CHAPTER 3: AREA DIVISION CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
5. Calculate area for triangulation ABE
area = 1 ( AE)( AB) sin A
Angle D 2
= (350°28’44”-180°) - 77°01’08”
= 93°27’36”
areaABE = 1 (96.903)(128.996) sin 9327'36"
2
= 6238.657
6. Calculate area for triangulation XEB
Area AXY = Area ABXE – area ABE
= 13523.875 – 6238.657
= 7285.218
7. Calculate distance E X using area formula
Calculate angle A = (271° 37’ 12”-180°) – (221° 21’ 59” -180°)
= 50° 15’ 13”
area = 1 (EB)(EX ) sin C
2
7285.218 = 1 (EX )(165.948) sin 50°15'13"
2
EX =114.193
8. Calculate bearing and distance for line BX
LINE BEARING DISTANCE LATIT DEPART
XE 271° 37’ 12” 114.193 3.228 -114.147
EB 41° 21’ 59” 165.948 124.544 109.670
BX 177° 59’42” 127.850 -127.772 4.477
Bearing AY = 180° - 2° 0’ 24”
= 177° 59’36”
P R E P A R E D B Y N F Z Page 44
CHAPTER 3: AREA DIVISION CG 203 SURVEY COMPUTATION 2
EXAMPLE 3 DEPARTMENT OF CIVIL ENGINEERING
The area for Lot 301 is 3299.146 m². Land lord want to apply subdivision for the lot where the area for
lot AXYE is 1113.982 m².Given bearing for line XY is 175° 54’ 34”. Calculate distance for line AX,XY and
line YE.
LOT 301
Step by step:
1. Draw line XY
2. Project line XY to AP
3. Calculate distance AP using sin method
Angle AEP = (277°19’40”-180°)-10°11’16”
= 87°08’24”
Angle APE =(175°54’34” +180°)-277°19’40”
= 78°34’54”
sin 7834'54" = sin 8708'24"
33.810 AP
AP =34.450
P R E P A R E D B Y N F Z Page 45
CHAPTER 3: AREA DIVISION CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
4. Calculate area AEP
Angle EAP = (10°11’16”+180°)- 175°54’34”
= 14°16’42”
Area = 1 (AE)( AP)sin A
2
= 1 (33.810)(34.450)sin1416'42"
2
=143.633
5. Calculate area AXYP
Area AXYP = area AXYE – area APE
= 1113.982 - 143.633
= 970.349
6. Draw line perpendicular to line AP and line XY (label as d)
7. From Pythagoras formula:-
Angle MAX = 175°54’34”-89°42’50”
= 86°11’44”
Tan 86°11’44” = d
AM
AM = d
tan 8611'44"
AM = d kot 86°11’44”
Angle NYP =(175°54’34”+180°)-277°19’40”
= 78°34’54”
d = d kot 8611'44"
tan 8611'44"
NY = d kot 78°34’54”
P R E P A R E D B Y N F Z Page 46
CHAPTER 3: AREA DIVISION CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
8. Calculate Area AXYP
Area AXYP = area AMX + area MXNP + area PNY
Area AMX = 1 (AM )d = 1 (dkot8611'44")d = 1 d 2kot8611'44"
22 2
= 0.033d²
Area PNY = 1 d 2kot7834'54"
2
= 0.101d²
Area MXNP = d(AP-MA)
= d(34.450-d kot 86°11’44”)
= 34.450d-0.066d²
970.349 = 0.033d² + 34.450d-0.066d² +0.101d²
970.349 = 0.068d²+34.450d
Convert to quadratic equation
0.068d² + 34.450d - 970.349 = 0 calculate value d using calculator
d = 26.750 ,-53.337 (take positive value only)
9. Calculate distance XY
XY = XN +NY
XN =MP
MP =AP-AM
XY = (AP-AM)+NY
= (34.450 -d kot 86°11’44”)+d kot 78°34’54”
= (34.450 –26.750 kot 86°11’44”)+26.750 kot 78°34’54”
=38.074
P R E P A R E D B Y N F Z Page 47
CHAPTER 3: AREA DIVISION CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
10. Calculate AX and EY using trigonometry
sin 86°11’44” = 26.750
AX
AX = 26.809
sin 78°34’54” = 26.750
PY
PY = 27.290
sin1416'42" = sin 7834'54"
EP 33.810
EP = 8.507
EY = PY + EP
= 27.290 + 8.507
= 35.797
P R E P A R E D B Y N F Z Page 48
CHAPTER 3: AREA DIVISION CG 203 SURVEY COMPUTATION 2
TUTORIAL 1 DEPARTMENT OF CIVIL ENGINEERING
The area for Lot243 is 31072.645m². Land lord want to apply subdivision for the lot where the
area for lot ABXY is 1/3 from the whole area. Distance from B to X is 58.310 m. Calculate
distance and bearing for line XY.
