Continuum mechanics
II. Kinematics in curvilinear coordinates
Aleˇs Janka
office Math 0.107
[email protected]
http://perso.unifr.ch/ales.janka/mechanics
December 22, 2010, Universit´e de Fribourg
Aleˇs Janka II. Kinematics in curvilinear coordinates
1. Strain in cartesian coordinates (recapitulation)
Green strain tensor: Lagrange formulation
εij = 1 ∂ui + ∂uj + ∂uk ∂uk
2 ∂xj ∂xi ∂xi ∂xj
Cauchy strain tensor: linearized strain for small deformations
eij = 1 ∂ui + ∂uj
2 ∂xj ∂xi
Almansi strain tensor: Euler formulation
Eij = 1 ∂ui + ∂uj − ∂uk ∂uk
2 ∂yj ∂yi ∂yi ∂yj
Aleˇs Janka II. Kinematics in curvilinear coordinates
1. Strain in curvilinear coordinates
Green strain tensor: Lagrange formulation
εij = 1 ∇j ui + ∇i uj + ∇i uk · ∇j uk
2
Cauchy strain tensor: linearized strain for small deformations
eij = 1 (∇j ui + ∇i uj )
2
Aleˇs Janka II. Kinematics in curvilinear coordinates
2. Example of using curvilinear coordinates
A rotational cylinder is being deformed into a rotational
hyperboloid. Calculate the Cauchy strain tensor.
It’s advantageous to use the cylindrical coordinates:
ξ1 cos ξ2 y(x) = ξξ11 cos ξ2 − ξ3 sin ξ2
x = ξ1 sin ξ2 Z
ξ3 −→ sin ξ2 + ξ3 cos ξ2
Z
ξ3
Aleˇs Janka II. Kinematics in curvilinear coordinates
2. Example of using curvilinear coordinates
Advantages of using curvilinear coordinates:
Simpler analytical formulae for particular deformation modes
and particular geometries
Better intuitive understanding of deformation modes
Particularly useful for shells and membranes or anisotropic
materials
Remember the inflated baloon demonstration?
tr r0
σ r
p
Aleˇs Janka II. Kinematics in curvilinear coordinates
3. Cauchy strain in cylindrical coordinates
Cauchy strain in curvilinear coordinates:
eij = 1 (∇i uj + ∇j ui )
2
Covariant derivative:
∇j ui = ∂ui − Γij u
∂ξj
Cylindrical coordinates:
ξ1 cos ξ2 1 0 0
x(ξ1, ξ2, ξ3) = ξ1 sin ξ2 , [gij ] = 0 ξ1 2 0
ξ3 0 0 1
Christoffel symbols of 2nd kind: for cylindrical coordinates
Γ122 = −ξ1 , Γ212 = Γ221 = 1 , Γij = 0 otherwise.
ξ1
Aleˇs Janka II. Kinematics in curvilinear coordinates
3. Cauchy strain in cylindrical coordinates
e11 = ∇1u1 = ∂u1
∂ξ1
»–
1 1 ∂u2 ∂u1
e12 = 2 (∇1u2 + ∇2u1) = 2 ∂ξ1 − Γ221u2 + ∂ξ2 − Γ122u2
»–
1 ∂u2 ∂u1 2
= 2 ∂ξ1 + ∂ξ2 − ξ1 u2
»–
1 1 ∂u3 ∂u1
e13 = 2 (∇1u3 + ∇3u1) = 2 ∂ξ1 + ∂ξ3
e22 = ∇2u2 = ∂u2 − Γ122 u1 = ∂u2 + ξ1 u1
∂ξ2 ∂ξ2
1 1 »–
2 2 ∂u3 ∂u2
e23 = (∇2u3 + ∇3u2) = ∂ξ2 + ∂ξ3
e33 = ∇3u3 = ∂u3
∂ξ3
Note that physical units of eij are quite inhomogeneous here!
Aleˇs Janka II. Kinematics in curvilinear coordinates
3. Cauchy strain in cylindrical coordinates
Non-homogeneity of physical units for eij and ui
Units of cylindrical coordinates: ξ1 in [m], ξ2 in [rad], ξ3 in [m].
