Lecture Note: 1 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
Topic: 3. NUMERICAL METHOD
Sub-Topic: 3.1 Solutions of Non-Linear Equations
3.2 Newton-Raphson Method.
Learning Outcomes: At the end of the lesson, students should be able to
(a) locate approximately a root of an equation, by graphical considerations or searching for a
sign change.
*Find initial value of x0.
(a) find the root by the Newton-Raphson method.
*Use the formula xn1 xn f xn , n 1, 2, 3,
f xn
Introduction
Many equations cannot be solved exactly, but various methods of finding approximate
numerical solutions exist.
For example: x3 ex 0.
Two main parts:
Finding an initial approximate Improve the value by an
initial value, x0 iterative process, x1,x2, x3,
Initial Value
The initial value of the roots of f x 0 can be located approximately by
(a) Graphical Consideration (Graphical method)
(b) Intermediate Value Theorem (Algebraic method)
*Searching for a sign change.
1 of 24
Lecture Note: 1 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
Graphical Method
Sketch the graph of y f x.
The real root is the point, say x , where the graph cuts the x-axis.
or
Rewrite f x 0 in the form F x Gx.
Sketch the graphs of y F x and y Gx.
The real root is the x-coordinate of the points where the graphs intersect, say x .
2 of 24
Lecture Note: 1 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
EXAMPLE 1
Show, by drawing graphs, that the equation ex 5 0 has only one real root. Find the unit
interval where the root lies.
Let f x ex 5,
The graph cut x-axis at a single point, therefore the equation has only one root.
From the graph, the root lies in the interval 1,2.
EXAMPLE 2
Draw the graphs of y 2 ln x and y x on the same axes. Hence, find the unit interval where
2
the root of the equation 4 ln x x 0 lies.
2 ln x x 0
2
4ln x x 0
the root of the equation 4 ln x x 0 lies in the unit interval 1,2
3 of 24
Lecture Note: 1 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
Algebraic Method
By trial and error, find two values a and b such that f a and f b have different signs, i.e.,
f a 0 and f b 0 or f a 0 and f b 0
Then the root of f x 0 lies in the interval a,b.
EXAMPLE 3
Find algebraically, the unit interval where the root of the equation with function
f x x3 4x 5 lies.
f 1 13 41 5 8 < 0
f 2 23 42 5 5 < 0
f 3 33 43 5 10 > 0
Change of signs the root lies in the unit interval 2,3.
EXAMPLE 4
Show that the equation cos x x 0.5 0 has a root lying in the interval 0,1.
Let f x cos x x 0.5,
f 0 cos0 0 0.5 0.5 > 0
f 1 cos1 1 0.5 0.960 < 0
Change of signs the root lies in the unit interval 0,1.
4 of 24
Lecture Note: 1 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
EXAMPLE 5
Show algebraically, that the root of the equation 2x x3 lies in the interval 1.3,1.4.
2x x3 0
Let f x 2x x3,
f 1.3 21.3 1.33 0.265 0
f 1.4 21.4 1.43 0.105 0
Change of signs the root of the equation lies on 1.3,1.4.
Newton-Raphson Method
The Newton-Raphson method is to obtain a better approximation to the root of f x 0.
If x1 is an approximation to the root of the equation f x 0, then the better
approximation x2 is given by
x2 x1 f x1
f x1
Repeat this process as required by using
xn1 xn f xn , n 1, 2, 3,
f xn
x
EXAMPLE 6
Use Newton-Raphson method to solve the equation x ex 0 correct to three decimal places
with initial value x0 0.5.
Let f x x ex, then f x 1 ex,
x0 0.5
x1 0.5 0.5 e0.5 0.5663
1 e0.5
x2 0.5663 0.5663 e0.5663 0.5671
1 e0.5663
x3 0.5671 0.5671 e0.5671 0.5671
1 e0.5671
x 0.567
5 of 24
Lecture Note: 1 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
EXAMPLE 7
Show that the equations 2 sin x x 0 has a root between x 1 rad and x 2 rad. Find the
root of the equation by using Newton-Raphson method, correct to two decimal places.
Let f x 2 sin x x, then f x 2 cos x 1,
f 1 2 sin1 1 0.683 0
Change of signs
f 2 2 sin2 2 0.181 0
the equation 2 sin x x 0 has a root between x 1 rad and x 2 rad.
x1 1.5
x2 1.5 2 sin1.5 1.5 2.077
2 cos1.5 1
x3 2.077 2 sin2.077 2.077 1.911
2 cos2.077 1
x4 1.911 2 sin1.911 1.911 1.896
2 cos1.911 1
x5 1.895
x 1.90
EXAMPLE 8
Show that the equation 2x ln x 5 0 has a root that lies between 2 and 3. Use the Newton-
Raphson method to find the root of 2x ln x 5 0 correct to three decimal places by using 2.5
as the first approximation.