Answer : bearing and distance XY = 167.977 183° 30’ 26”
TUTORIAL 2
The area for Lot 3241 is 35032.567m². Land lord want to apply subdivision for the lot where the
area for lot ABCXY is 18396.070².Given bearing for line XY is 352° 43’ 04”. Calculate distance
for line XY
Answer : bearing and distance XY = 167.977 183° 30’ 26”
P R E P A R E D B Y N F Z Page 49
Chapter 4 : Route
Problems
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
PROVE:-Road with different width
PROVE:-Road with different width
= −
Step by step
1. Solve triangulation ABE, BEC and ADC
2. Solve triangulation ABE
tan = 2
2
= tan = 2 cot
P R E P A R E D B Y N F Z Page 51
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
3. Solve triangulation BEC
tan = 2
= 2 = 2 cot
tan
4. Solve triangulation ADC
sin = 1
= 1 = 1 cosec
sin
= +
+ = 1 cosec
2 cot + 2 cot = 1
2( cot + cot ) = 1
( cot + cot ) = 1
2
cot = 1 − cot …… prove
2
P R E P A R E D B Y N F Z Page 52
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 1 : SAME WIDTH
Calculate bearing and distance for road secant AB. Given the width of road is 30 m.
Step by step
1. Joint point A to B
2. Calculate angle B = (360° - 294° 17’ 52”) + 56° 02’ 05”
= 121°44’13”
3. Calculate α = angleB P
2
α = 121°44'13"
2
` = 60° 52’ 7”
4. Calculate bearing BA = 294°17’52” + 60° 52’ 7”
= 355° 09’ 59”
5. Create line A to P perpendicular to road and distance for line AP equal to
Width of the road
6. Calculate distance AB using theorem’s Pythagoras
sin 60° 52’ 07” = 30
AB
AB = 34.344
P R E P A R E D B Y N F Z Page 53
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 2: DIFFERENT WIDTH
Calculate bearing and distance for road secant AB
20.0 40.0
00 00
Step by step
1. Joint point A to B
2. Create line BP perpendicular to road, project line from left road.
3. Calculate angle θ
117° 18’ 53” - (230° 24’ 46” -180°) = 66° 54’ 07”
P R E P A R E D B Y N F Z Page 54
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
4. Calculate angle cot α = 20 cosec − cot
40 1
cot = tan
cot α = 20 cosec 66° 54' 07" − cot66° 54' 07"
40 1
= sin
20 1
1= sin 66° 54' 07" − 1
tan 40 tan 66° 54' 07"
1 = 0.11708
tan
1 = tan
0.11708
α = 83° 19’ 20”
5. Calculate bearing AB = 117° 18’ 53” + 83° 19’ 20”
= 200° 38 13”
7. Calculate distance AB using theorem’s Pythagoras
sin 83° 19’ 20” = 40
AB AB
= 40.273
P R E P A R E D B Y N F Z Page 55
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 3
Calculate distance CB and area ABCD. Given the width of road is 25m
Step by step
1. Draw line CP and line BQ perpendicular to line DA.
2. Distance CP and BQ = width of road =25
3. Calculate distance DP and QA using theorem’s Pythagoras
Calculate angle CDP = (22° 13’ 37” + 180°) –(319° 51’14” -180°)
= 62° 22’ 23”
Tan 62° 22’ 23” = = 25
DP = 13.085
Calculate angle CDP = 319° 51’14” –(89° 02’ 56”+ 180°)
= 50° 48’ 18”
Tan 50° 48’ 18” = = 25
QA = 20.386
4. Distance CB = 65.094 -20.386 – 13.085 = 31.623
5. Area ABCD
= 1 (65.094 + 31.623) × 25
2
= 1208.963
P R E P A R E D B Y N F Z Page 56
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 4
Calculate distance for secant BD and width of road AE.