Covariant basis: gi = ∂x :
∂ξi
ξ2 −ξ1 sin ξ2
cos 0
g1 = sin ξ2 , g2 = ξ1 cos ξ2 , g3 = 0
0 01
in [1] in [m] in [1]
Contravariant basis: sin ξ2
cos ξ2
− 1
ξ1
g1 = g1 , g2 = 1 , g3 = g3
ξ1
in [1] 0 in [1]
in [1/m]
Aleˇs Janka II. Kinematics in curvilinear coordinates
3. Cauchy strain in cylindrical coordinates
Non-homogeneity of physical units for eij and ui
Units for ui and ui : displacement u = ui gi = ui gi should be in [m]:
coordinate its unit coordinate its unit
[m]
u1 [1] u1 [m]
u2 [m] u2 [m2]
u3 u3
[m]
Hence, units for eij :
coordinate its unit coordinate its unit
[1] [m2]
e11 [m] e22
e12 [1] e23 [m]
e13 e33
[1]
Correction of unit inhomogeneity:
introduction of physical components e(ij) and u(i) by:
eij = √gii · gjj · e(ij) and ui = √gii · u(i)
Aleˇs Janka II. Kinematics in curvilinear coordinates
3. Cauchy strain in cylindrical coordinates
Transforming covariant components to physical components
For cylindrical coordinates:
e11 = e(11) e21 = ξ1 · e(21) e31 = e(31)
e12 = ξ1 · e(12) e22 = (ξ1)2 · e(22) e32 = ξ1 · e(32)
ξ1 · e(23)
e13 = e(13) e23 = e33 = e(33)
u1 = u(1) → ∂u1 = ∂ u(1)
∂ξj ∂ξj
u2 = ξ1 · u(2) → ∂u2 = u(2) + ξ1 ∂ u(2) , ∂u2 = ξ1 ∂ u(2)
∂ξ1 ∂ξ1 ∂ξ2 ∂ξ2
∂u2 = ξ1 ∂ u(2)
∂ξ3 ∂ξ3
u3 = u(3) → ∂u3 = ∂ u(3)
∂ξj ∂ξj
Physical components in cylindrical coordinates usually written
u(1) = ur , u(2) = uθ , u(3) = uz
e(23) = eθz
e(11) = err , e(12) = erθ , ...
Aleˇs Janka II. Kinematics in curvilinear coordinates
3. Cauchy strain in cylindrical coordinates
Transforming covariant components to physical components
err = ∂ur
∂r
1 „«
2 ∂uθ 1 ∂ur uθ
er θ = ∂r + r ∂θ − r
„«
1 ∂uz ∂ur
erz = 2 ∂r + ∂z
eθθ = 1 ∂uθ + ur
r ∂θ r
1 „«
2 1 ∂uz ∂uθ
eθz = r ∂θ + ∂z
ezz = ∂uz
∂z
Aleˇs Janka II. Kinematics in curvilinear coordinates
4. Back to cylinder → hyperboloid
A rotational cylinder is being deformed into a rotational
hyperboloid. Calculate the Cauchy strain tensor.
Use the cylindrical coordinates:
−ξξ11
ξ1 cos ξ2 − ξ3 sin ξ2 cos ξ2 −ξ1 ξ3 sin ξ2
Z ξ2 ξ1 Z cos ξ2
u = y−x = ξ1 sin
sin ξ2 + ξ3 cos ξ2 ξ3 = ξ3
Z Z
ξ3 0
Aleˇs Janka II. Kinematics in curvilinear coordinates
4. Back to cylinder → hyperboloid
−ξ1 ξ3 sin ξ2 2 − 1
ξ1 Z cos ξ2 cos ξ1 sin ξ2 0
ξ ξ3 cos ξ2 +0
ξ3 Z 0 0
u = Z = 0 sin ξ2 +(ξ1)2 1
ξ1 1
0
0
g1 g2 g3
Hence
u1 = u3 = 0 , u2 = (ξ1)2 ξ3 and u(2) = uθ = ξ1 ξ3
Z Z
Resulting Cauchy strain:
err = erθ = erz = eθθ = ezz = 0 and eθz = r
2Z
ie. pure shear (ie. distortion of angles) in the (θ, z) tangent-plane.
Aleˇs Janka II. Kinematics in curvilinear coordinates
5. Yet another cylinder → hyperboloid example
But different from the previous one!
A rotational cylinder is being deformed into a rotational
hyperboloid in the following way (in cylindrical coordinates):
2
1 cos ξ2 y(x) = ξξ11 1+ ξ3 2 cos ξξ22
ξ 1+ Z sin
x = ξ1 sin ξ2 −→ ξ3
Z
ξ3
ξ3
The resulting shape is the same, but the deformation tensor
is different! Why?
Aleˇs Janka II. Kinematics in curvilinear coordinates