Let f x 2x ln x 5,
f 2 22ln2 5 2.227 0 Change of signs
f 3 23ln3 5 1.592 0
the equation 2x ln x 5 0 has a root between 2 and 3. u 2x v ln x
f x 2 2 ln x,
x0 2.5 u 2 v 1
x
22.5ln2.5 5
x1 2.5 2 2 ln2.5 2.6092 2x 1
f x 2 ln x x
22.6092ln2.6092 5 2ln x 2
x2 2.6092 2 2 ln2.6092 2.6080
x3 2.6080 22.6080ln2.6080 5 2.6080
2 2 ln2.6080
x 2.608
6 of 24
Lecture Note: 1 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
EXAMPLE 9
Sketch the graph of y ex and y 2 x, where x 2 on the same axes. Get the first
approximation, x0 for the equation ex 2 x, where 0 x0 1. Hence, by using Newton-
Raphson method, solve the equation of ex 1 for x 2 correct to three decimal places.
2x
ex 1
2x
2 x 1
ex
2 x ex
ex x 2 0
Let f x ex x 2, then f x ex 1,
x0 0.4
x1 0.4 e0.4 0.4 2 0.4434
e0.4 1
x2 0.4434 e0.4434 0.4434 2 0.4429
e0.4434 1
x3 0.4429
x 0.443
7 of 24
Lecture Note: 2 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
Topic: 3. NUMERICAL METHOD
Subtopic: 3.3 Trapezoidal Rule
Learning Outcomes: At the end of the lesson, students should be able to
(a) use the trapezoidal rule to approximate definite integral.
Trapezoidal Rule
The area under the curve y f x, is divided into n strips.
The width of each strip is h b a .
n
Note: For n 1 ordinates, there are n strips.
Let y0, y1, y2,,yn1, yn be the values of the function f x.
These correspond to the n 1 ordinates are x0,x1, x2,,xn respectively.
The area under the curve sum of the areas of n trapezium.
Note that: If 6 ordinates, then n 5
If 6 subintervals, then n 6.
If 6 strips, then n 6.
b
a f xdx sum of the areas of n trapeziums
h y0 y1 h y1 y2 h y2 y3 h yn1 yn
2 2 2 2
h 12 y0 y1 y2 yn1 1 yn
2
h y0 yn 2 y1 y2 yn1
2
where h b a , n number of strips (sub-interval) and yr f(xr ).
n
8 of 24
Lecture Note: 2 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
EXAMPLE 10
Use the trapezoidal rule, with five ordinates, to evaluate 0.8 ex2 dx. Give your answer correct to
0
three decimal places.
h 0.8 0 0.2
4
xn yn
0 1.0000
0.2 1.0408
0.4 1.1735
0.6 1.4333
0.8 1.8965
2.8965 3.6476
0.8 ex2 dx 0.2 2.8965 23.6476
0 2
1.019
EXAMPLE 11
5
Approximate 3 1 xdx by using trapezoidal rule with 4 strips. Give your answer correct to
4 decimal places.
h 5 3 0.5
4
xn yn
3 2.00000
3.5 2.12132
4 2.23607
4.5 2.34521
5 2.44949
Total 4.44949 6.70260
5 1 xdx 0.5 4.44949 2 6.70260
3 2
4.4637
9 of 24
Lecture Note: 2 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
EXAMPLE 12
Using the trapezium rule with 4 sub-intervals, calculate an approximate value for the area under
the curve f x lnx 1 between x 2 and x 4. Give your answer to four decimal places.
h 4 2 0.5 yn
4
xn 1.09861
2
2.5 1.25276
3
3.5 1.38629
4
Total 1.50408
1.60944
2.70805 4.14313
4 1dx 0.5 2.70805 24.14313
2
2 lnx
2.7486
EXAMPLE 13
Given that f x is a continuous function. The table below shows the values of f x for a few
values of x.
x f x
00
0.1 0.1105
0.2 0.2443
0.3 0.4050
0.4 0.5967
0.5 0.8244
0.5
Use the table and the trapezoidal rule to find an approximation value for the integral 0 f xdx
correct to two decimal places.
n 5, h 0.5 0 0.1
5
0.5 x dx 0.1 0 0.8244 20.1105 0.2443 0.4050 0.5967
f 2
0
0.18
10 of 24
Lecture Note: 2 of 2 Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
EXAMPLE 14
Using the trapezium rule to estimate the value of 3 tan xdx with 4 strips correct to four decimal
0
places.
h 0
3
4 12
xn yn
0 0.00000 0.26795
0.57735
1.73205 1.00000
12 1.73205
1.84530
6
4
3
Total
3 tan xdx 12 1.73205 21.84530
0 2
0.7098
11 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
1. (a) Show that the equation ln 4x 2 x has a root in the interval 0.5 x 1.
