunan / Oscillation system
Definisi ayunan Gerakan berkala yang berulang-alik pada kedudukan keseimbangan.
Definition of A periodic motion performs a repeated to-and-fro motion about an equilibrium position.
oscillation
Ayunan bandul ringkas dan getaran spring / Oscillation of pendulum and vibration of spring




Jenis ayunan Kedudukan
Type of oscillation keseimbangan
Equilibrium position Satu ayunan lengkap
One oscillation

Satu ayunan lengkap
One oscillation
Satu ayunan kedudukan yang asal
UNIT 1
lengkap Pergerakan dari satu kedudukan tertentu ke kedudukan lain dan balik ke .
One complete The movement from a certain position to the other position and back to the original position .
oscillation
Graf sesaran-jarak (s – d) Graf sesaran-masa (s – t)
Displacement-distance graph (s – d) Displacement-time graph (s – t)
Sesaran, s (cm) Sesaran, s (cm)
Displacement, s (cm) Displacement, s (cm)

λ T


Jarak, d (cm) Masa, t (s)
a Distance, d (cm) a Time, t (s)
Graf O O
Graph a a


λ T

a = Amplitud / Amplitude a = Amplitud / Amplitude
λ = Panjang gelombang T = Tempoh
Wavelength Period
O = Kedudukan keseimbangan
The equillibrium position
Kedudukan Kedudukan objek di mana tiada daya paduan yang bertindak ke atasnya.
keseimbangan The position of the object where there is no resultant force acting on it.
Equilibrium
position

Halaju gelombang = Frekuensi × Panjang gelombang
Halaju Wavespeed = Frequency × Wavelength
Velocity
v = f λ
v v f


Graf
Graph
λ f λ
0 0 0 1
v α λ v α f f α
λ



© Nilam Publication Sdn. Bhd. 6

MODUL • Fizik TINGKATAN 5



Eksperimen 1. Tempoh bandul ringkas / Period of a simple pendulum
Experiment 2. Panjang gelombang air / Wavelength of water wave



Eksperimen 1. Tempoh Bandul Ringkas 2. Panjang Gelombang Air
Experiment Period of A Simple Pendulum Wavelength of Water Wave
Tempoh / Masa ayunan bergantung pada Panjang gelombang dipengaruhi oleh frekuensi.
Inferens panjang bandul. Wavelength is influenced by frequency.
Inference The period / time of oscillation depends on
the length of the pendulum.


Tempoh meningkat dengan panjang / Semakin panjang Semakin tinggi frekuensi, semakin pendek panjang UNIT 1
bandul ringkas, semakin panjang tempoh ayunan. gelombang.
Hipotesis The period increases with length / The longer the The higher the frequency, the shorter the wavelength.
Hypothesis
pendulum, the longer the period of oscillation.




Mengkaji hubungan antara panjang dan tempoh Mengkaji hubungan antara frekuensi dan panjang
Tujuan ayunan bandul ringkas. gelombang bagi gelombang.
Aim To investigate the relationship between the length and To investigate the relationship between frequency and
the period of oscillation for a simple pendulum. wavelength of a wave.


Pemboleh ubah dimanipulasikan: / Manipulated variable: Pemboleh ubah dimanipulasikan: / Manipulated variable:
Panjang, ℓ / Length, ℓ Frekuensi penggetar / Frequency of the vibrator
Pemboleh ubah bergerak balas: / Responding variable: Pemboleh ubah bergerak balas: / Responding variable:
Pemboleh ubah Tempoh ayunan, T / Period of oscillation, T Panjang gelombang / Wavelength
Variables
Pemboleh ubah yang dimalarkan: / Constant variable: Pemboleh ubah yang dimalarkan: / Constant variable:
Sudut ayunan (<10°), jisim ladung / Small angular Kedalaman air / Depth of water
displacement (< 10°), mass of pendulum bob


Jam randik, pembaris meter, kaki retort, Tangki riak, stroboskop mekanikal, pembaris meter,
Senarai radas pengapit-G dan 2 keping gabus / papan lapis. motor penggetar, kertas putih, bekalan kuasa, lampu
dan bahan
List of apparatus Stopwatch, metre ruler, thread, retort stand, G-clamp dan bar kayu. / Ripple tank, mechanical stroboscope,
and materials and 2 small pieces of cork / plywood. metre ruler, vibrator motor, white paper, power supply,
lamp and wooden bar.


Lampu
Motor Lamp
Motor Air
Water
Kaki retort Stroboskop
mekanikal
Retort stand
Susunan radas Benang Mechanical
stroboscope
Arrangement of the Thread Bar
apparatus getaran
Vibrating
bar
Satah gelombang air
Ladung Kertas putih Plane water waves
(skrin)
Pendulum White paper
bob (screen)

7 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



1. Radas dan bahan disediakan seperti dalam 1. Tangki riak disediakan seperti dalam rajah
rajah dengan panjang bandul ditetapkan pada dan sehelai kertas putih diletakkan di bawah
90.0 cm. tangki riak.
Apparatus and materials are set up as shown in A ripple tank is set up as shown and a sheet of
the diagram with the length of pendulum fixed white paper is placed under the ripple tank.
at 90.0 cm. 2. Hidupkan suis motor penggetar pada
2. Hujung bandul ditarik ke sisi dengan sudut frekuensi 10 Hz.
sesaran yang kecil dan dilepaskan. Switch on the vibrator motor at a frequency of
The pendulum is pulled sideways with a small 10 Hz.
angular displacement and released. 3. Perhatikan gelombang air dengan
3. Masa 10 ayunan lengkap, t diukur dan menggunakan stroboskop, ukur panjang
1
direkodkan. gelombang dan rekodkan.
Prosedur
UNIT 1
Procedure The time for 10 complete oscillations, t , is Observe the water waves by using the stroboscope,
1
measured and recorded. measure the wavelength and record it.
4. Langkah (3) diulangi untuk mendapatkan t . 4. Ulangi eksperimen sekurang-kurangnya
2
Step (3) is repeated to get t . empat kali dengan frekuensi motor penggetar:
2
5. Eksperimen diulangi dengan ℓ = 80.0 cm, 20 Hz, 30 Hz, 40 Hz dan 50 Hz.
70.0.cm, 60.0 cm, 50.0 cm dan 40.0 cm. Repeat the experiment at least four times at the
The experiment is repeated using ℓ = 80.0 cm, frequencies of vibrator motor: 20 Hz, 30 Hz,
70.0 cm, 60.0 cm, 50.0 cm and 40.0 cm. 40 Hz and 50 Hz.
_
_ t + t 2 t
1
T =
t =
6. Bacaan direkodkan dan ,
2
10
dan T dikira.
2
_ t + t 2
1
t =
The readings are tabulated and ,
2
_
t
T = and T are calculated.

2
10
t / s Panjang
2
ℓ/cm _ T / s T / s 2 Frekuensi, f / Hz gelombang, λ / cm
t 1 / s t 2 / s t / s Frequency, f / Hz Wavelength, λ / cm
90.0 10
Penjadualan data 80.0 20
Tabulation of the data
70.0 30
60.0 40
50.0 50
40.0

T / s 2 λ / cm
2

Menganalisis data
Analysis of the data


0 ℓ / cm 0 f / Hz







© Nilam Publication Sdn. Bhd. 8

MODUL • Fizik TINGKATAN 5



Latihan / Exercise
1 Seorang pelajar menggetarkan suatu sistem getaran spring 4 Rajah menunjukkan gelombang bunyi yang dihasilkan
sebanyak 4 kali per saat. Panjang gelombang bagi spring daripada satu tala bunyi.
tersebut ialah 0.6 m. Berapakah halaju gelombang menerusi The diagram below shows the sound waves produced by a
spring tersebut? KBAT tuning fork. 4 cm
A student makes a spring vibrating system vibrate at 4 times
per second. The wavelength of the wave on the spring is
0.6 m. What is the speed of the wave moving along the spring?
Penyelesaian / Solution
Diberi / Given
f = 4 Hz, λ = 0.6 m 150 cm
v = fλ

= 4 Hz × 0.6 m UNIT 1
= 2.4 m s –1
(a) Berdasarkan rajah, tentukan
Based on the diagram, determine
2 Gelombang radio merambat dengan halaju (i) amplitud / the amplitude
3 × 10 m s . Berapakah panjang gelombang bagi (ii) panjang gelombang / the wavelength
8
–1
gelombang radio FM yang diterima pada 200 MHz bagi (b) Berapakah frekuensi gelombang bunyi sekiranya
mendapatkan siaran radio tersebut? halaju bunyi adalah 330 m s ?
–1
Radio waves travel at a speed of 3 × 10 m s . What is the What is the frequency of the sound waves if the speed of
–1
8
wavelength of FM radio waves received at 200 MHz on your sound is 330 m s ?
–1
radio dial? Penyelesaian / Solution
Penyelesaian / Solution 4 cm

Diberi / Given (a) (i) a = 2 (b) v = fλ
–1
v = 3 × 10 m s , f = 200 MHz = 2 cm 330 m s = f × 0.5 m
8
–1
.
. .
v = fλ f = 660 Hz

8
–1
6
(3 × 10 m s ) = (200 × 10 Hz) × λ (ii) 3λ = 150 cm
λ = 1.5 m λ = 50 cm
3 Seutas tali direntangkan di atas lantai. Satu penghujung 5 Rajah di bawah menunjukkan graf sesaran-jarak.
tali tersebut digoyangkan dengan frekuensi 8 Hz. Graf di The diagram below shows the displacement-time graph.
bawah menunjukkan sebahagian pergerakan tali dalam Sesaran / m
suatu masa. Displacement / m
A long rope is stretched out on the floor. One end of the rope 10
is then shaken at frequency of 8 Hz. The graph below shows
the rope at a particular moment in time. 0 Masa / s
Sesaran / m 0.2 0.4 0.6 0.8 Time / s
Displacement / m –10
0.5
Berdasarkan graf di atas, tentukan
0 Jarak / m Based on the graph above, determine the
0.4 0.8 1.2 1.6 Distance / m (a) amplitud / amplitude
–0.5 (b) tempoh / period
(c) frekuensi / frequency
Tentukan / Determine Penyelesaian / Solution
(a) amplitud / the amplitude (a) a = 10 m
(b) panjang gelombang / the wavelength (b) T = 0.4 s
(c) halaju gelombang / the speed
Penyelesaian / Solution (c) f = 1
(a) a = 0.5 m T 1
(b) λ = 0.8 m = 0.4 s
(c) v = fλ

= 8 Hz × 0.8 m = 2.5 Hz
= 6.4 m s –1



9 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


Pelembapan dalam sistem ayunan / Damping in an oscillating system

Sistem ayunan / Oscillating system
• Sistem ayunan itu tidak berayun berterusan dengan amplitud yang sama kecuali apabila sistem itu berayun dalam vakum.
The oscillating system does not continue with the same amplitude indefinitely except when the system is oscillating in a vacuum.


Mengalami / Experiences




Pelembapan / Damping Resonans / Resonance
• Pelembapan ialah pengurangan amplitud bagi satu sistem ayunan • Resonans berlaku apabila suatu sistem dipaksa
di mana tenaga dilesapkan dalam bentuk tenaga haba. / Damping bergetar pada frekuensi yang sama dengan frekuensi
is the decrease in amplitude of an oscillating system when energy is aslinya yang disebabkan oleh daya luar.
drained out as heat energy. Resonance occurs when a system is made to oscillate
UNIT 1
at a frequency equivalent to its natural frequency by
• Amplitud akan semakin berkurang dan menjadi sifar apabila an external force.
ayunan berhenti.
The amplitude will gradually decrease and become zero when the • Sistem yang mengalami resonans ini berayun pada
oscillation stops.
amplitud yang maksimum .
The resonating system oscillate at its
maximum amplitude.
Graf pelembapan / A graph to show damping

Amplitud Sesaran
Amplitude Displacement
a (cm) d (cm) Beberapa kesan Some effects of
daripada resonans resonance

• Penala di dalam radio dan televisyen diputarkan
t (s)
t (s) 0 untuk memilih stesen program. Penala dalam litar
0 Masa / Time
Masa / Time diubah sehingga resonans tercapai, pada frekuensi
yang dihantar daripada stesen tertentu yang
dipilih. Maka, isyarat elektrik yang kuat terhasil.
Dua jenis pelembapan Two types of damping The tuner in a radio or television enables us to
select the programmes. The circuit in the tuner is
adjusted until resonance is achieved at the frequency
transmitted by a particular station selected. Hence a
strong electrical signal is produced.
Pelembapan luar Pelembapan dalam
External damping Internal damping • Kesan resonans juga membawa kemusnahan.
Berlaku disebabkan kehilangan Berlaku disebabkan kehilangan Contohnya, jambatan runtuh apabila amplitud
tenaga untuk mengatasi daya tenaga kerana mampatan dan getaran bertambah yang disebabkan oleh
geseran atau rintangan udara. regangan molekul di dalam resonans, seperti apa yang telah berlaku di
Caused due to loss of energy sistem. Tacoma Narrows Bridge di USA pada 1949.
to overcome frictional force Caused due to loss of energy Fenomena berlaku oleh tindakan angin yang
or air resistance. due to the extension and menyebabkan jambatan bergetar dengan amplitud
compression of molecules in the yang besar.
system.
The effects of resonance can also cause damage.
For example, a bridge can collapse when the
amplitude of its vibration increases as a result of
resonance, such as the Tacoma Narrows Bridge
Menyebabkan / Cause
in USA in 1949. The action of the wind caused the
bridge to vibrate at a large amplitude.
• Amplitud dan tenaga berkurang

Amplitude and energy decreases

• Frekuensi malar / Frequency is constant


© Nilam Publication Sdn. Bhd. 10

MODUL • Fizik TINGKATAN 5



Terminologi Penjelasan
Terminology Explanation

Daya luar Daya luar mesti dikenakan kepada sistem ayunan untuk membolehkan sistem berayun secara berterusan.
External force An external force must be applied to an oscillation system to enable the system to oscillate continuously.


Ayunan paksa Daya luar membekalkan tenaga kepada sistem memaksa sistem berayun.
Forced oscillation The external force which supply energy to the system forces the oscillation.


Frekuensi asli Frekuensi sesuatu sistem yang bergetar sendiri tanpa sebarang daya luar yang bertindak ke atasnya.
Natural frequency The frequency of a system which oscillates freely without the action of an external force.