Step by step
1. Create line D to P and this line perpendicular to the road
2. Calculate angle B = (8° 13’ 43” + 180°) - 110° 35’ 20”
= 77° 38’ 23”
3. Distance BD = 25
Sin 77° 38’ 23” BD
BD = 25.593
4. Calculate angle CDB = 110°35’20” - 8° 13’ 43”
= 10221'37"
5. calculate bearing BC using sin method
sin10221'37" = sin
66.232 25.593
θ = 22° 10’ 35”
Bearing BC =( 110° 35’ 20” + 180°) + 22° 10’ 35”
= 312° 45’ 55”
P R E P A R E D B Y N F Z Page 57
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
6. Calculate bearing DE using latit depart
LINE BEARING DISTANCE LATIT DEPART
DB 08⁰13’43” 25.593 25.330 3.663
DC 132⁰45’55” 66.232 -44.971 48.624
CE 274⁰36’36” 75.665 6.081 -75.420
ED ° ′ " 26.814 13.560 23.133
Distance CE = √13.5602 + 23.1332
= 26.814
tan
=
= tan−1 23.133
13.560
= 59° 37′20"
Bearing ED = Bearing AE
7. Calculate θ = 110°35’20” - 59° 37′20"
= 50° 58’ 00”
8. Calculate width of road AE using formula
cot77° 38’ 23” = AE cosec50° 58' 00" − cot50° 58' 00"
AE 25
= 25 (cot 77° 38’ 23”+ cot50° 58' 00" )
cosec50° 58' 00"
=20.000
P R E P A R E D B Y N F Z Page 58
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 5
Calculate bearing and distance for CB.
Step by step
1. Joint line AB
2. Draw line AP perpendicular to road.
3. Project left road to calculate angle for θ.
4. Calculate angle θ = (292° 59’ 26” - 180°) - 51° 58’ 25”
= 61° 01’ 01”
5. Calculate angle α using formula
cotα = 40 cosec61° 01' 01" − cot61° 01' 01"
30
40 1
1= sin 61° 01' 01" − 1
tan 30 tan 61° 01' 01"
1 = 0.97029978
tan
1 = tan
0.97029978
α = 45° 51’ 49”
P R E P A R E D B Y N F Z Page 59
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
6. Calculate baring BA = 51° 58’ 25” - 45° 51’ 49”
= 06° 06’ 36”
7. Calculate distance BA using theorem’s Pythagoras
Sin 45° 51’ 49” = AP = 30
AB AB
= 41.801
8. Calculate bearing and distance BC using latit and depart
LINE BEARING DISTANCE LATIT DEPART
BA 06⁰06’36” 41.801 41.564 4.449
AC 323⁰54’27” 93.068 75.205 -54.825
CB 156°39’50” 127.172 -116.769 50.376
Distance CB = √116.7692 + 50.3762
= 127.172
tan
=
= tan−1 50.376
116.769
= 23° 20′10"
Bearing CB = 180°-23° 20′10"
= 156° 39’ 50”
P R E P A R E D B Y N F Z Page 60
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 6
Given width of road is 25 m. calculate secant BA
Step by step :-
1. Calculate angle CAD using cos method
59.446² = 38.651² + 30.612² - 2(38.651)(30.612 cos θ
θ = 117°46’40
2. Calculate bearing DA
Calculate angle CDA using sin method
sin117°46'40 = sin D
59.446 38.651
D = 35° 07’ 04”
Bearing DA = (97° 09’ 05” +180°) - 35° 07’ 04”
= 242° 02’ 01”
3. Calculate angle BAD
117°46'40 = 5853'20"
2
4. Calculate bearing AB
(242° 02’ 01”- 180°) - 5853'20"
= 03° 08’ 41”
5. Create line BP perpendicular to road
6. Calculate distance AB using theorem’s Pythagoras
sin 5853'20"= 25
AB
AB = 29.200
P R E P A R E D B Y N F Z Page 61
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 7
Calculate bearing and distance for secant BE
40.000
40.000
Step by step
Calculate Angle ABC
(45.380+59.983)² = 53.279² + 70.425² - 2(53.279)(70.425) cos θ
θ = 116° 06’48”
Angle EBC = 116° 06'48"
2
= 58°03’ 24”
Calculate Distance BE
Sin 58°03’ 24” = 40
BE BE
= 47.138
sin = sin 11606'48"
53.279 105.363
θ = 27° 00’ 15”
= (89° 38’ 36” +180°) + 27° 00’ 15”
bearing BC = 296° 38’ 51”
= (296° 38’ 51”-180°) + 58°03’ 24”
Bearing BE = 174° 42’ 15”
P R E P A R E D B Y N F Z Page 62
CHAPTER 4: ROUTE PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
TUTORIAL 1
Calculate secant AB, distance CB and area ABCD .Given the width of road is 25m
answer : AB = 32.258 CB = 31.623 area= 1208.963
TUTORIAL 2
Calculate secant AB and secant CD, after that calculate area for road ABCD.
