1. Find BRAIN BOOSTER 1
(a) ex 1 dx. Ch 1 Integration
ex (2 marks)
(2 marks)
(b) 5 x dx.
2. Evaluate 2 8 sin2 2xdx. (4 marks)
(7 marks)
4 (7 marks)
3. (a) Evaluate 1 x3 dx.
x2 )2
0 (1
(b) 4 x dx.
By using substitution, find the value of
0 5x2 1
4. (a) By using integration by parts, evaluate 6 x cos 6xdx. (6 marks)
(7 marks)
0
(b) Evaluate e ln x2xdx. Give your answer in terms of e.
1
5. Write 18x 9 as a sum of partial fractions.
(x 2)(x 1)2
Hence, find (x 2x 1 1)2 dx. (8 marks)
2)(x
6. (a) The diagram shows the region R bounded by the curve y 3 x ln x and the
lines y 0, x 2, x 8.
x2 x 8 y 3 x ln x
Find the area of R. (7 marks)
(b) Let R be a region bounded by y ex, y 2, y 5 and y-axis.
BRAIN BOOSTER 1
Ch 1 Integration
(i) Find the area of R. (7 marks)
(ii) Hence, find the volume of the solid generated by revolving the region R
through 360 about y-axis. (7 marks)
Answers 3 C
11 2(5 x)2
xx C (b)
1. (a) 2e2 2e 2 3
2. 8
(b)
3. (a) 0.0966
5
1 e2 1
4. (a)
(b)
18
2
5. 5 ln x
9 2 5 ln x 1 1 C
9 3(x 1)
6. (a) 16.0607 units2 (b) (i) 3.6609 units2 (b) (ii) 4.6688 units3
Solution BRAIN BOOSTER 1
NO ANSWER SCHEME Ch 1 Integration
1(a) ex 1
ex 1 MARKS
dx 1x 1x dx
ex e2 e2 K1
J1
1x 1x
K1
e2 e 2 dx
J1
1x 1x 4M
B1
2e2 2e 2 C K1
1(b) 1 K1
(b) 5 x dx J1
(5 x)2 dx 4M
B1
3 J1
(5 x)2 C
3( )
2
3
(5 x)2
C
3
2 2 8 sin2 2xdx 2 8 1 cos 4x dx
4 42
sin 4x 2
4x
4
4
4x sin 4x 2
4
4 sin 4 4 sin 4
2 24 4
3(a)
u 1 x2 x2 u 1
du 2x
dx
du x dx
2
BRAIN BOOSTER 1
Ch 1 Integration
NO ANSWER SCHEME MARKS
1 x3 1 x2(x) dx
dx 0 (1 x2 )2
0 (1 x2 )2
u 1 du K1
u2 2 K1
1 u2
du
2u 2
1 ln u 1 C
2 2u
1 ln 1 x2 1 J1
2
1
2(1 x2)
0
1 ln 1 12 1 1 ln 1 02 1
2 2(1 12) 2 (1 02)
0.0966 K1
J1
u 5x2 1 K1
3(b)
du 10x
dx
du 10x dx
du xdx
10
4 x dx 1 du
0 5x2 1 u 10
11 K1
u 2du K1
K1
10
K1
1 c
1 u2 4
10 1
1
2
0
5x2
5
NO ANSWER SCHEME BRAIN BOOSTER 1
4(a) 5(4)2 1 5(0)2 1 Ch 1 Integration
ux MARKS
55 K1
du 1 J1
dx 8 14 M
du dx 5
J1 J1
dv cos 6xdx
v sin 6x
6
6 x cos 6xdx x sin 6x sin 6x dx K1
06 6 K1
K1
x sin 6x cos 6x 6 J1
6 36 0 J1 J1
sin 6 cos 6 (0)sin 6(0) cos 6(0) K1
66 6 6 36 K1
6 36
1
18
4(b) u ln x dv 2xdx
v 2x2 x2
du 1 2
dx x
du 1 dx
x
e ln x2xdx e
1 2x ln xdx
1
(ln x)x2 x2( 1 dx)
x
x2 ln x xdx
BRAIN BOOSTER 1
Ch 1 Integration
NO ANSWER SCHEME MARKS
K1
x2 ln x x2 e
2 K1
1 J1
13 M
e2 ln e e2 12 ln 1 12 B1
2 2
K1
e2 1
2
5 18x 9 AB C
(x 2)(x 1)2 x 2 x 1 (x 1)2
18x 9 A(x 1)2 B(x 1)(x 2) C(x 2)
When x 1,
18(1) 9 C(1 2)
3C
When x 2, 1)2 K1
18( 2) 9 A( 2
A
5
When x 0, K1
18(0) 9 5(0 1)2 B(0 1)(0 2) 3(0 2)
9 5 2B 6
5B
18x 9 55 3
(x 2)(x 1)2
x 2 x 1 (x 1)2 J1
K1
2x 1 1)2 dx 1 18x 9 dx K1
2)(x 9 2)(x
(x (x 1)2 J1
1 18x 9 dx 1 55 3 dx
9 (x 2)(x 1)2 9 x 2 x 1 (x 1)2
1 5 ln x 2 5 ln x 1 3 C
9 x1
5 ln x 2 5 ln x 1 1 C
9 9 3(x 1)
8M
NO ANSWER SCHEME BRAIN BOOSTER 1
6(a)
1 Ch 1 Integration
u ln x MARKS
dv x3dx J1 J1
du 1
4 3 4 B1
dx x K1
du 1 dx v x3 4 x3
4 K1
x K1
3 J1
8 J1 J1
A 3 x ln xdx B1
K1
2 K1
K1
(ln x) 3 4 8 3 4 1 J1
3
x3 8
4 x ( dx)
24 x
2
3 4 8 3 81
4 x3 ln x 42 x 3 dx
2
3 4 9 4 8
4 x3 ln x 16 x3
2
3 4 ln(8) 9 4 3 4 ln(2) 9 4
(8)3 (8)3 (2)3 (2)3
4 16 4 16
16.0607 units2
(b)(i)
u ln y dv dy
du 1 vy
dy y
du 1 dy
y
5
A ln ydy
2
(ln y)y y( 1 )dy
y
y ln y 1 dy
[y ln y y]52 2)
(5 ln 5 5) (2 ln 2
3.6609 units2
NO ANSWER SCHEME BRAIN BOOSTER 1
(b)(ii)
dv dy Ch 1 Integration
u (ln y)2 vy MARKS
du 2(ln y) 1
dy y J1 J1
du 2 ln y dy
B1
y K1
5 K1
V (ln y)2 dy K1
J1
2 21 M
(ln y)2 y 5 5 2 ln y
2 y dy
2y
(ln y)2 y 5 5
2
2 ln y dy
2
y(ln y)2 5 2 5
22
ln y dy
5(ln 5)2 2(ln 2)2 2 (3.6609)
4.6688 units3