UNIT 1
Maklumat tambahan:
Additional information:





Teknik Menjawab [Format Kertas 2 : Kefahaman / Esei Pendek]
Answering Technique [Paper 2 Format : Comprehension / Short Essay]



Soalan / Question: Jawapan / Answer:

Bandul B diayunkan. Dengan menggunakan • Bandul B berayun dan memindahkan tenaga kepada bandul-bandul lain.
konsep fizik yang sesuai, terangkan apa akan Pendulum B oscillates and transfers energy to others pendulum.
berlaku kepada ayunan bandul-bandul yang lain
selepas beberapa ketika. • Panjang bandul B = Panjang bandul D
Pendulum B is oscillated. Using appropriate
physics concept, explain what will happen to the Length of pendulum B = Length of pendulum D
state of oscillation of other pendulums after a
while. • Frekuensi bandul B = Frekuensi bandul D
[4 markah / marks]
Kaki retort Frequency of pendulum B = Frequency of pendulum D
Retort stand
• Bandul D mengalami resonans
Benang / Thread
Pendulum D undergoes resonance
F • Bandul D berayun dengan amplitud maksimum
A
B D
Pendulum D oscillates with the maximum amplitude
E
C


Pemberat
Loads
Perhatian / Attention:
Nota / Note: Satu poin = satu markah
(i) Frekuensi ayunan bandul bergantung One point = one mark
kepada panjang bandul.
Ftrequency of pendulum depends on Boleh diolah lebih daripada 4 poin
length of the pendulum. Can present more than 4 points
(ii) Dua bandul dengan panjang yang sama
mempunyai frekuensi dan tempoh yang Ketertiban poin tidak penting
sama. / Two pendulum of the same length The sequence of the points is not important
have the same frequency and period.
Poin perlu ringkas, padat, tepat dan bermakna
The points should be simple, compact, accurate and meaningful



11 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Pantulan Gelombang
1.2 Reflection of Waves



Pantulan Gelombang / Reflection of Waves
• Berlaku apabila gelombang tuju terkena pemantul dan mengubah arah perambatannya.
Occurs when an incident wave strikes a reflector and undergoes a change in direction of propagation.
• Berlaku kepada gelombang air, gelombang bunyi, gelombang cahaya dan gelombang elektromagnet.
Occurs to water waves, sound waves, light waves, and electromagnetic waves.






UNIT 1
Gelombang tuju
Gelombang tuju Incident wave
Incident wave
λ
λ λ
i r
Gelombang tuju Gelombang Pemantul satah Plane reflector Pemantul cekung Concave reflector
Incident wave terpantul
Reflected
Pemantul satah wave λ λ λ
Plane reflector Gelombang terpantul Gelombang terpantul
Normal Reflected wave Reflected wave
Normal



i = sudut tuju
(sudut di antara gelombang tuju dan normal) Ciri-ciri / Characteristics
angle of incidence
(the angle between the direction of propagation of the • Sudut i = Sudut r
incident wave and the normal) Angle of i = Angle of r
r = sudut pantulan Panjang gelombang frekuensi halaju
(sudut di antara gelombang pantulan dan normal) • , dan
angle of reflection tidak berubah selepas pantulan.
(the angle between the direction of propagation of the Wavelength frequency speed
reflected wave and the normal) , and do not change after
reflection.
Gelombang tuju
Incident wave • Arah perambatan gelombang berubah apabila ia dipantulkan.
Gelombang terpantul Direction of propagation of wave changes when it is reflected.
Reflected wave





Hukum pantulan / Laws of reflection

• i = r
• Gelombang tuju, gelombang terpantul dan garis normal terletak pada satah yang sama pada sudut tegak dengan permukaan
pantulan pada titik tuju.
The incident wave, reflected wave and normal lie in the same plane which is perpendicular to the reflecting surface at the point of
incidence.









© Nilam Publication Sdn. Bhd. 12

MODUL • Fizik TINGKATAN 5


PANTULAN GELOMBANG (Mencirikan) / REFLECTION OF WAVES (Characterisation)




Panjang
gelombang tetap
Constant Mempunyai sudut tuju
wavelength yang sama dengan sudut
(λ) pantulan
Has an angle of incidence
equal to the angle of
reflection


Gelombang tuju,
gelombang terpantul dan UNIT 1
garis normal berada pada Ciri-ciri Pantulan
satah yang sama Gelombang
Incident wave, reflected Characteristics of
wave and the normal lie in Reflection of Wave Frekuensi tetap
the same plane Constant frequency
(f)





Arah perambatan Halaju tetap
gelombang berubah Constant velocity
Direction of wave (v)
propagation changed







Eksperimen / Experiment Pantulan gelombang / Reflection of wave



Inferens Sudut pantulan bergantung pada sudut tuju.
Inference The angle of reflection depends on the angle of incidence.

Hipotesis Sudut pantulan bertambah apabila sudut tuju bertambah.
Hypothesis The angle of reflection increases as the angle of incidence increases.

Tujuan Untuk mengkaji hubungan antara sudut tuju dan sudut pantulan.
eksperimen
Aim of the To investigate the relationship between the angle of incidence and the angle of reflection.
experiment

Pemboleh ubah dimanipulasikan / Manipulated variable:
Sudut tuju / Angle of incidence
Pemboleh ubah Pemboleh ubah bergerak balas / Responding variable:
Variables Sudut pantulan / Angle of reflection
Pemboleh ubah dimalarkan / Constant variable:
Kedudukan cermin satah, frekuensi / Position of the plane mirror, frequency
Senarai bahan
dan radas Kotak sinar, cermin satah, plastisin, protraktor dan kertas putih
List of materials Ray box, plane mirror, plasticine, protractor and white paper
and apparatus


13 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5








Cermin satah / Plane mirror

Protraktor / Protractor

Susunan radas O
Arrangement of the i Kertas putih / White paper
apparatus r

Kotak sinar N
Ray box

Plastisin / Plasticine
UNIT 1



1. Garis normal, ON dilukis pada kertas putih.
A normal line, ON is drawn on the white paper.
2. Dengan menggunakan protraktor, satu sinar cahaya dari kotak sinar ditujukan ke cermin satah pada sudut
tuju, i = 10°.
By using the protractor, a ray of light from the ray box is directed to the plane mirror at angle of incidence,
i = 10°.
3. Dengan menggunakan protraktor, sudut pantulan, r diukur dan direkodkan.
Prosedur
Procedure By using the protractor, the angle of reflection ray, r is measured and recorded.
4. Langkah 2 dan 3 diulangi untuk sudut tuju yang lain, i = 20 , 30 , 40 , 50 .
o
o
o
o
Steps 2 and 3 are repeated for other angles of incidence, i = 20°, 30°, 40°, 50°.





Menjadualkan i / ° 10° 20° 30° 40° 50°
data
Tabulate the data r / °




r / º




Menganalisis data
Analysis the data




0 i / º














© Nilam Publication Sdn. Bhd. 14

MODUL • Fizik TINGKATAN 5



Pembiasan Gelombang
1.3 Refraction of Waves


Pembiasan gelombang / Refraction of waves




Definisi / Definition Ciri-ciri gelombang yang terbias
Characteristics of wave after refraction
Pembiasan ialah perubahan arah gelombang disebabkan oleh perubahan
halaju apabila ia bergerak dari satu medium ke medium lain, yang Gelombang mempunyai frekuensi yang sama tetapi
mempunyai perbezaan ketumpatan optik atau kedalaman. berbeza pada halaju, panjang gelombang dan arah
Refraction is the change in direction of the wave when its speed changes as it perambatan.
moves from one medium to another, which has different optical densities or The wave has the same frequency but different speed,
different depths. wavelength and direction of propagation. UNIT 1



Berlaku kepada / Occur to

Gelombang air, gelombang bunyi, gelombang cahaya dan gelombang elektromagnet
Water waves, sound waves, light waves and electromagnetic waves



Apabila gelombang merambat dari satu medium merentasi sempadan ke medium lain yang berbeza halaju, gelombang yang terbias
akan merambat dalam arah yang berbeza daripada gelombang tuju. / When a wave travelling in one medium crosses the boundary into
another medium where its velocity is different, the refracted wave will move in a different direction from that of the incident wave.



Ciri-ciri gelombang / Characteristics of waves

Keadaan Kawasan dalam Kawasan cetek
Situation In deep water In shallow water

Halaju Lebih laju Lebih perlahan
Speed Faster Slower


Panjang gelombang Lebih panjang Lebih pendek
Wavelength Longer Shorter

Frekuensi Tidak berubah Tidak berubah
Frequency Unchanged Unchanged

Pembiasan gelombang air / Refraction of water waves


Lukiskan gelombang air terbias. / Draw the refracted water waves.
Dalam Cetek Dalam Dalam Cetek Dalam
Deep Shallow Deep Deep Shallow Deep






F








15 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Pembiasan gelombang cahaya / Refraction of light wave
Lukis dan labelkan gelombang cahaya terbias. / Draw and label the refracted light wave.

Sinar tuju
Incident ray Sinar tuju
i Incident ray
Udara
Air i
Kaca
Kaca Glass
Glass Sinar terbias
r Refracted ray Udara Sinar terbias
Air r Refracted ray




Apabila sinar tuju merambat dari medium kurang tumpat ke Apabila sinar tuju merambat dari medium yang lebih tumpat
UNIT 1
medium yang lebih tumpat, ia akan dibiaskan mendekati garis ke medium yang kurang tumpat, ia akan dibiaskan menjauhi
normal. garis normal.
When the light ray travels from an optically less dense medium to When the light travels from an optically denser medium to an
an optically denser medium, it bends towards the normal. optically less dense medium, it bends away from the normal.

Maklumat tambahan:
Additional information:





Kemahiran mengkonsepsi secara kuantitatif / Conceptualisation skills quantitatively

Pembiasan gelombang air / Refraction of water waves
(e) Bandingkan / Compare:
v1 v2
λ1 λ2 lebih besar daripada / larger than / (>)
• d 1 d 2
• λ 1 lebih besar daripada / larger than / (>) λ 2
d2
• v 1 lebih besar daripada / larger than / (>) v 2
d1
Blok kaca
Glass block Air / Water (f) Hubung kaitkan antara kedalaman air, panjang gelombang air
dan laju gelombang air: / Relate the depth of water, wavelength
(a) Gelombang air mengalami pembiasan apabila merambat and speed of water waves:
melalui dua sempadan dua kawasan yang berbeza Kedalaman air semakin bertambah, panjang gelombang
kedalaman. / Water waves undergoes refraction when
propagates through two areas of different depth. semakin bertambah , dan laju gelombang semakin
(b) Frekuensi gelombang adalah tetap. bertambah
Frequency of waves is constant. .
(c) v = fλ As the depth of water increases, the wavelength increases ,
(d) Laju gelombang, v, bergantung pada panjang gelombang, λ. increases
Speed of waves, v, depends on wavelength, λ. and speed of wave .

Formula yang menghubungkaitkan v dan λ untuk kawasan air dalam dan kawasan air cetek
Formula that relates v and λ for area of deep water and area of shallow water

Frekuensi / Frequency :
1. Kawasan dalam / Deep area : f = f 2
1
f = v 1 v 1 = v 2
1
λ 1 λ 1 λ 2
2. Kawasan cetek / Shallow area :
f = v 2
2
λ 2

© Nilam Publication Sdn. Bhd. 16

MODUL • Fizik TINGKATAN 5



Teknik Menjawab [Format Kertas 2 : Kefahaman / Esei Pendek]
Answering Technique [Paper 2 Format : Comprehension / Short Essay]



Pembiasan gelombang bunyi pada waktu malam yang sejuk / Refraction of sound wave on cold night time
Soalan / Question: Perhatian / Attention:
Pada waktu malam yang sejuk, bunyi kereta api yang keluar dari Idea tentang suhu lapisan-lapisan udara
terowong kedengaran lebih jelas. Terangkan. Idea about the temperature of air layers
On a cold night, the sound of the train coming out of the tunnel sounds more Idea tentang ketumpatan lapisan-lapisan udara
Idea about the density of air layers
clearly. Explain. Idea tentang arah perambatan dan fenomena gelombang
[4 markah / marks] Idea about the direction and phenomenon of waves
Idea tentang perubahan panjang gelombang / laju gelombang
Idea about the change of wavelength / speed of waves
Idea tentang fenomena yang menyebabkan perubahan arah UNIT 1
gelombang yang menghala ke permukaan darat (pantulan
dalam penuh)
Idea about the phenomenon that causes the change of
Terowong direction of waves toward the ground surface (total internal
Tunnel reflection)



Kereta api
Train

Jawapan / Answers:
• Lapisan udara di lapisan bawah lebih sejuk berbanding lapisan atas
Air layer near the ground is colder than the top layer
• Ketumpatan lapisan udara sejuk lebih besar daripada lapisan udara panas

The density of colder air layer is greater than hotter air layer
• Gelombang bunyi terbias menjauhi normal
Sound waves refracted away from normal

• Panjang gelombang di lapisan udara sejuk lebih kecil daripada lapisan udara panas
Wavelength of colder air layer is smaller than hotter air layer
• Laju gelombang di lapisan udara sejuk lebih kecil daripada lapisan udara panas
Wave speed of colder air layer is smaller than hotter air layer
• Gelombang bunyi terbias dan mendekati permukaan darat disebabkan pantulan dalam penuh

Sound waves is refracted and move towards the ground surface due to total internal reflection



Eksperimen / Experiment Pembiasan gelombang cahaya / Refraction of light wave




Inferens Sudut biasan bergantung kepada sudut tuju
Inference The angle of refraction depends on the angle of incidence


Hipotesis Sudut biasan bertambah apabila sudut tuju bertambah
Hypothesis The angle of refraction increases as the angle of incidence increases

Tujuan Untuk mengkaji hubungan antara sudut tuju dan sudut biasan
eksperimen
Aim of the To investigate the relationship between the angle of incidence and the angle of refraction
experiment

17 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Pemboleh ubah dimanipulasikan / Manipulated variable:
Sudut tuju / Angle of incidence
Pemboleh ubah Pemboleh ubah bergerak balas / Responding variable:
Variables Sudut biasan / Angle of refraction
Pemboleh ubah dimalarkan / Constant variable:
Indeks biasan / Refractive index

Senarai bahan
dan radas Blok kaca, kotak sinar, kertas putih, protraktor, bekalan kuasa
List of materials Glass block, ray box, white paper, protractor, power supply
and apparatus
Kotak sinar
Ray box

N
UNIT 1
i
A O B
Susunan radas
Arrangement of the
apparatus r

D C
P


Q

1. Blok kaca diletakkan di atas sehelai kertas putih. Bentuk bongkah kaca dilakarkan di atas kertas putih dan
dilabelkan ABCD. Bongkah kaca dialihkan.
The glass block is placed on a piece of white paper. The outline of the sides of the glass block are traced on the
white paper and labelled as ABCD. The glass block is removed.
2. Garis normal ON dilukis. Dengan menggunakan protraktor, sudut tuju diukur, i = 10°.
Bongkah kaca diletakkan semula di atas lakaran itu. Alur cahaya dari kotak sinar di tujukan pada sudut i itu.
Alur yang terbias dari CD dilukis sebagai PQ. Blok kaca dialihkan semula. Satu garisan OP dilukis.
Prosedur The normal ON is drawn. By using a protractor, the angle of incidence is measured, i = 10°.
Procedure
The glass block is placed again on its outline on the paper. A ray of light from the ray box is directed along the
incidence line. The ray emerging from the side CD is drawn as line PQ. The glass block is removed again. The
points O and P are joined by a line and is drawn as line OP.
3. Sudut biasan, r diukur dan direkodkan. / The angle of refraction, r, ray is measured and recorded.
4. Eksperimen diulangi dengan sudut tuju, i = 20°, 30°, 40°, 50°.
The experiment is repeated for angles of incidence i = 20°, 30°, 40°, 50°.