Answer BA= 13° 15’ 41” , 33.648 DC = 352° 13’ 36” , 30.159 area ABCD = 2571.775m²
P R E P A R E D B Y N F Z Page 63
Chapter 5 :
Three Point & Three
Distance Problems
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
THREE POINT & THREE DISTANCES PROBLEMS DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 1
Calculate distance for line BP
Step by step Janganabaikan
1. Calculate angle ABC using cos method value negative
109.232² = 65.004² + 77.683² - 2(65.004)(77.683) cos θ
θ = 99° 31’ 35”
2. Calculate angle φ using formula Distance a < distance b
Tan φ = a sin q
b sin p
Tan φ = 65.004 sin 2803'15"
77.683sin 2105'17"
Φ = 47° 33’ 53”
3. Calculate angle X+Y = 360 –( 2803'15"+ 2105'17" )-99° 31’ 35”
= 211° 19’ 53”
P R E P A R E D B Y N F Z Page 65
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
4. Calculate angle x-y using formula DEPARTMENT OF CIVIL ENGINEERING
tan x − y = tan( − 45) tan (x + y)
22
= tan(47° 33' 53"−45) tan 211° 19' 53"
2
x − y = −0904' 29"
2
x-y = -18° 08’ 58”
5. Calculate value of x and y using simultaneous equation method
x + y = 211° 19’ 53” Reminder :
x - y = -18° 08’ 58”
Position of angle x must at
2y = 229° 28’ 51” triangulation with line b
Y = 114° 44’ 26” Distance of b > distance a
x + 114° 44’ 26” = 211° 19’ 53”
x = 96° 35’ 27”
6. Calculate distance for line BP using sin method
sin114° 44' 26" = sin 2105'17"
BP 65.004
BP = 164.083
Reminder :
Use angle y to calculate BP
because small distance will
give better result
P R E P A R E D B Y N F Z Page 66
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
EXAMPLE 2 DEPARTMENT OF CIVIL ENGINEERING
Calculate distance for BP
Step by step
1. Calculate angle ABC
= (329° 37’ 10” -180°) -43° 45’ 09”
= 105° 52’ 01”
2. Calculate angle φ using formula
Tan φ = a sin q Distance a < distance b
b sin p
Tan φ = 56.694 sin 2907'19"
79.145 sin 2001'13"
Φ = 45° 31’ 10”
3. Calculate angle X+Y = 360 –( 2907'19" + 2001'13" )-105° 52’ 01”
= 204° 59’ 27”
P R E P A R E D B Y N F Z Page 67
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
4. Calculate angle x-y using formula
tan x − y = tan( − 45) tan (x + y)
22
= tan(45° 31'10"−45) tan 204° 59' 27"
2
x − y = −0220' 34"
2
x-y = -04° 41’ 07”
5. Calculate value of x and y using simultaneous equation method
x + y = 204° 59’ 27”
x - y = -04° 41’ 07”
2y = 209° 40’ 34”
Y = 104° 50’ 17”
x + 104° 50’ 17” = 204° 59’ 27”
x = 100° 09’ 10”
6. Calculate distance for line BP using sin method
sin104° 50'17" = sin 2001'13"
BP 56.694
BP = 160.079
P R E P A R E D B Y N F Z Page 68
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
EXAMPLE 3 DEPARTMENT OF CIVIL ENGINEERING
Calculate distance PB, PC and PA
Step by step:-
1. Calculate angle x + y = 360° - (117°07’17” + 116°23’47”) - 62°10’10”
= 64° 18’ 46”
2. Calculate angle φ using formula
Tan φ = a sin q Distance a < distance b
b sin p
Tan φ = 103.1sin11623'47"
122.504 sin11707'17"
Φ = 40° 15’ 52”
3. Calculate angle x-y using formula
tan x − y = tan( − 45) tan (x + y)
22
= tan(40°15' 52"−45) tan 64°18' 46"
2
x − y = −0557' 45"
P R E P A R E D B Y N F Z Page 69
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
7. Calculate value of x and y using simultaneous equation method
x + y = 64° 18’ 46”
x − y = −0557' 45"
2y = 70° 16’ 31”
Y = 35° 08’ 16”
x + 35° 08’ 16” = 64° 18’ 46”
x = 29° 10’ 30”
8. Calculate distance for line BP,PA & PC using sin method
sin 35° 08'16" = sin11707'17"
BP 103.100
BP = 66.668
Angle ABP = 180° - (117°07’17” + 35° 08’ 16”)