Menjadualkan Sudut tuju / Angle of incidence, i / ° 10° 20° 30° 40° 50°
data
Tabulation of data Sudut biasan / Angle of refraction, r / °

Sudut biasan
Angle of refraction
r / °


Menganalisis data
Analysis of the data


Sudut tuju
Angle of incidence
0 i / °

© Nilam Publication Sdn. Bhd. 18

MODUL • Fizik TINGKATAN 5



Eksperimen / Experiment
Pembiasan gelombang air / Refraction of water wave



Inferens Panjang gelombang air bergantung pada kedalaman air
Inference The wavelength of water waves depends on the depth of water



Hipotesis Apabila kedalaman air meningkat, maka panjang gelombang air meningkat
Hypothesis The wavelength of the water waves increases as the depth of water increases


Tujuan Mengkaji hubungan antara kedalaman air dan panjang gelombang air
eksperimen UNIT 1
Aim of the To investigate the relationship between the depth of water and the wavelength of water waves
experiment

Pemboleh ubah dimanipulasikan / Manipulated variable:
Kedalaman air / Depth of water

Pemboleh ubah bergerak balas / Responding variable:
Pemboleh ubah
Variables Panjang gelombang / Wavelength
Pemboleh ubah dimalarkan / Constant variable:
Frekuensi / Frequency


Senarai bahan Tangki riak, lampu, motor, bar kayu, bekalan kuasa, kertas putih, protraktor, satah pantulan, plat perspek,
dan radas pembaris 15 cm, stroboskop mekanikal, pembaris meter
List of materials Ripple tank, lamp, motor, wooden bar, power supply, white paper, protractor, plane reflector, perspex plate, 15 cm
and apparatus ruler, mechanical stroboscope, metre rule



Lampu
Lamp
Motor
Motor Air
Water Plat perspeks
Perspex plate


Susunan radas Stroboskop
Arrangement of the mekanikal
apparatus Mechanical
stroboscope
Bar getaran
Vibrating bar


Kertas putih (skrin)
White paper (screen)















19 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



1. Kedalaman air, d, di atas permukaan perspek, diukur dengan menggunakan pembaris 15 cm.
The depth of water, d, over a perspex plate, is measured by using a 15 cm ruler.
2. Bekalan kuasa dihidupkan untuk menggetarkan motor supaya gelombang satah merambat merentasi plat
perspek. Gelombang itu dibekukan dengan menggunakan stroboskop mekanikal. Gelombang itu dilakar
pada skrin. / The power supply is switched on to produce plane waves which propagate across the perspex plate.
The waves are frozen by a mechanical stroboscope. The waves are sketched on the screen.
Prosedur 3. Jarak antara 11 jalur terang berturutan, x, diukur dengan menggunakan pembaris meter dan direkodkan
Procedure The distance between 11 successive bright bands, x, is measured by the metre ruler and recorded.
x
4. Panjang gelombang, λ, dikira / The wavelength λ, is calculated, λ = cm
10
5. Eksperimen diulang 4 kali dengan menambahkan bilangan plat perspek untuk mengubah kedalaman air di
atas plat perspek. / The experiment is repeated 4 times by increasing the number of perspex plates to change
the depth of the water across the plate.
UNIT 1
Menjadualkan Kedalaman air / Depth of water, d / cm
data
Tabulation of data Panjang gelombang / Wavelength, λ / cm

Panjang gelombang
Wavelength
λ / cm

Menganalisis data
Analysis of the data
Kedalaman air
Depth of water
0
d / cm


Latihan / Exercise

1 Rajah menunjukkan gelombang satah air bergerak dari kawasan P ke kawasan Q yang mempunyai kedalaman berbeza.
The diagram shows a plane water wave moving from one area P to another area Q of different depths.
P Q
KBAT
Halaju gelombang air di kawasan P ialah 18 cm s . Berapakah halaju
–1
gelombang air di kawasan Q?
The speed of the water wave in area P is 18 cm s . What is the speed of the water
–1
wave in area Q?
12 cm 12 cm
Penyelesaian / Solution
P Q Frekuensi gelombang di kawasan Q adalah bersamaan dengan
frekuensi gelombang di kawasan P.
Frequency of wave in region Q is the same as the frequency of wave in
region P.

8λ = 12 cm Oleh itu, / Hence, v = f λ
4λ = 12 cm 8λ = 12 cm Q Q Q
λ = 12 cm v = (6 Hz) × 1.5 cm
Q
Kedalaman P: / Deep region P: Q 8 = 9.0 cm s –1
4λ = 12 cm v = f λ = 1.5 cm
p
p
p
12 18 cm s = f (3 cm)
–1
λ = 4 cm
p
\ f = 6 Hz
λ = 3 cm
p
© Nilam Publication Sdn. Bhd. 20

MODUL • Fizik TINGKATAN 5



Belauan Gelombang
1.4 Diffraction of Waves


Pembelauan gelombang / Diffraction of waves


Selepas belauan berlaku: / After diffraction has occured:
Definisi / Definition
Dimalarkan / Constant Berubah / Change
Penyebaran gelombang apabila gelombang
melalui celahan atau halangan. • Panjang gelombang, λ • Amplitud berkurang
The spreading of waves as they pass through Wavelength, λ Amplitude decreases
an aperture or obstacle.
• Frekuensi, f • Corak gelombang
Frequency, f Pattern of the wave UNIT 1
• Halaju,v • Tenaga berkurang
Speed, v Energy decreases



Gelombang air lebih terbelau jika:
Waves are diffracted more if:
(i) Celahan sempit / Slit is narrow (ii) Panjang gelombang lebih panjang / Wavelength is longer
Size celahan ≤ λ / Size of gap ≤ λ Halangan panjang / Long obstacle









Video
Saiz celahan > λ / Size of gap > λ Halangan pendek / Short obstacle






Pembelauan Gelombang
Diffraction of Waves
https://goo.gl/eHTMDA


Faktor-faktor mempengaruhi kesan belauan gelombang: / Factors affecting the effects of diffraction of waves:

Faktor Perubahan ke atas faktor Kesan belauan
Factor Changes on factors Effects of diffraction

Saiz celah Kecil / Small Jelas / Clear
Size of slit
Besar / Large Kurang jelas / Less clear
Kecil / Small Jelas / Clear
Saiz halangan
Size of obstacle Besar / Large Kurang jelas / Less clear

Frekuensi Rendah / Low Jelas / Clear
Frequency Tinggi / High Kurang jelas / Less clear
Pendek / Short Kurang jelas / Less clear
Panjang gelombang
Wavelength Panjang / Long Jelas / Clear




21 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Rajah / Diagram:
• Gelombang bunyi mempunyai gelombang yang panjang.
Sound wave has a long wavelength. Dinding
Wall
• Belauan gelombang bunyi menyebabkan bunyi masih boleh didengar di penjuru dinding
bangunan. Pendengar
Diffraction of sound waves enables sound to ‘go around a corner’. Listener Radio
Radio





Eksperimen / Experiment
Pembelauan gelombang air / Diffraction of water waves


Inferens Sudut bengkokan gelombang air bergantung kepada saiz celah
UNIT 1
Inference The angle of bending of the waves depends on the size of the slit


Hipotesis Sudut bengkokan gelombang air meningkat apabila saiz celah berkurang
Hypothesis The angle of bending of the waves increases as the size of slit decreases

Tujuan
eksperimen Mengkaji hubungan antara sudut bengkokan gelombang air dan saiz celah
Aim of the To investigate the relationship between the angle of bending of the waves and the size of the slit
experiment
Pemboleh ubah dimanipulasikan / Manipulated variable:
Saiz celah, a, / Size of slit, a

Pemboleh ubah Pemboleh ubah bergerak balas / Responding variable:
Variables Sudut bengkokan gelombang air, θ° / Angle of bending of the water waves, θ°
Pemboleh ubah dimalarkan / Constant variable:
Frekuensi penggetar / Frequency of vibrator

Senarai bahan Tangki riak, lampu, motor, bar kayu, bekalan kuasa, kertas putih, dua batang bar besi, pembaris meter,
dan radas protraktor dan stroboskop mekanikal
List of materials Ripple tank, lamp, motor, wooden bar, power supply, white paper, two pieces metal bar, metre rule, protractor and
and apparatus mechanical stroboscope


Lampu
Lamp
Motor
Motor
Air
Water Bar logam
Metal bar
Celahan
Susunan radas Aperture slit
Arrangement of the Stroboskop
apparatus mekanikal
Mechanical
stroboscope
Bar getaran
Vibrating bar


Kertas putih (skrin)
White paper (screen)




© Nilam Publication Sdn. Bhd. 22

MODUL • Fizik TINGKATAN 5



1. Dengan menggunakan pembaris meter, lebar celah diukur, a = 0.5 cm.
By using a metre rule , the width of the slit is measured, a = 0.5 cm.
Bekalan kuasa dihidupkan. Gelombang dibekukan dengan menggunakan stroboskop mekanikal.Gelombang
dilakarkan pada skrin.
The power supply is switched on. The waves are freeze by a mechanical stroboscope. The waves are sketched on
Prosedur
Procedure the screen.
2. Dengan menggunakan protraktor, sudut bengkokan, θ diukur.
By using a protractor, the angle of bent, θ is measured.

3. Eksperimen diulang dengan menggunakan lebar celah, a = 1.0 cm, 1.5 cm, 2.0 cm dan 2.5 cm.
The experiment is repeated for width of slit, a = 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm.


Menjadualkan Saiz celah / Size of aperture, a / cm 0.5 1.0 1.5 2.0 2.5 UNIT 1
data Sudut bengkokan gelombang air
Tabulation of data Angle of bending of water waves, θ / °

Angle of bending of water wavesθ / °




Menganalisis data
Analysis of the data


Saiz celah
0 Size of aperture
a / cm



Eksperimen / Experiment
Pembelauan gelombang cahaya / Diffraction of light wave


Inferens Lebar pinggir cerah di tengah bergantung kepada saiz celah
Inference The width of the middle bright fringe depends on the size of the slit


Hipotesis Lebar pinggir cerah di tengah bertambah apabila saiz celah berkurang
Hypothesis The width of the middle bright fringe increases as the size of the slit decreases

Tujuan
eksperimen Mengkaji hubungan lebar pinggir cerah di tengah dengan saiz celah
Aim of the To investigate the relationship between the width of the middle bright fringe and the size of the slit
experiment
Pemboleh ubah dimanipulasikan / Manipulated variable:
Saiz celah / Size of slit

Pemboleh ubah bergerak balas / Responding variable:
Pemboleh ubah Lebar pinggir cerah di tengah / The width of the middle bright fringe
Variables
Pemboleh ubah dimalarkan / Constant variable:
Cahaya monokromatik (cahaya dengan satu panjang gelombang sahaja)
Monochromatic light (light of one wavelength only)

Senarai bahan
dan radas Sumber cahaya monokromatik, slaid celah tunggal, pembaris meter
List of materials Monochromatic light source, single slit slide, metre rule
and apparatus

23 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5






Sumber cahaya laser
Laser light source Slaid satu celah
Single slit slide




Susunan radas
Arrangement of the
apparatus
x




Skrin Pinggir tengah cerah
UNIT 1
Screen Middle bright fringe

1. Lebar celah direkodkan, a = 0.2 mm. Cahaya dari sumber ditujukan ke arah celahan.

The width of the slit is recorded, a = 0.2 mm. The light beam from the source is directed towards the slit.
2. Dengan menggunakan pembaris meter, lebar pinggir cahaya di tengah, x, diukur dan direkodkan.
Prosedur
Procedure By using a metre rule, the width of the middle bright fringe, x is measured and recorded.
3. Eksperimen diulangi dengan menggunakan lebar celah, a = 0.4 mm, 0.6 mm, 0.8 mm dan 1.0 mm.

The experiment is repeated for widths of slit, a = 0.4 mm, 0.6 mm, 0.8 mm and 1.0 mm.


Menjadualkan Lebar celah / Width of slit, a / mm 0.2 0.4 0.6 0.8 1.0
data Lebar pinggir tengah cerah
Tabulate the data Width of middle bright fringe, x / cm


Lebar pinggir tengah cerah
Width of middle bright fringe
x / cm




Menganalisis data
Analysis the data




Lebar celah
Width of slit
0 a / mm






Maklumat tambahan:
Additional information:









© Nilam Publication Sdn. Bhd. 24

MODUL • Fizik TINGKATAN 5






Constant v Amplitud berkurang Amplitude decreases
malar malar Constant λ



v λ






Gelombang merambat melalui celahan atau halangan Waves propagate through the slit or obstacles Pembelauan Gelombang Diffraction of Wave Penyebaran gelombang Spreading of wave UNIT 1














Tenaga berubah Energy is changing f malar Constant f Corak gelombang berubah Wave pattern is changing Perubahan arah gelombang Changes in wave direction












PEMBIASAN DAN PEMBELAUAN (Membanding & Membezakan)

REFRACTION AND DIFFRACTION (Comparing & Contrasting)

Gelombang merambat melalui medium yang berbeza ketumpatan optikal atau berbeza kedalaman Waves propagating through mediums of different optical densities or optical depths Pembiasan Gelombang Refraction of Wave Pembengkokan gelombang Bending of wave















mengikut kedalaman medium atau ketumpatan optikal medium density of the medium mengikut kedalaman medium atau ketumpatan optikal medium density of the medium


berubah varies with the depth of the medium or optical berubah varies with the depth of the medium or optical




v v λ λ





25 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


Latihan / Exercise

1 Rajah menunjukkan gelombang satah air mendekati satu celah sempit.
The diagram shows plane water waves approaching a narrow slit.









Pembengkokan gelombang meningkat apabila
The bending of the waves increases when
A saiz celah bertambah / the size of slit increases
B frekuensi gelombang bertambah / the frequency of the wave increases
C panjang gelombang bertambah / the wavelength increases
UNIT 1
2 Rajah menunjukkan corak yang dihasilkan di atas skrin apabila cahaya monokromatik melalui celahan.
The diagram shows the pattern formed on a screen when a monochromatic light is passed through a slit.
G C G C G C G
KBAT




Antara rajah berikut, yang manakah terhasil apabila saiz celah dikurangkan?
Which of the following diagrams occurs when the size of the slit is decreased?
A C




B D



3 Antara rajah berikut, yang manakah menunjukkan corak belauan cahaya bagi gelombang cahaya apabila cahaya monokromatik
melalui lubang pin yang halus? / Which of the following diagrams shows the patterns of diffraction of light waves when a
monochoromatic light passes through a small pin hole?
A B C D







Interferens Gelombang
1.5 Interference of Waves


Maksud interferens Kesan superposisi dua gelombang yang koheren.
Meaning of The effect of superposition of two coherent waves.
interference

Maksud gelombang Sumber yang menghasilkan gelombang dengan frekuensi yang sama, panjang gelombang yang sama dan
yang koheren dalam fasa yang sama (sefasa).
Meaning coherent Sources which produce waves with the same frequency, same wavelength and are in the same phase.
waves

Prinsip superposisi Apabila dua gelombang merambat serentak dan bertindih pada satu titik, sesaran paduan pada titik itu adalah
The principle of sama dengan hasil tambah sesaran gelombang itu secara individu.
superposition When two waves move simultaneously and coincide at a point, the displacement at that point is equal to the sum of
the displacement of the individual waves.


© Nilam Publication Sdn. Bhd. 26

MODUL • Fizik TINGKATAN 5



Kesan daripada superposisi dua puncak gelombang atau dua lembangan gelombang dari sumber
yang koheren untuk menghasilkan amplitud yang maksimum . / The effect of the superposition of two
wave crests or two waves troughs of coherent source to generate the maximum amplitude.
Interferens
membina Gelombang paduan = 2a Gelombang paduan = 2a
Constructive Resulting wave = 2a Resulting wave = 2a
interference
a a
2a 2a
a a

Kesan daripada superposisi puncak gelombang dan lembangan gelombang dari sumber yang koheren untuk UNIT 1

menghasilkan amplitud sifar . / The effect of superposition of wave crest and wave trough from a
coherent source to produce a zero amplitude
Interferens
memusnah Gelombang paduan = 0
Destructive Resulting wave = 0
interference






Antinod Titik di mana interferens membina terbentuk
Antinode A point where constructive interference occurs
Nod Titik di mana interferens memusnah terbentuk
Node A point where destructive interference occurs


Rajah: / Diagram: Formula Interferens Young: ax
Young’s Interference Formula: λ = D
Garis antinod Garis nod
(Interferens (Interferens
membina) memusnah) x
Antinodal line Nodal line
(Constructive (Destructive
interference) interference)


D
Puncak
Crest
Puncak
Crest
Lembangan S 1 S 2
Trough Lembangan a
S S Trough
1 2
Sumber gelombang
Waves sources
a = Jarak antara dua sumber koheren
Distance between two coherent sources
gelombang amplitud sifar / zero amplitude waves = Panjang gelombang / Wavelength
gelombang puncak maksimum / maximum crest waves x = Jarak antara dua garis nod (atau garis antinod) yang
gelombang lembangan maksimum / maximum trough waves berturutan / Distance between two consecutive nodal
lines (or antinodal lines)
D = Jarak berserenjang dari dua sumber ke titik pengukuran x
Perpendicular distance from the two sources to the point
of measurement of x



27 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Eksperimen / Experiment
Interferens gelombang air / Interference of water wave


Jarak antara dua garis nod yang berturutan bergantung kepada jarak antara dua sumber koheren.
Inferens
Inference The distance between two consecutive nodal lines depends on the distance between two coherent sources.

Jarak antara dua garis nod berturutan bertambah apabila jarak antara dua sumber koheren berkurang.
The distance between two consecutive nodal lines increases as the distance between two coherent sources
Hipotesis
Hypothesis decreases.


Mengkaji hubungan antara jarak antara dua sumber koheren, a, dan jarak antara dua garis nod yang
Tujuan berturutan, x.
UNIT 1
eksperimen
Aim of the To investigate the relationship between the distance of two coherent sources, a, and the distance of two consecutive
experiment
nodal lines, x.


Pemboleh ubah dimanipulasikan / Manipulated variable:
Jarak antara dua sumber koheren, a / The distance between two coherent sources, a
Pemboleh ubah bergerak balas / Responding variable:
Jarak antara dua garis nod yang berturutan, x / The distance between two consecutive nodal lines, x
Pemboleh ubah
Variables Pemboleh ubah dimalarkan / Constant variable:
Frekuensi penggetar, panjang gelombang / Frequency of vibrator, the wavelength
Jarak antara sumber (pencelup) dan kedudukan di mana x diukur.

Distance between sources and the position where x is measured.

Senarai bahan Tangki riak, lampu, motor, kayu bar, bekalan kuasa, kertas putih, pencelup sfera, pembaris meter dan
dan radas stroboskop mekanik
List of materials Ripple tank, lamp, motor, wooden bar, power supply, white paper, spherical dippers, metre rule and mechanical
and apparatus stroboscope



Lampu / Lamp
Motor
Motor
Air
Water Pencelup
Dipper Tangki riak
Ripple tank

Susunan radas Stroboskop mekanikal
Arrangement of the Mechanical stroboscope
apparatus
Bar getaran
Vibrating bar

Kertas putih (skrin)
Bayang corak interferens White paper (screen)
Shadow of interference patterns






© Nilam Publication Sdn. Bhd. 28

MODUL • Fizik TINGKATAN 5



1. Dengan menggunakan pembaris meter, jarak antara dua pencelup diukur, a = 2.0 cm.
By using a metre rule, the distance between two dippers is measured, a = 2.0 cm.
2. Bekalan kuasa dihidupkan untuk menghasilkan dua gelombang membulat dari pencelup. Gelombang dibekukan
dengan menggunakan stroboskop mekanikal. Gelombang dilakarkan pada skrin.
The power supply is switched on to produce two circular waves from the dippers. The waves are frozen by a
mechanical stroboscope. The waves are sketched on the screen.
Prosedur
Procedure 3. Dengan menggunakan pembaris meter, jarak antara dua garis nod yang berturutan, x, diukur
dan direkodkan
By using a metre rule, the distance between two consecutive nodal lines, x, is measured and recorded.
4. Eksperimen diulangi pada jarak yang berbeza antara dua pencelup, a = 4.0 cm, 6.0 cm, 8.0 cm
dan 10.0 cm. / The experiment is repeated with different values of the distance between two dippers,
a = 4.0 cm, 6.0 cm, 8.0 cm and 10.0 cm. UNIT 1

Menjadualkan a / cm 2.0 4.0 6.0 8.0 10.0
data
Tabulation of data x / cm



Jarak antara dua garis nod berturutan
Distance between two consecutive nodal lines
x / cm

Menganalisis data
Analysis of the data
Jarak antara dua pencelup
Distance between the two dippers
0 a / cm










Latihan / Exercise

1 Dalam satu eksperimen untuk mengkaji corak interferens gelombang air, jarak antara dua pencelup sfera ialah 2.5 cm dan jarak
antara dua garis antinod berturutan pada titik pengukuran ialah 5.0 cm. Berapakah panjang gelombang bagi air jika jarak dari
dua pencelup ke titik pengukuran itu ialah 10.0 cm?
In an experiment to investigate the interference pattern of water waves, the distance between two spherical dippers is 2.5 cm and the
distance between two consecutive antinodal lines is 5.0 cm. What is the wavelength of the water waves if the distance from the two
dippers to the point of measurement is 10.0 cm?
Penyelesaian
Solution

Diberi / Given a = 2.5 cm, x = 5.0 cm, D = 10.0 cm
ax
λ =
D
2.5 cm × 5.0 cm
= Video
10.0 cm
= 1.25 cm





Interferens Gelombang
Interference of Waves
https://goo.gl/7dS7Pf

29 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Eksperimen / Experiment
Interferens gelombang cahaya / Interference of light wave


Inferens Jarak antara dua pinggir cerah yang berturutan bergantung kepada panjang gelombang cahaya
Inference The distance between two consecutive bright fringes depends on the wavelength of the light waves.

Hipotesis Jarak antara dua pinggir cerah yang berturutan bertambah apabila panjang gelombang cahaya bertambah
Hypothesis The distance between two consecutive bright fringes increases when the wavelength of the light waves increases.

Tujuan Mengkaji hubungan antara panjang gelombang cahaya dan jarak antara dua pinggir cerah yang berturutan
eksperimen To investigate the relationship between the wavelength of light waves and the distance between two consecutive
Aim of the
experiment bright fringes.

Pemboleh ubah dimanipulasikan / Manipulated variable:
UNIT 1
Panjang gelombang cahaya laser, λ
The wavelength of the laser light waves, λ
Pemboleh ubah bergerak balas / Responding variable:
Pemboleh ubah Jarak antara dua pinggir cerah berturutan, x
Variables
The distance between two consecutive bright fringes, x
Pemboleh ubah dimalarkan / Constant variable:
Jarak pemisahan antara celah, a, dan jarak antara dwicelah dan skrin, D
Slit separation, a, and the distance between double slit and screen, D

Senarai bahan
dan radas Sumber cahaya laser, skrin, dwicelah, pembaris meter dan pembaris 15 cm
List of apparatus Laser light source, screen, double slit, metre ruler and 15 cm ruler
and materials


Skrin
Screen



Susunan radas
Arrangement of the
apparatus Sumber cahaya laser a Kawasan interferens
Laser light source Interference area
Slit dwicelah
Double slit Corak pinggir interferens
3.0 m Interference fringe pattern
D



1. Sumber cahaya laser dihidupkan. Panjang gelombang = λ,
The laser light source is switched on. Wavelength = λ,
2. Corak interferens terbentuk di atas skrin diperhatikan dan dilakarkan.
The interference pattern formed on the screen is observed and drawn.
3. Dengan menggunakan pembaris 15 cm, jarak merentasi 6 pinggir cerah yang berturutan, L diukur dan
Prosedur direkodkan. / By using a 15 cm ruler, the distance across 6 consecutive bright fringes, L is measured and recorded.
Procedure L cm
4. Jarak antara dua pinggir cerah yang berturutan dikira, x = 5
L cm
The distance between two consecutive bright fringes, x = is calculated.
5
5. Eksperimen diulangi dengan sumber laser yang berbeza supaya panjang gelombang = λ 2, λ 3, λ 4, λ 5.
The experiment is repeated with different laser light sources so that the wavelength = λ 2, λ 3, λ 4 , λ 5.



© Nilam Publication Sdn. Bhd. 30

MODUL • Fizik TINGKATAN 5



Menjadualkan λ / m
data
Tabulation of data x / m
x / m


Menganalisis data
Analysis of the data

0 λ / m



UNIT 1




Latihan / Exercise

1 Dalam eksperimen interferens cahaya yang menggunakan cahaya hijau dengan panjang gelombang
5 × 10 m, jarak antara dua pinggir cerah yang terbentuk pada skrin ialah 0.4 mm. Apabila eksperimen diulangi dengan
–7
menggunakan cahaya monokromatik, L, jarak antara dua pinggir cerah yang terbentuk ialah 0.48 mm. Berapakah panjang
KBAT –7
gelombang cahaya L? / In an experiment of light interference using green light of wavelength 5 × 10 m, two consecutive bright
fringes formed on the screen are 0.4 mm apart. When the experiment is repeated using monochromatic light, L, two consecutive bright
fringes formed are 0.48 mm apart. What is the wavelength of light L?
Penyelesaian / Solution

Diberi λ Hijau = 5 × 10 m, Given λ Green = 5 × 10 m,
–7
–7
x Hijau = 4 × 10 m, x = 4.8 × 10 m x Green = 4 × 10 m, x = 4.8 × 10 m
–4
–4
–4
–4
L
L
a
Dengan menggunakan λ = ax , Using λ = D ,
D
a a
λ = ( )(x ) ("a" dan D adalah malar di sini), λ = ( )(x ) (here, "a" and D are constants),
Hijau D Hijau Green D Green
a λ Hijau a λ Green
\ ( ) = (i) \ ( ) = (i)
D x Hijau D x Green
a
a
Tetapi λ = ( D )(x ) But λ = ( D )(x )
L
L
L
L
a λ a λ L
\ ( ) = L (ii) \ ( ) = (ii)
D x L D x L
Pers. (i) = Pers. (ii); Equation (i) = Equation (ii);
λ λ λ Green λ L
\ Hijau = L \ =
x Hijau x L x Green x L
λ λ Green
\ λ = ( Hijau )(x ) \ λ = ( x )(x )
L x L L Green L
Hijau
–7
(5 × 10 m) (5 × 10 m)
–7
–4
= × (4.8 × 10 m) = (4 × 10 m) × (4.8 × 10 m)
–4
–4
(4 × 10 m)
–4
–7
= 6.0 × 10 m = 6.0 × 10 m
–7
31 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


2 Rajah menunjukkan corak pinggir yang terbentuk dalam eksperimen dwicelah apabila cahaya monokromatik digunakan. Jarak
antara celah ialah 0.5 mm dan skrin adalah sejauh 3.0 m dari dwicelah itu.
The diagram shows the fringe pattern obtained in a double slit experiment when a monochromatic light is used. The double slits are
KBAT 0.5 mm apart and the screen is 3.0 m away from the double slits.









1.4 cm

Berapakah panjang gelombang cahaya monokromatik itu? / What is the wavelength of the monochromatic light?