= 27° 44’ 27”
sin 27° 44' 27" = sin11707'17"
AP 103.100
AP = 53.919
Angle PBC = 62° 10’ 10” - 27° 44’ 27”
= 34° 25’ 43”
sin 34° 25' 43" = sin11623'47"
PC 122.504
BP = 77.323
P R E P A R E D B Y N F Z Page 70
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
EXAMPLE 4 DEPARTMENT OF CIVIL ENGINEERING
Calculate distance for line BC
BC(AB + BC + CD) = sin Q • sin( P + Q + R)
( AB)(CD) (sin P)(sin R)
BC(35.716 + BC + 35.588) = sin 2703'50"•sin(1619'25"+2703'50"+1437'31')
(35.716)(35.588) (sin 1619'25" )(sin 1437'31' )
BC(71.304 + BC) = 0.45498 • sin(5800'46")
1271.061 (0.28106)(0.25250)
BC2 + 71.304BC = 0.3859
1271.061 0.07096
BC² +71.304BC = 6912.379
Solve value of BC using quadratic formula Calculate using
calculator
BC² +71.304BC - 6912.379 = 0
Select positive
BC = 54. 810 value only
P R E P A R E D B Y N F Z Page 71
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 5
Calculate distance for line BC
STEP BY STEP
1. Calculate distance AB using Theorems Pythagoras
150 – 149.830 = 0.170
250 – 282.424 = 32.424 Ignore
negative value
Distance AB = (0.170)2 + (32.424)2
AB = 32.424
2. Calculate angle APB, PBC and CPD
Angle APB = 352°59’16” - 336° 04’ 27” = 16°54’49”
Angle BPC = (360° - = 352°59’16”) + 15°44’07”= 22°44’51”
Angle CPD = 37°16’23” - 15°44’07”= 21°32’16”
3. Calculate distance BC using formula
P R E P A R E D B Y N F Z Page 72
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
BC(32.424 + BC + 48.767) = sin 2244'51"•sin(1654'49"+2244'51"+2132'16')
(32.424)(48.767) (sin1654'49")(sin 2132'16')
BC(81.191 + BC) = 0.38667 • sin(6111'56")
1581.221 (0.290929 )(0.367115 )
BC2 + 81.191BC = 0.338838
1581.221 0.106804
BC² +81.191BC = 5016.457822
Solve value of BC using quadratic formula Calculate using
calculator
BC² +81.191BC – 5016.457822 = 0
Select positive
BC = 41.041 value only
P R E P A R E D B Y N F Z Page 73
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
EXAMPLE 6
Calculate distance PB, PC and PA
Given :-
Distance B-A = 1321.06 m
Distance A-C = 1376.68 m
α = 890 15’ 30”
β = 1280 20’ 10”
angle BAC = 1020 45’ 20”
Calculate distance PB, PC and PA
Step by step
Find equation for x + y and x - y
Angle x + y =360° - (890 15’ 30”+1280 20’ 10”) -1020 45’ 20”
= 39° 39’ 00”
Tan φ = 1321.06 sin 12820'10"
1376.68sin 8915'30"
φ= 36° 58’ 15”
tan x − y = tan (36° 58’ 15” - 45°) .tan 39° 39' 00"
22
x- y = -5° 49’ 21”
P R E P A R E D B Y N F Z Page 74
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
Find value x and y DEPARTMENT OF CIVIL ENGINEERING
x + y = 39° 39’ 00”
x- y = -5° 49’ 21”
2y = 45° 28’ 21”
Y =22° 44’ 11”
x + 22° 44’ 11” = 39° 39’ 00”
x = 16°54’49”
Calculate distance PA
sin 16°54'49" = sin 12820'10"
PA 1376.68
PA = 510.612
Calculate Distance PC
Angle PAC = 180° -(16°54’49”+1280 20’ 10”)
= 34° 45’ 01”
sin 34° 45' 01" = sin 12820'10"
PC 1376.68
PC =1000.412
Calculate Distance PB
Angle BAP = 102° 45’ 20” - 34° 45’ 01”
= 68° 0’19”
sin 68° 0'19" = sin 8915'30"
PB 1321.06
PB = 1225.158
P R E P A R E D B Y N F Z Page 75
CHAPTER 5: THREE POINT & THREE DISTANCES PROBLEMS CG 203 SURVEY COMPUTATION 2
DEPARTMENT OF CIVIL ENGINEERING
TUTORIAL 1 TUTORIAL 2
Calculate distance for line BC Calculate distance for line BP
Answer BC = 38.528 Answer BP = 107.603
TUTORIAL 3 TUTORIAL 4
Calculate distance AP, PB and PC Calculate distance AP, PB and PC
Answer: AP = 41.381 PB = 37.555 PC = 70.550 Answer: AP = 29.237 PB = 27.838 PC = 39.062
P R E P A R E D B Y N F Z Page 76