Penyelesaian
Solution
UNIT 1
Diberi / Given: λ = ax
a = 0.5 mm = 0.5 × 10 m D
–3
D = 3.0 m (0.5 × 10 m) × (0.28 × 10 m)
–2
–3
1.4 cm = 3.0 m
x =
5 = 4.67 × 10 m
–7
= 0.28 cm
= 0.28 × 10 m
–2







Eksperimen / Experiment Interferens gelombang bunyi / Interference of sound waves


Jarak antara dua kawasan bunyi kuat berturutan bergantung kepada jarak antara pendengar dan dua pembesar
Inferens suara. / The distance between two successive loud regions depends on the distance between the listener and the two
Inference
loudspeakers.

Jarak antara dua kawasan bunyi kuat berturutan bertambah apabila jarak antara pendengar dan dua pembesar
Hipotesis suara bertambah. / The distance between two successive loud regions increases as the distance between the listener
Hypothesis
and the two loudspeakers increases.

Tujuan Mengkaji hubungan antara jarak antara pendengar dari dua pembesar suara dengan jarak antara dua kawasan
eksperimen bunyi kuat yang berturutan. / To investigate the relationship between the distance between the listener and the two
Aim of the
experiment loudspeakers, and the distance between two successive loud regions.
Pemboleh ubah dimanipulasikan / Manipulated variable:
Jarak antara pendengar dan dua pembesar suara, D.
The distance between the listener and the two loudspeakers, D.

Pemboleh ubah bergerak balas / Responding variable:
Pemboleh ubah Jarak antara dua kawasan bunyi kuat yang berturutan, x
Variables
The distance between two successive loud regions, x
Pemboleh ubah dimalarkan / Constant variable:
Panjang gelombang bagi gelombang bunyi / Jarak antara dua pembesar suara
The wavelength of sound waves / Distance between the two loudspeakers


© Nilam Publication Sdn. Bhd. 32

MODUL • Fizik TINGKATAN 5



Senarai bahan Dua pembesar suara, penjana frekuensi-audio, dawai penyambung dan pembaris meter, padang atau gelanggang
dan radas terbuka.
List of materials Two loudspeakers, audio-frequency generator, connection wires and metre ruler, open court or field.
and apparatus
Penjana berfrekuensi audio
Audio-frequency generator Pembesar suara
Loudspeaker
Pembesar suara
Loudspeaker


Susunan radas a = 1 m
Arrangement of the
apparatus
UNIT 1


Pendengar D = 2 m
Listener


1. Dua pembesar suara dilaraskan pada jarak 1 m antara kedua-duanya.
The two loudspeakers are adjusted at 1 m apart.

2. Dengan menggunakan pembaris meter, jarak antara pendengar dan pembesar suara,
. D = 2.0 m, diukur.
Penjana berfrekuensi audio dihidupkan. Eksperimen ini dijalankan di gelanggang terbuka supaya tiada
gema.
By using a metre rule, the distance between the listener and the loudspeaker, D = 2.0 m, is measured.
Prosedur The audio-frequency generator is switched on. This experiment is conducted in an open court so that there is no echo.
Procedure 3. Pendengar berjalan selari dengan sisi depan meja dan jarak antara dua kawasan bunyi kuat
berturutan, x diukur dan direkodkan. / The listener walks in a straight path parallel to the front edge of
the table and the distance between two successive loud regions, x, is measured and recorded.

4. Eksperimen diulangi pada jarak yang berbeza antara pendengar dengan pembesar suara,
D = 4.0 m, 6.0 m, 8.0 m dan 10.0 m.
The experiment is repeated with different distances between the listener and the loudspeakers,
D = 4.0 m, 6.0 m, 8.0 m and 10.0 m.


Menjadualkan D / m 2.0 4.0 6.0 8.0 10.0
data
Tabulation of data x / m



x / m


Menganalisis data
Analysis of the data


0 D / m









33 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Latihan / Exercise
1 Rajah di bawah menunjukkan dua pembesar suara disambungkan kepada satu penjana isyarat audio untuk menghasilkan dua set
gelombang bunyi yang koheren. Penjana isyarat audio dihidupkan. Seorang pelajar yang berjalan di sepanjang garis lurus XY
pada jarak 5.0 m dari pembesar suara mendengar satu siri bunyi kuat dan lemah yang berselang-seli di titik P, Q, R, S dan T.
The diagram below shows the two speakers connected to an audio signal generator to generate two sets of sound waves that are
coherent. Audio signal generator is switched on. A student who walked along the straight line XY at a distance of 5.0 m from the
speaker hear a series of alternating loud and soft sounds at points P, Q, R, S and T.
Penjana
isyarat audio
Audio signal
generator
Pembesar suara Pembesar suara
Loudspeaker Loudspeaker
UNIT 1
2.0 m


5.0 m

X Y
P Q R S T

(a) Dua pembesar suara itu dipisahkan dengan jarak 2.0 m. Gelombang bunyi yang dihasilkan mempunyai frekuensi
1 200 Hz dan laju 300 m s . / Two speakers are separated by a distance of 2.0 m. The sound waves produced has a frequency
–1
of 1200 Hz and at speed of 300 m s .
–1
(i) Hitungkan panjang gelombang bagi gelombang bunyi.
Calculate the wavelength of the sound waves.
(ii) Hitungkan jarak di antara dua bunyi kuat yang berturutan.
Calculate the distance between two consecutive strong sounds.
(b) Menggunakan konsep interferens gelombang dan konsep fizik lain yang sesuai, terangkan bagaimana jarak di antara dua
bunyi kuat yang berturutan berkurang jika eksperimen ini dijalankan pada waktu malam.
Using the concept of wave interference and other appropriate physics concept, explain how the distance between two consecutive
KBAT loud noise is reduced if this experiment is carried out at night.
Penyelesaian
Solution

(a) (i) v = fλ (b) • Waktu malam, suhu udara menurun. [M1]
300 = 1 200 x λ At night, temperatures drop.
• Ketumpatan udara bertambah. [M2]
λ = 0.25 m Density of air increases.
ax • Panjang gelombang bunyi berkurang. [M3]
(ii) λ =
D The wavelength of sound wave decreases.
(2.0)x • x berkadar langsung dengan λ. [M4]
0.25 = x is directly proportional to λ.
5.0
\ x = 0.625 m





















© Nilam Publication Sdn. Bhd. 34

MODUL • Fizik TINGKATAN 5


Ciri-ciri interferens gelombang / Characteristics of interference of waves

Bagaimana a, λ, f dan D mempengaruhi x?
How a, λ, f and D affect x?

Lakarkan graf Jarak di antara dua sumber koheren, a
Sketch the graph The distance between the two coherent sources, a
• Jarak di antara dua garisan nod atau antinod yang berturutan, x, berkadar songsang
x dengan jarak di antara dua sumber, a.
The distance between the two successive nodes lines or antinodes lines, x, is inversely
proportional to the distance between two sources, a.
1
x α
a
• Semakin bertambah a, semakin berkurang x.
As a increases, x decreases. UNIT 1
a • Pemboleh ubah / Variables :
Dimanipulasikan / Manipulated : a
Bergerak balas / Responding : x
Dimalarkan / Constant : λ atau f dan D / λ or f and D

Lakarkan graf Panjang gelombang, λ
Sketch the graph Wavelength, λ
• Jarak di antara dua garisan antinod atau garis nod yang berturutan, x berkadar langsung
dengan panjang gelombang dan berkadar songsang dengan frekuensi.
The distance between the two successive antinodes lines or nodes lines, x is directly
x proportional to the wavelength and inversely proportional to the frequency.
1
x α λ x α
f

• Semakin bertambah λ, semakin bertambah x.
As λ increases , x increases .

λ • Semakin bertambah frekuensi, f, semakin berkurang x.
As frequency, f increases , x decreases .
• Pemboleh ubah / Variables :
Dimanipulasikan / Manipulated : λ atau f / λ or f
Bergerak balas / Responding : x
Dimalarkan / Constant : a dan D / a and D
Lakarkan graf Jarak, D
Sketch the graph Distance, D
• Jarak di antara dua garis nod atau antinod yang berturutan berkadar langsung dengan
x jarak dari mana x diukur, D.
The distance between the two consecutive lines nodes lines or antinodes lines is directly
proportional to the distance from where x is measured, D.
x α D


• Semakin bertambah D, semakin bertambah x.
As D increases , x increases .

D • Pemboleh ubah / Variables : Maklumat tambahan:
Dimanipulasikan / Manipulated : D Additional information:
Bergerak balas / Responding : x
Dimalarkan / Constant : λ atau f dan a / λ or f and a







35 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Gelombang Bunyi
1.6 Sound Waves


Aplikasi gelombang bunyi / Applications of sound waves Ciri-ciri gelombang bunyi / Characteristics of sound waves
• Kelawar bergerak waktu malam dengan mengeluarkan • Gelombang bunyi ialah gelombang membujur.
gelombang bunyi yang tinggi kelangsingannya dalam Sound waves are longitudinal waves.
julat ultrasonik. / Bats can navigate in darkness by emitting • Gelombang bunyi diklasifikasikan sebagai gelombang
high-pitch sound waves in ultrasonic range. mekanikal. / Sound waves are classified as mechanical waves.
• Dolphin menggunakan frekuensi ultrasonik 150 kHz
untuk komunikasi dan pandu arah. • Memerlukan medium (bahantara) untuk merambat.
Dolphin used ultrasonic frequency of 150 kHz for Require a medium to propagate.
communication and navigation. • Dihasilkan oleh getaran seperti getaran kon pembesar suara, tali
• Gema ultrasonik digunakan untuk mengesan retakan gitar dan getaran tala bunyi.
atau kelemahan di dalam bongkah besi dan mengukur Produced by vibration such as vibration of the cone-shaped
kedalaman laut. diaphragm of a loudspeaker, guitar strings and tuning fork.
UNIT 1
Ultrasonic echoes are used to detect cracks or flaws inside a • Tidak boleh merambat dalam vakum.
metal block and also to measure the depth of the sea. Cannot travel in a vacuum.
• Gelombang ultrasonik menghasilkan imej organ-organ • Bunyi adalah satu bentuk tenaga yang merambat sebagai
dalaman yang mudah disiasat dan merupakan teknik yang gelombang. / Sound is a form of energy propagated as waves.
mudah untuk prosedur diagnosis. Ianya lebih selamat
daripada X-ray. / Ultrasonic imaging is a simple structural • Julat frekuensi audio adalah 20 Hz – 20 kHz. Frekuensi yang
and safer technique for diagnostic procedure, compared to kurang daripada 20 Hz dipanggil infrasonik, frekuensi yang
X-ray. It enables doctors to evaluate the structural aspects of lebih tinggi daripada 20 kHz dipanggil ultrasonik.
the internal organs. Can be generated at a wide range of frequency between 20 Hz –
• Gelombang ultrasonik yang mempunyai keamatan yang 20 kHz. Below 20 Hz it is called infrasound; above 20 kHz it is
tinggi boleh digunakan untuk memecahkan ketulan called ultrasound.
batu dalam ginjal kerana ia: / High intensity ultrasonic • Mampatan dan renggangan boleh dihasilkan jika terdapat bahan
shockwaves can be used to break stones in kidneys because it: yang mana boleh dimampatkan dan direnggangkan.
(a) memancarkan alur sinar yang halus, Compression and rarefaction can be formed if there is a material
can be transmitted in a very narrow beam, which can be compressed and rarefied.
(b) boleh difokus kepada sasaran lebih tepat, • Halaju gelombang bunyi berbeza dalam gas, cecair dan pepejal.
can focus at the target more accurately, Ini disebabkan oleh perbezaan dalam kekuatan daya antara
(c) boleh memindahkan tenaga yang besar kerana atom-atom dan kedudukan atom-atom dalam tiga keadaan
frekuensi tinggi, / can transfer large quantities of tersebut. / The speed of sound differs in gas, liquid and solid. This
energy because of high frequency, is due to the differences in the strength of the inter atomic forces
(d) Boleh merambat dalam jarak yang jauh. and closeness of the atoms in the three states.
Can travel at longer distance. • Mampatan dan renggangan merambat lebih laju dalam medium
• Pakar cermin mata dan tukang emas menggunakan berketumpatan tinggi. Gelombang bunyi merambat lebih
pembersih ultrasonik untuk membersihkan cermin mata laju dalam cecair daripada dalam gas dan paling laju dalam
dan emas. / Opticians and goldsmiths use ultrasonic cleaner pepejal.
to clean spectacles, jewellery and ornaments. Compressions and rarefactions propagate faster in denser
• Doktor gigi menggunakan alur ultrasonik untuk medium. Sound travels faster in liquids than in gases, but the
menggerudi dan membersihkan gigi. fastest in solids.
Dentists use ultrasonic beams to vibrate and shake off dirt
and plaque from the teeth of patients. • Halaju gelombang bunyi, v, dalam medium boleh ditentukan
• Haiwan seperti gajah dan badak sumbu berkomunikasi menggunakan rumus v = f λ. / The speed of sound, v, in a medium
can be determined using the formula v = f λ.
menggunakan infrasonik. / Animals like elephants and
rhinoceroses communicate using infrasound. • Halaju gelombang bunyi tidak dipengaruhi oleh tekanan. Jika
• Jika bunyi gema diukur dengan sela masa, t dan halaju tekanan atmosfera berubah, halaju gelombang bunyi dalam
gelombang bunyi ialah v, maka kedalaman, d boleh udara sentiasa tetap. / The speed of sound is unaffected by
dihitung seperti di bawah: / If the echo-sounders measure pressure. If the atmospheric pressure changes, the speed of sound
an interval of time, t, and the speed of sound wave in water is in air remains constant.
v, then the depth, d can be calculated as follows: • Halaju gelombang bunyi meningkat dengan suhu.
Jarak yang dilalui oleh isyarat Bot The speed of sound increases with temperature.
yang dipantulkan Boat • Halaju gelombang bunyi di puncak gunung lebih rendah
Distance travelled by pulse daripada halajunya di paras laut kerana suhunya dan tidak
= halaju × masa d d dipengaruhi oleh tekanan rendah. / The speed of sound at the
= speed × time peak of high-altitude mountains is lower than its speed at the sea
2d = v × t Dasar Laut level because of temperature and not due to the lower pressure .
Seabed


© Nilam Publication Sdn. Bhd. 36

MODUL • Fizik TINGKATAN 5



• Kelangsingan bunyi bergantung pada
frekuensi, f, atau tempoh, T.
The pitch of the sound depends on the
frequency, f, or period, T. • Frekuensi lebih rendah. • Frekuensi lebih tinggi.
Kelangsingan • Semakin bertambah frekuensi, Frequency is lower. Frequency is higher.
Pitch semakin bertambah kelangsingan atau • Panjang gelombang lebih • Panjang gelombang lebih
sebaliknya. besar. kecil.
As frequency increases, the pitch Wavelength is larger. Wavelength is smaller.
increases or vice versa. • Kurang nyaring. • Lebih nyaring.
Pitch is lower. Pitch is higher.

• Kenyaringan bunyi bergantung kepada
amplitud, a.
The loudness of sound depends on the
amplitude, a. • Amplitud lebih kecil. UNIT 1
Kenyaringan • Semakin bertambah amplitud, semakin Amplitude is smaller.
Loudness bertambah kenyaringan. • Kurang nyaring. • Amplitud lebih besar.
As the amplitude increases, the loudness Loudness is less. Amplitude is larger.
increases. • Lebih nyaring.
• Tenaga lebih kecil. Loudness is larger.
Energy is smaller. • Tenaga lebih besar.
Energy is larger.

• Kualiti bunyi bergantung kepada
bentuk gelombang.
The quality of sound depends on the
Kualiti bunyi waveform.
Sound quality
Kedua-dua bunyi mempunyai bentuk gelombang yang berbeza.
Kualiti kedua-dua bunyi adalah berbeza.
Both sounds have different waveforms. Both sound quality is different.

Aplikasi gelombang bunyi / Application of sound waves

SONAR (Julat Navigasi Bunyi) Kelawar : Navigasi dalam gelap
SONAR (Sound Navigation Ranging) Bats: Navigation in the dark

Kapal Gelombang
Ship pantulan Gelombang tuju
Reflected ray Incident ray





Penerima Pemancar
Receiver Emitter Kelawar
Bat
Air laut Halangan
Sea water Obstacle

Dasar laut (i) Kelawar memancarkan gelombang ultrasonik.
Seabed Bats emit ultrasonic waves.
(i) Pemancar memancarkan isyarat ultrasonik dengan laju, v. (ii) Gelombang ultrasonik mengenai halangan dan
The transmitter emits an ultrasonic signal at speed, v. dipantulkan.
(ii) Isyarat ultrasonik dipantul dan dikesan oleh penerima. Ultrasonic waves hits the obstacle and reflected.
The ultrasound signal reflected and detected by the receiver. (iii) Pantulan gelombang ultrasonik dikesan oleh kelawar.
(iii) Selang masa di antara denyutan isyarat tuju dan isyarat pantulan, t, The reflected ultrasonic waves is detected by the bats.
ditentukan. / The time interval between pulses signal and the reflected (iv) Dengan menganggarkan masa antara gelombang
signal, t, is determined. tuju dan gelombang pantulan, kelawar boleh
(iv) Jarak di antara dasar laut dengan kapal, d, ditentukan dengan menganggarkan jarak suatu halangan di hadapannya.
formula: / The distance between the bottom of the sea in ships, d, is By estimating the time between the incident and the
determined by the formula: reflected waves, bats can estimate the distance of an
vt obstacle in front of them.
d =
2

37 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5




Gelombang yang merambat di permukaan Bumi
Waves which propagate in the Earth's surface



Satelit Ionosfera
Satellite Ionosphere
UHF VHF
Gelombang
langit
Gelombang Sky wave
angkasa
Space wave
Televisyen
Stesen satelit Bumi Television Radio Stesen
Earth satellite station Radio geganti Stesen pemancar
Relay Transmitting station
station
UNIT 1

1 Gelombang yang merambat berdekatan dengan permukaan Bumi dikenali sebagai gelombang Bumi. Gelombang radio yang
berfrekuensi rendah adalah sesuai untuk komunikasi jarak jauh mengikut permukaan Bumi.
Waves propagating near the Earth's surface is known as the wave of the Earth. Low-frequency radio waves that are suitable for long-
distance communication in accordance with the Earth's surface.

2 Oleh sebab julat jarak yang dilaluinya pendek (lebih kurang 100 km), maka stesen geganti diperlukan untuk menerima dan
menghantar isyarat.
Due to the short range of distance traversed, so a relay station is needed for receiving and transmitting the signal.

Gelombang yang dipantul oleh lapisan ionosfera
Waves reflected by the ionosphere
1 Gelombang radio yang dapat dipantul balik oleh ionosfera dari bahagian atas atmosfera jika frekuensinya kurang daripada
30 MHz dikenali sebagai gelombang langit. Gelombang ini boleh merambat melalui suatu jarak yang lebih jauh.
Radio waves can bounce off the ionosphere from the upper atmosphere if its frequency is less than 30 MHz known as sky wave. These
waves can propagate through a greater distance.

2 Gelombang langit bergerak mengelilingi Bumi dengan pantulan antara ionosfera dengan permukaan Bumi.
Sky wave moves around the Earth with reflection between the ionosphere and the Earth's surface.
Gelombang yang merambat menembusi ionosfera
Propagating waves penetrate the ionosphere
1 Jika frekuensi gelombang radio melebihi 30 MHz, gelombang itu boleh merambat menembusi ionosfera ke ruang angkasa.
Gelombang jenis ini dikenali sebagai gelombang angkasa. Gelombang angkasa merambat mengikut garis lurus ke penerima di
sepanjang garis pandangan dari pemancar.
If the frequency of radio waves exceeding 30 MHz, the wave can penetrate the ionosphere into space. This type of wave is called as
space wave. Space wave propagates in a straight line to the receiver along the line of sight of the transmitter.

2 Pelbagai perambatan gelombang angkasa boleh ditambah melelui satelit. Satelit bertindak sebagai stesen geganti untuk
menerima dan menghantar semula gelombang ke permukaan Bumi.
Range of propagation of space wave can be added via satellite. Satellite acts as a relay station for receiving and transmitting it back to
the Earth's surface.
Penerimaan gelombang radio
Receiving radio wave
1 Untuk menerima isyarat radio, kita memerlukan sebuah radio dengan suatu sistem penerimaan di dalamnya.
To receive radio signals, we need a radio with a reception system in it.

2 Sistem penerimaan radio berfungsi menerima gelombang radio, mengasingkan isyarat frekuensi audio dengan isyarat
pembawa dan kemudian menukarkan semula isyarat frekuensi audio kepada bunyi.
The function of radio reception system is to receive the radio waves, separating audio frequency signal with a carrier signal and then
convert the audio frequency signals back into sound.








© Nilam Publication Sdn. Bhd. 38

MODUL • Fizik TINGKATAN 5



Latihan / Exercise
1 Isyarat sonar telah dihantar secara menegak ke dasar laut dari sebuah kapal dan dipantulkan dari dasar laut dan dikesan oleh
mikrofon 0.8 s selepas dipancarkan. Jika halaju bunyi dalam air ialah 1 500 m s , berapakah kedalaman dasar laut itu?
–1
A sonar signal sent vertically downwards from a ship is reflected from the ocean floor and detected by a microphone on the keel 0.8 s
after transmission. If the speed of sound in water is 1 500 m s , what is the depth of the ocean?
–1
Penyelesaian
Solution Maklumat tambahan:
Additional information:
2d = v × t
2d = (1 500 m s ) × (0.8 s)
–1
1 500 m s × 0.8 s
–1
d = = 600 m
UNIT 1
2

Gelombang Elektromagnet
1.7 Electromagnetic Waves

1 Gelombang elektromagnet ialah gelombang melintang, yang terdiri daripada ayunan medan elektrik dan medan magnet yang
berserenjang dengan satu sama lain. / Electromagnetic waves are transverse waves, consisting of oscillating electric
fields and magnetic fields which are perpendicular to each other.

Medan elektrik / Electric field






Medan magnet
Magnetic field
Arah perambatan gelombang
Direction of propagation of waves


2 Spektrum elektromagnet ialah siri gelombang-gelombang elektromagnet mengikut ketertiban panjang gelombang secara
menurun atau frekuensi secara menaik. / Electromagnetic spectrum is a series of electromagnetic waves in descending order of
wavelength or ascending order of frequency.
Cahaya
Radio Gelombang mikro Infra merah nampak Ultraungu Sinar X Sinar gamma
Radio Microwaves Infrared Visible light Ultraviolet X-rays Gamma rays




Lebih panjang / Longer Panjang gelombang (m) / Wavelength (m) Lebih pendek / Shorter
10 2 10 1 10 –1 10 –2 10 –3 10 –4 10 –5 10 –6 10 –7 10 –8 10 –9 10 –10 10 –11 10 –12 10 –13


Saiz kesetaraan secara hampir: / The size of almost equality




Kepala Nukleus
Padang bola Manusia Rama-rama jarum Bakteria Virus Molekul Atom atom
Football field Human Butterfly Needle head Becteria Virus Molecule Atom Nucleus
atom

Lebih rendah / Lower Frekuensi (Hz) / Frequency (Hz) Lebih tinggi / Higher

10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 20 10 21

39 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5




Komponen medan magnet dan medan elektrik saling bergetar berserenjang antara satu sama lain dan ke arah perambatan
gelombang.
The magnetic field and electric field components of the wave oscillate at right angles to each other and to the direction of propagation of
the wave.



dikutubkan
Gelombang melintang Boleh polarised .
Transverse waves Can be .




Mematuhi persamaan gelombang, Sifat Gelombang Boleh merambat melalui vakum pada
8
c (halaju cahaya) = f λ Elektromagnet kelajuan cahaya c = 3 × 10 m s –1
Obey the wave equation, Properties of Can travel through a vacuum at the speed
UNIT 1
c (speed of light) = f λ Electromagnetic of light c = 3 × 10 m s
–1
8
Waves
Tenaga dipindahkan oleh
gelombang. Neutral elektrik
Energy is transferred by the Electrically neutral
waves.



Mempunyai fenomena yang sama seperti cahaya:
Tidak memerlukan medium Undergo the same phenomena as light:
untuk merambat. Pantulan, biasan, belauan dan interferens
Do not require a medium to
propagate. Reflection, refraction, diffraction and interference





Kesan buruk dan aplikasi gelombang elektromagnet
Detrimental effects and the applications of electromagnetic waves

Jenis gelombang EM Sumber Aplikasi Kesan buruk
Types of EM waves Source Application Detrimental effects
Gelombang radio Pemancar / litar pengayun i. Telekomunikasi (telefon) Dos berlebihan menyebabkan
elektrik Telecommunications (telephone) kanser dan leukimia
Radio waves Transmitter / electrical ii. Penyiaran (TV dan radio) Large doses of radio wave may
oscillating circuit Broadcasting (TV and radio) cause cancer and leukaemia
iii. Komunikasi dalam kapal terbang,
kapal dan peluru berpandu
Communication in aircrafts, ships and
missiles
iv. Digunakan dalam radio astronomi
Used in astronomy radios

Gelombang mikro Pemancar gelombang mikro i. Radar, memasak Katarak, kesan pada otak
Microwaves dan oven Radar, cooking Cataracts, effects on the brain
Microwave transmitter, ii. Satelit komunikasi
Microwave ovens Communication satellites

Inframerah Objek panas Alat kawalan jauh, kamera, sistem Pemanasan melampau
Hot objects keselamatan Overheating
Infrared Remote control, camera, security systems


© Nilam Publication Sdn. Bhd. 40

MODUL • Fizik TINGKATAN 5



Cahaya nampak Matahari, objek panas, i. Penglihatan, fotosintesis Terlalu banyak cahaya
Visible light nyalaan mentol, tiub dalam tumbuhan menyebabkan kerosakan
berpendarfluor Sight, photosynthesis in plants retina
Sun, hot objects, light bulbs, ii. Fotografi / Photography To much light can damage
fluorescent tubes the retina

Sinar ultraungu Objek yang sangat panas, i. Membunuh mikrob, mengesan wang Terlalu tinggi dos UV
Ultraviolet radiation matahari, lampu wap merkuri kertas palsu / Kill microbes, detecting yang boleh merosakkan
Very hot objects, the Sun, forged bank notes retina, menyebabkan
mercury vapour lamps ii. Pensterilan untuk memusnahkan kanser kulit
kuman / Sterilisation to destroy germs Large doses of UV which
iii. Penghasilan vitamin D dalam kulit can damage retina, causes
skin cancer
Production of vitamin D in skin
Sinar-X Tiub sinar-X i. Radioterapi, radiografi UNIT 1
X-rays tubes Radiotherapy, radiography
X-rays
ii. Sistem kawalan / Security system
iii. • Untuk mengesan retakan pada Kerosakan sel; kanser
logam. / To detect cracks in metal. Cell damage; cancer
• Memeriksa barang di lapangan
terbang.
Checking of luggage at airports.
Sinar gama Bahan radioaktif i. Rawatan kanser Kerosakan sel; kanser
Radioactive substances Cancer treatment dan mutasi
Gamma rays ii. Pensterilan peralatan Cell damage, cancer and
Sterilisation of equipment mutations
iii. Kawalan perosak dalam pertanian
Pest control in agriculture
iv. Untuk mengesan kebocoran paip
dalam tanah
To detect leakages in underground pipes






L atihan Pengukuhan / Enrichment Exercise



1 Graf yang manakah menunjukkan hubungan antara
frekuensi, f, dengan tempoh, T, bagi suatu gelombang? Gelombang tuju Concrete wall
Incident wave
Which graph shows the relationship between frequency, f and
period, T, of a wave?
A f C f
Gelombang pantulan
Reflected wave

Rajah 2 / Diagram 2
0 T 0 T Perbandingan manakah yang betul tentang pantulan
B f D f gelombang bunyi dan gelombang tuju?
Which comparison is correct about the reflected sound wave
and the incident sound wave?
A Panjang gelombang bagi gelombang tuju lebih
pendek daripada gelombang pantulan.
0 T 0 T The wavelength of the incident wave is shorter than the
reflected wave.
2 Rajah 2 menunjukkan gelombang bunyi dipantulkan pada B Laju gelombang tuju dan gelombang pantulan adalah
dinding konkrit. / Diagram 2 shows a sound wave reflected sama. / The speed of the incident wave and the reflected
on a concrete wall. wave is the same.


41 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


C Frekuensi gelombang tuju kurang daripada 5 Rajah 5 menunjukkan perambatan gelombang air melalui
gelombang pantulan. / The frequency of the incident blok perspek di dalam tangki riak. / Diagram 5 shows water
wave is less than the reflected wave. wave propagating through a perspex block in a ripple tank.
D Sudut gelombang tuju lebih besar daripada sudut
gelombang pantulan. / The angle of incident wave is
greater than the angle of reflected wave. Blok perspek
Perspex block

3 Antara rajah berikut, yang manakah menunjukkan contoh
gelombang membujur? Rajah 5 / Diagram 5
Which diagram shows an example of a longitudinal wave? Corak gelombang manakah yang diperhatikan apabila
A Cahaya bergerak dari lampu ke skrin. gelombang merentasi blok perspek?
Light traveling from a lamp to a screen. Which wave pattern is observed when the wave pass through
the perspex block?
A C

UNIT 1
Lampu Kanta Skrin
Lamp Lens Screen
B Riak air disebabkan pencelup bergetar ke atas dan ke B D
bawah.
Water ripple caused by a dipper moving up and down.

Pencelup
Dipper Air 6 Tsunami adalah satu siri gelombang air yang disebabkan
Water oleh sesaran isi padu air yang besar, biasanya terjadi dalam
C Spring ditolak ke hadapan dan ke belakang. lautan atau tasik yang besar. Sesaran air ini selalunya
A spring is pushed forwards and backwards. menyumbang kepada kejadian gempa bumi, gelinciran
tanah, letupan gunung berapi dan runtuhan salji. Didapati
bahawa panjang gelombang, λ tsunami semakin pendek
D Spring ditolak ke atas dan ke bawah. apabila menghampiri pantai seperti yang ditunjukkan
A spring is pushed up and down. dalam Rajah 6.
A tsunami is a series of water wave caused by the displacement
of a large volume of water, usually occurs in ocean or large
lake. This displacement of water is usually contributes to

earthquakes, landslides, volcanic eruptions and avalanche.
It is found that the wavelength, λ of the tsunami becomes
4 Rajah 4 menunjukkan penggunaan gelombang elektromagnet. smaller towards the beach as shown in the Diagram 6.
Diagram 4 shows the application of electromagnetic wave.








Rajah 4 / Diagram 4
Pasangan manakah menunjukkan tentang ciri-ciri
gelombang yang digunakan? / Which pair shows the
characteristics of the wave used?
Rajah 6 / Diagram 6
Frekuensi Panjang gelombang Ini disebabkan oleh / It is due to
Frequency Wavelength A pantulan gelombang
A Tinggi / High Pendek / Short reflection of waves
B pembiasan gelombang
B Tinggi / High Panjang / Long refraction of waves
C pembelauan gelombang
C Rendah / Low Panjang / Long diffraction of waves
D interferens gelombang
D Rendah / Low Pendek / Short interference of waves




© Nilam Publication Sdn. Bhd. 42

MODUL • Fizik TINGKATAN 5


7 Rajah 7 menunjukkan satu alat yang digunakan oleh Jika panjang gelombang ialah 1.0 cm, berapakah nilai bagi
pengurup wang untuk mengesan wang kertas palsu. jarak antara dua sumber, a?
Diagram 7 shows a device used by a money-changer to detect If the wavelength is 1.0 cm, then what is the value of a, the
counterfeit bank notes. distance between the two sources?
A 2.0 cm C 2.8 cm
B 2.4 cm D 3.2 cm


10 Rajah 10 menunjukkan dua denyutan gelombang
dihasilkan pada P dan Q. P dan Q adalah sama jarak
dari X.
Diagram 10 shows two wave pulses produced at P and Q. P
and Q are at the same distance from X.
Rajah 7 / Diagram 7 P
Jenis gelombang elektromagnet yang digunakan ialah a a UNIT 1
The type of electromagnetic wave used is X Q
A gelombang mikro
microwave
B inframerah Rajah 10 / Diagram 10
infrared
C sinar ultraungu Bentuk gelombang yang manakah diperhatikan di X?
ultraviolet ray Which waveform is observed at X?
D sinar-X A
x-ray 2a



8 Rajah 8 menunjukkan imej yang diperoleh seorang guru B 2a
yang mengendalikan suatu aktiviti dengan cahaya laser
serta radas yang lain.
Diagram 8 shows an image obtained by a teacher who C
conducted an activity with laser light and other apparatus.
D
a




Rajah 8 / Diagram 8 11 Rajah 11 menunjukkan pinggir-pinggir yang diperoleh
Rajah 8 menunjukkan fenomena apabila cahaya hijau digunakan dalam eksperimen
Diagram 8 shows the phenomenon of dwicelah Young.
Diagram 11 shows the fringes obtained when green light is
A pantulan / reflection used in a Young’s double slit experiment.
B pembiasan / refraction
C pembelauan / diffraction
D interferens / interference
Rajah 11 / Diagram 11
9 Rajah 9 menunjukkan satu corak interferens. Antara berikut, yang manakah merupakan pinggir-pinggir
Diagram 9 shows an interference pattern. yang diperhatikan jika cahaya hijau digantikan dengan
cahaya merah?
Which of the following fringes are observed when the green
Crest
Puncak light is replaced by red light?
Source 1 A
Sumber 1
a 2.5 cm
B
Source 2
Sumber 2 7.0 cm
C

Rajah 9 / Diagram 9



43 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


S oalan Struktur / Structure Questions



1 Rajah 1 menunjukkan spektrum bagi gelombang elektromagnet. / Diagram 1 shows the spectrum of electromagnetic waves.

Gelombang radio Gelombang mikro Q Cahaya nampak Sinar ultraungu Sinar-X Sinar gama
Radio waves Microwave Visible light Ultraviolet X-ray Gamma ray

Rajah 1 / Diagram 1
(a) (i) Dengan merujuk kepada Rajah 1, namakan sinaran Q. / Based on Diagram 1, name the type of radiation Q.

Q ialah inframerah / Q is infrared
(ii) Namakan satu kegunaan sinaran Q. / Name one application of radiation Q.
Alat kawalan jauh. / Remote control.
(b) Bandingkan panjang gelombang bagi gelombang mikro dengan panjang gelombang bagi sinar-X.
Compare the wavelength of microwave with wavelength of X-ray.
UNIT 1
Panjang gelombang bagi gelombang mikro lebih panjang daripada panjang gelombang sinar-X.
The wavelength of microwave is longer than wavelength of X-ray.
(c) Namakan satu gelombang elektromagnet yang panjang gelombangnya lebih panjang daripada panjang gelombang Q.
Name one electromagnetic wave which has longer wavelength than wavelength of Q.
Gelombang radio // gelombang mikro. / Radio wave // microwave.
(d) Namakan satu kuantiti fizik yang malar bagi semua gelombang elektromagnet.
Name one constant physical quantity in all electromagnetic waves.

Semua gelombang elektromagnet mempunyai laju yang sama dalam vakum.

All electromagnetic waves have the same speed in vacuum.
(e) Apakah bezanya di antara gelombang elektromagnet dengan gelombang bunyi?
What is the difference between electromagnetic wave and sound wave?
Gelombang elektromagnet ialah gelombang melintang manakala gelombang bunyi ialah gelombang membujur.

Electromagnetic wave is a transverse wave whereas sound wave is a longitudinal wave.
Atau / Or
Gelombang elektromagnet boleh merambat dalam vakum manakala gelombang bunyi tidak boleh.

Electromagnetic waves can travel in vacuum whereas sound waves cannot.



2 Rajah di bawah menunjukkan sebuah gitar. Seorang pemain gitar memetik tali dan bunyi dihasilkan.
The diagram below shows a guitar. A guitarist plucks the strings and the sound is produced.










(a) Dengan menggunakan konsep fizik yang sesuai, terangkan bagaimana seorang pendengar dapat mendengar bunyi
yang dihasilkan oleh gitar. / By using the appropriate physics concept, explain how a listener can hear the sound produced
by the guitar.

• Tali gitar dipetik dan bergetar / Strings of guitar are plucked and strings vibrates
• Getaran tali gitar menggetarkan molekul-molekul udara sekeliling

Vibration guitar strings vibrate the air molecules around

© Nilam Publication Sdn. Bhd. 44

MODUL • Fizik TINGKATAN 5



• Molekul-molekul udara mengalami mampatan dan renggangan secara berselang seli
The molecules of air undergoes compression and rarefaction alternately

• Tenaga dipindahkan ke telinga pendengar / Energy is transferred to the listener's ears
• Gegendang telinga bergetar / Eardrum vibrates

(b) Gitar itu akan digunakan dalam suatu persembahan. Cadang dan terangkan pengubahsuaian yang perlu dibuat ke atas
gitar tersebut supaya ia boleh menghasilkan bunyi secara lebih berkesan dan bunyi gitar akan kedengaran lebih jelas oleh
pendengar yang duduk jauh darinya. Cadangan anda perlu merangkumi aspek-aspek berikut: / The guitar will be used in a
presentation. Suggest and explain modifications to be made to the guitar so that it can generate sounds more effectively and guitar
sound will be heard more clearly by the listener sitting far away from it. Your suggestion should include the following aspects:
(i) Magnitud daya yang digunakan untuk memetik tali gitar. / The magnitude of the force used to pluck the strings of a guitar.
(ii) Tindakan pelarasan melalui tombol gitar. / Action of adjustment made through the knob. UNIT 1
(iii) Saiz kotak kayu. / The size of the wooden box.
(iv) Pengubahsuaian lain. / Other modifications.

Aspek cadangan / Suggestion aspect Sebab / Reason

Magnitud daya yang digunakan untuk memetik tali • Amplitud lebih besar / Larger amplitude
gitar: / The magnitude of the force used to pluck the • Tenaga lebih besar / Larger energy
strings of a guitar: • Lebih nyaring / Louder
Lebih besar / Larger

Tindakan pelarasan melalui tombol gitar: • Frekuensi lebih tinggi / Higher frequency
Action of adjustment made through the knob: • Lebih langsing / Higher pitch
Tombol diputar untuk mengetatkan tali-tali gitar
The knob is rotated to tighten the strings of the guitar

Saiz kotak: Lebih besar • Lebih banyak molekul udara bergetar
Size of the box: Larger More air molecules vibrates
• Lebih banyak tenaga dipindahkan
More energy transferred

Pengubahsuaian-pengubahsuaian lain: • Tali tidak mudah terputus
Other modifications: Strings are not easily broken
• Tali yang lebih kuat / Stronger strings • Frekuensi lebih tinggi / lebih langsing
• Tali yang lebih halus / Thinner strings Higher frequency / Higher pitch



Teknik menjawab [Format Kertas 2: Bahagian B]
Answering technique [Paper Format 2: Part B]


Rajah di bawah menunjukkan sebuah sistem radar yang digunakan untuk menentukan kedudukan sebuah kapal terbang di lapangan
terbang. / The diagram below shows a radar system used to determine the position of a plane at the airport.


Kapal terbang
Pemantul parabola Plane
Parabolic reflector
Cadang dan terangkan bagaimana untuk menghasilkan
radar yang dapat menentukan kedudukan sebuah kapal
terbang dengan efektif.
Suggest and explain how to produce a radar that can
Pemancar / Penerima determine the position of a plane effectively.
Transmitter / Receiver
[10 markah / marks]







45 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Cadangan Sebab
Suggestion Reason
Jenis gelombang yang digunakan: / Wave type used:

Gelombang mikro • Tenaga lebih tinggi / Higher energy
Gelombang mikro [M1] • Frekuensi lebih tinggi / Higher frequency [M2]

Luas permukaan pemantul parabola: / The surface area of a parabolic reflector:
Lebih besar Menerima lebih banyak isyarat gelombang pantulan

Larger [M3] Receive more reflected signals [M4]

Jenis pemantul parabola: / Type of parabolic reflector:
Cekung Menumpukan isyarat gelombang pantulan yang dikesan
UNIT 1
Concave [M5] To converge the reflected wave signals detected [M6]

Kedudukan pemancar: / Position of transmitter:
Pada titik fokus Isyarat gelombang tuju dapat dipancarkan ke jarak yang lebih jauh

At focal point [M7] Incident wave signal can be transmitted to longer distances [M8]

Kedudukan penerima: / Position of receiver:
Pada titik fokus Isyarat gelombang terpantul ditumpukan pada penerima

At focal point [M9] Reflected signals wave is focused on a receiver [M10]

Lokasi sistem radar dipasang: / The location of the radar system installed:
Tempat yang lebih tinggi dan terbuka • Kurang halangan / Less obstacle
Higher and open place [M11] • Tiada gangguan isyarat / There is no signal interruption [M12]

Amplitud gelombang isyarat tuju: / The amplitude of the incident signal:

Lebih besar Isyarat gelombang pantulan dapat dikesan dengan lebih mudah
Larger [M13] Reflected signals can be detected easily [M14]

Jenis permukaan pemantul parabola: / Type of surface for parabolic reflector:
Berkilat Pemantul yang lebih baik

Shiny [M15] Good reflector [M16]

Perhatian / Attention :
Jawapan boleh diolah dalam bentuk poin.
Answers can be processed in the form of points.
Untuk soalan dengan panduan aspek cadangan, pastikan ada sekurang-kurangnya 5 aspek cadangan.
For questions with guidance aspects of the suggestion, make sure there are at least five aspects of suggestion.
Jika tidak cukup 5 aspek cadangan, gunakan kreativiti sendiri untuk mencukupkannya supaya menjadi sekurang-kurangnya 5 aspek cadangan.
If not enough 5 aspects of suggestion, use your own creativity to suffice in order to be at least five aspects of suggestion.
Jika tidak diberi sebarang panduan aspek cadangan, anda perlu memikirkan sekurang-kurangnya 5 aspek cadangan atas kreativiti sendiri.
If not given any aspect of the guidelines, you should think of at least five aspects of suggestion on your own creativity.
Boleh beri lebih daripada satu sebab atau keterangan.
May give more than one reason or explanation. Maklumat tambahan:
Additional information:









© Nilam Publication Sdn. Bhd. 46

MODUL • Fizik TINGKATAN 5
Keelektrikan

2
Electricity






Objektif pembelajaran / Learning objective

• Menganalisis medan elektrik dan pengaliran cas. / Analysing electric fields and charge flow.
• Menganalisis hubungan di antara arus elektrik dan beza keupayaan.
Analysing the relationship between electric current and potential difference.
• Menganalisis litar bersiri dan litar selari. / Analysing series and parallel circuits.
• Menganalisis daya gerak elektrik dan rintangan dalam. / Analysing electromotive force and internal resistance.
• Menganalisis tenaga elektrik dan kuasa. / Analysing electrical energy and power.




Medan Elektrik dan Pengaliran Cas
UNIT 2
2.1 Electric Fields and Charge Flow


Terminologi Penerangan Formula
UNIT 2
Terminology Explanation Formula
Cas elektrik, Q Hasil darab bilangan elektron dan cas bagi satu elektron Q = ne
Electric charge, Q The product of the number of electrons and the charge of one electron

Arus elektrik, I Kadar cas yang mengalir Q
Electric current, I The rate of charge flow I = t


Medan elektrik / Electric field
1 Medan elektrik boleh diwakili oleh garisan berarah yang disebut garis-garis medan elektrik atau garis daya elektrik.
An electric field can be represented by a series arrow lines called electric field lines or electric lines of force.

2 Medan elektrik mempunyai kekuatan yang tinggi apabila garis daya elektrik disusun rapat antara satu sama lain.
The electric field is the strongest when the electric lines of force are close together.


3 Garis-garis medan elektrik tidak akan bersilang dan bermula dengan cas positif dan berakhir dengan cas negatif.
The electric field lines of force never cross over and they start on positive charges and end on negative charges.


4 Garis-garis medan elektrik ialah kuantiti vektor kerana mempunyai magnitud daya dan arah .
The electric field lines of force are vector quantities as they have both magnitude and direction .

5 Arah medan elektrik ditentukan berdasarkan arah daya pada cas positif yang diletakkan dalam medan elektrik.
The direction of the electric field is determined by the direction of force on a positive charge, placed in each electric field.


Cas
Arus =
Masa
Charge
Current =
Time







47 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5



Medan Elektrik dan Pengaliran Cas
Electric Field and Charge Flow




Cas elektrik / Electric charge, Q Arus elektrik / Electric current, I Medan elektrik
• Ditakrifkan sebagai sumber medan elektrik • Ditakrifkan sebagai kadar pengaliran cas elektrik Electric field
Is defined as the source of electric field. Is defined as the rate of flow of electric charge • Ialah kawasan di
• Unit SI bagi cas ialah coulomb, C • Formula / Formula: Q = It mana cas mengalami
The SI unit of charge is coulomb, C daya elektrik.
• Unit SI bagi arus ialah ampere, A atau C s –1 Is a region in which a
• Formula / Formula: Q = ne SI unit of current, is ampere, A or C s –1 charge experiences an
• Di mana n ialah bilangan elektron. • 1 A ialah arus tetap yang mengalir melalui wayar electric force.
Where n is the number of electrons. apabila cas bagi 1 coulomb mengalir melalui
• Cas bagi satu elektron ialah wayar dalam 1 saat.
1.6 × 10 C 1 A is the fixed current that flows through a wire
–19
The charge of an electron is when a charge of 1 coulomb flows through the wire
1.6 × 10 C in 1 second.
–19
UNIT 2


UNIT 2
Elektrik statik / Static electricity
• Cas elektrik yang tidak bergerak.
Electric charges which do not move.
Corak medan elektrik / Electric field patterns

Lukiskan corak medan elektrik bagi setiap yang
Beberapa kesan elektrik statik berikut. / Draw the patterns of the electric field for
Some effects of static electricity each of the following.
1 Gosok sikat plastik pada baju dan gunakannya untuk
mengutip cebisan kecil kertas.
Rub a plastic comb on the shirt and use it to pick up small
pieces of paper.
2 Bawa rod politena bercas negatif berdekatan dengan aliran
air halus, air akan membengkok ke arah rod kerana daya
tarikan antara cas yang berlawanan.
Bring a negatively-charged polythene rod near a fine stream of
water. The water bends towards the rod because of attraction
between opposite charges.
3 Mengapakah sebuah lori tangki petrol mempunyai seutas
rantai logam yang terikat di belakangnya? Rantai ini
bersentuhan dengan lebuh raya. Cas elektrik mengalir
dari kenderaan ke bumi melalui rantai logam ini. lni akan
mengelakkan berlakunya bunga api apabila seseorang
menyentuh kenderaan.
Why does a petrol tanker on highways have a metal chain
attached that drags along a road? The chain earths the
electric charges from the vehicle by directing it from the frame
and tanks and into the ground or road. This prevents the build
up of static electricity and will prevent the possibility of a
spark occurring if somebody touches the unit.
4 Apabila cas negatif daripada awan yang berpetir melepasi
atas bangunan yang tinggi, cas positif akan teraruh di atas
bumbung.
When a negatively-charged thundercloud passes above a tall
building, positive charges are induced on the roof.




© Nilam Publication Sdn. Bhd. 48

MODUL • Fizik TINGKATAN 5



Kesan medan elektrik ke atas cas / Effects of an electric field on charges


Bekalan kuasa voltan lampau tinggi (VLT) dihidupkan. Bola Bekalan kuasa VLT dihidupkan. Terangkan apa akan
pingpong dibawa bersentuhan dengan plat X dan dilepaskan. berlaku kepada nyalaan api lilin selepas beberapa ketika.
Terangkan apa yang akan berlaku kepada bola pingpong itu. EHT power supply is turned on. Explain what will happen to
Extra high tension (EHT) power supply is turned on. Ping-pong the candle flame after a while.
ball brought into contact with plate X and released. Explain what Bekalan kuasa voltan
will happen to the ping-pong ball. lampau tinggi (VLT)
Extra high tension Api lilin
Benang nilon power supply (EHT) Candle flame
Bekalan kuasa voltan Nylon thread
lampau tinggi (VLT)
Extra high tension Plat X
power supply (EHT) Plate X
Bola pingpong Lilin
yang disaluti Candle
cat logam –
Ping-pong ball +
coated with
metallic paint
+ – • Molekul udara di ionkan oleh haba daripada nyalaan
Plat Y lilin. / The molecules are ionised by heat of the flame.
Plate Y UNIT 2
+ -
• Bola pingpong menyentuh plat X, ia dicaskan positif. Plat terminal + - Plat terminal
UNIT 2
Ping-pong ball touches the plate X, it is positively charged. negatif + - positif
Negative
• Cas positif yang sama menolak bola pingpong ke plat terminal plate + - Positive
terminal plate
Y. The same positively charge repels the ping-pong balls to
plate Y. • Menghasilkan ion positif dan ion negatif.
• Bola pingpong menyentuh plat Y, ia dicaskan negatif. Produces positive and negative ions.
Ping-pong ball touches the plate Y, it is negatively charged. • Jisim ion positif molekul udara > jisim ion negatif
• Cas negatif yang sama menolak molekul udara. / Mass of positive ions of air molecules
bola pingpong ke plat X. > mass of negative ions of air molecules.
The same negatively charge repels • Ion-ion positif molekul udara ditarik ke plat negatif
the ping-pong balls to plate X. Video dengan perlahan. / The positive ions of air molecules are
• Bola pingpong berayun secara pulled towards the negative plate slowly.
berterusan di antara plat X dan • Ion-ion negatif molekul udara ditarik ke plat positif
plat Y. dengan cepat. / The negative ions of air molecules are
The ping-pong ball oscillates pulled towards the positive plate faster.
continuously in between plate X • Nyalaan lilin terbahagi kepada dua bahagian berlainan
and plate Y. Medan Elektrik saiz. / Flame of candle splits into two parts of different
Electric Field
https://goo.gl/rymXdV sizes.




Latihan / Exercise

1 Bateri sebuah kereta boleh membekalkan arus sebanyak 2 Arus 2 A mengalir melalui perintang. Apakah bilangan
6 A dalam masa 3 jam. Berapakah jumlah cas yang elektron yang mengalir melalui perintang dalam masa 5
disimpan di dalam bateri? saat? (cas elektron = 1.6 × 10 C)
–19
A car battery can supply a current of 6 A for 3 hours. What is A current of 2 A flows through a resistor. What is the number of
the amount of charge stored in the battery? electrons that have passed through the resistor in 5 seconds?
Penyelesaian / Solution (electron charge = 1.6 × 10 –19 C)
Penyelesaian / Solution
Q = It = 6 A × (3 × 60 × 60 s)
= 64 800 C Q = It, Q = ne
It = ne
n = 2 A × 5 s = 6.25 × 10 19
1.6 × 10 –19 C
\ Bilangan elektron / No. of electrons = 6.25 × 10 19




49 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5


3 Cas 600 C mengalir melalui konduktor logam bagi setiap 4 Arus elektrik 3.2 mA mengalir melalui mentol untuk
5 minit. Berapakah arus elektik di dalam konduktor? 4 minit. (cas elektron = 1.6 × 10 C) Tentukan,
–19
A charge of 600 C flows through a metal conductor in every 5 An electric current of 3.2 mA flows through a bulb for 4
minutes. Calculate the electric current in the conductor. minutes. (electron charge, e = 1.6 × 10 –19 C) Determine,
Penyelesaian / Solution (a) cas elektrik (b) bilangan elektron
the electric charge the number of electrons
Q Penyelesaian / Solution
I = t
–3
600 C (a) Q = It = (3.2 × 10 A) × (4 × 60) s
= = 2 A
(5 × 60) s = 0.768 C
(b) 1.6 × 10 –19 C 1 elektron
1 elektron
\ 1 C
1.6 × 10 –19 C
1 elektron
\ 0.768 C × 0.768 C
1.6 × 10 –19 C
18
= 4.8 × 10 elektron

UNIT 2



UNIT 2
Hubungan antara Arus Elektrik dan Beza Keupayaan
2.2 The Relationship between Electric Current and Potential Difference

Konsep Maksud Formula Bateri
Concept Meaning Formula Battery
Kerja atau tenaga untuk menggerakkan
Beza 1 C cas antara dua titik dalam suatu medan V = W
keupayaan elektrik. Q
Potential Work or energy to move 1 C of charge Unit SI / SI unit :
difference Volt(V) atau / or J C –1
between two points in an electric field. Mentol
P Bulb Q
Nisbah beza keupayaan terhadap arus R = V
Rintangan elektrik. I Keupayaan Keupayaan
Resistance The ratio of the potential difference to the Unit SI / SI unit : tinggi rendah
electric current. Ω atau / or V A –1 Higher V Lower
potential
potential
Rintangan Nilai rintangan setara bagi kombinasi Unit SI / SI unit :
berkesan sambungan beberapa buah perintang.
Effective The equivalent resistance value of the Ω
resistance combined connection of several resistors.

1 Apabila bateri disambungkan ke mentol dalam litar, ia menghasilkan medan elektrik di sepanjang wayar.
When a battery is connected to a bulb in a circuit, it creates an electric field along the wire.
2 Terminal positif P berada pada keupayaan elektrik yang tinggi dan terminal negatif Q berada pada keupayaan elektrik yang
rendah.
The positive terminal P is at a higher electric potential and the negative terminal Q is at a lower electric potential.
3 Apabila suis dihidupkan, beza keupayaan antara dua terminal menyebabkan cas mengalir merentasi mentol dan menyalakan
mentol.
When the switch is on, the potential difference between the two terminals causes the charges to flow across the bulb in the circuit and
light up the bulb.

4 Kerja dilakukan apabila tenaga elektrik yang dibawa oleh cas ditukarkan kepada tenaga haba dan tenaga cahaya selepas
merentasi mentol.
Work is done when electrical energy carried by the charges is dissipated as heat and light energy when crossing the bulb.
5 Konduktor yang berbeza mempunyai rintangan yang berbeza bagi arus mengalir.
Different conductors have different resistances for current to flow.


© Nilam Publication Sdn. Bhd. 50

MODUL • Fizik TINGKATAN 5



Beza keupayaan, V / Potential difference, V


Definisi / Definition Hukum ohm / Ohm's law
• Beza keupayaan,V, antara dua titik ditakrifkan • Menyatakan bahawa arus yang mengalir melalui konduktor logam
sebagai kerja yang dilakukan untuk menggerakkan adalah berkadar terus dengan beza keupayaan, V, yang
1 coulomb cas antara dua titik di dalam medan merentasi konduktor jika suhu dan sifat fizikalnya tetap.
elektrik. States that the current, I, flowing through a metal conductor is
The potential difference, V, between two points is directly proportional
defined as the work done to move 1 coulomb of charge to the potential difference, V, across the
between the two points in an electric field conductor, if the temperature and other physical conditions remain constant.
Kerja dilakukan I α V
• Beza keupayaan, V = ———————–
Cas
atau Rintangan / Resistance
Tenaga yang dihasilkan E V V
V = ——————————— = —– • = pemalar / constant
Cas Q I
Work done
The potential difference, V = —————– • Pemalar adalah rintangan, R. V I = R
Charge
The constant is known as resistance, R.
or V I
Energy produced
E
V = —————–——— = —– I = R ; V = IR 0
Charge Q UNIT 2
• Rintangan bagi konduktor ditakrifkan sebagai nisbah beza keupayaan
• Unit SI untuk voltan ialah volt (V). merentasi konduktor bagi arus yang mengalir melaluinya.
UNIT 2
SI unit of voltage is volt (V). The resistance of a conductor is defined as the ratio of the potential
difference across the conductor to the current flowing through it.
• 1 volt ialah beza keupayaan antara dua titik jika
1 joule tenaga dilakukan untuk menggerakkan 1 C • Unit bagi rintangan ialah volt per ampere (V A ) atau ohm (Ω).
–1
cas antara dua titik. The unit for resistance is volt per ampere (V A ) or ohm (Ω).
–1
1 volt is the potential difference between two points
if 1 J of energy is used to move 1 C of charge between
the two points.
Dipengaruhi oleh / Affected by

Panjang / Length (ℓ) Luas keratan rentas
Cross-sectional area (A) Jenis logam / Type of metal
pada suhu malar
at constant temperature pada suhu malar:
R α ℓ at constant temperature: Superkonduktor / Superconductors
R α 1
R A 1 Bahan di mana rintangannya menjadi sifar apabila suhu
R / Ω menurun kepada satu nilai tertentu yang dikenali suhu
peralihan genting, T c.
Material whose resistance becomes zero when its
temperature drops to a certain value called critical
0 ℓ / cm 0 1 / m –2 transition temperature, T c.
A
2 Apabila suhu merkuri mencapai 4.2 K, rintangan akan
Suhu / Temperature (T) menurun menjadi sifar
When temperature of mercury reaches 4.2 K, its resistance
1 Rintangan pada logam bertambah dengan suhu. suddenly drops to zero.
The resistance of a metal increases with temperature.
2 Rintangan bahan semikonduktor berkurang dengan suhu.
The resistance of a semiconductor decreases with temperature. R Rintangan superkonduktor
Resistance of superconductor
R Logam / Metal R Semikonduktor
Semiconductor


0 T T / K
0 T / K 0 T / K c



51 © Nilam Publication Sdn. Bhd.


Click to View FlipBook Version