Let f x ln 4x x 2,
f 0 ln 40.5 0.5 2 0.807 0
f 1 ln 41 1 2 0.3863 0
Since f 0 0 and f 1 0, then the equation has a root in the interval 0.5 x 1.
(b) Hence, by taking 0.6 as the first approximation, use the Newton-Raphson method to
solve the equation. Give your answer correct to 3 significant figures.
f x 1 1
x
x0 0.6
x1 0.6 ln 4 0.6 0.6 2 0.7967
1
1
0.6
x2 0.7967 ln 40.7967 0.7967 2 0.8163
1 1
0.7967
x3 0.8163 ln 40.8163 0.8163 2 0.8165
1 1
0.8163
x4 0.8165
x 0.817
2. Use the Newton-Raphson method to estimate one root of the equation x cos x 0 accurate
to 3 decimal places by choosing x0 0.8.
Let f x x cos x,
f x 1 sin x
x0 0.8
x1 0.8 0.8 cos 0.8 0.7399
1 sin 0.8
x2 0.7399 0.7399 cos 0.7399 0.7391
1 sin 0.7399
x3 0.7391 0.7391 cos 0.7391 0.7391
1 sin 0.7391
the root is x 0.739.
12 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
3. Use the Newton-Raphson method with initial approximation x1 0.8 to find 3 4 1 on
0,1.5 correct to 3 decimal places.
Let f x x 13 4,
f x 3x 12
x1 0.8
x2 0.8 0.8 13 4 0.6115
30.8 12
x3 0.6115 0.6115 13 4 0.5878
30.6115 12
x4 0.5878 0.5878 13 4 0.5874
30.5878 12
x5 0.5874
3 4 1 0.587
4. Estimate the cube root of 21 correct to four decimal places.
Let x 3 21,
x3 21
x3 21 0
Let f x x3 21,
f x 3x2
x1 2.5
x2 2.5 2.53 21 2.78667
3 2.52
2.786673 21
x3 2.78667 32.786672 2.75920
2.759203 21
x4 2.75920 32.759202 2.75892
2.758923 21
x5 2.75892 32.758922 2.75892
3 21 2.7589
13 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
1
5. Show that the equation 5 3x3 x has a root in the interval 1,2. By using the
Newton Raphson method, with first approximation 1, find the approximate root of the
equation correct to three decimal places.
1
Let f x 5 3x3 x,
1
f 1 5 313 1 0.260 0
1
f 2 5 32 3 2 3 0
there is a root in the interval 1,2.
f x 5 3x32 1
x0 1,
1
5 31 3 1
x1 1 2 1.1595
3
5 3 1 1
1
5 31.1595 3 1.1595
x2 1.1595 2 1.1542
3
5 3 1.1595 1
1
5 31.1542 3 1.1542
x3 1.1542 2 1.1542
3
5 3 1.1542 1
the root is x 1.154
14 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
6. The graphs of y x1 intersects the graph of y 5 cosx at the point A in the first
3
quadrant. By using Newton-Raphson method, find the coordinates of A correct to four
decimal places.
x 1 5 cos x
3
Let f x x 1 5 cos x ,
3
f 0 0 1 5 cos 0 1.5 0
3
f 1 1 1 5 cos 1 2.99 0
3
f 2 2 1 5 cos 2 0.103 0
3
the x-coordinate of A lies between 1 and 2.
f x 1 5 sin x
3
x0 1.5,
1.5 1 5 cos1.5
3
x1 1.5 2.12625
1.5
1 5 sin 3
x2 2.12625 2.12625 1 5 cos2.12625 1.98470
3
1 5 sin 2.12625
3
x3 1.98470 1.98470 1 5 cos1.98470 1.97959
3
1 5 sin 1.98470
3
x4 1.97959 1.97959 1 5 cos1.97959 1.97959
3
1 5 sin 1.97959
3
x 1.9796
y 1.9796 1
2.9796
A1.9796,2.9796
15 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
7. 1.5 3 x4 dx
Use the trapezium rule to estimate the value of 0.5 x with 5 ordinates correct to
two decimal places.
n 4, h 1.5 0.5 0.25
4
xn yn
0.5 6.063
0.75 4.316
1.0 4.000
1.25 4.841
1.5 7.063
Total 13.126 13.157
1.5 3 x4 dx 0.25 13.126 2 13.157
0.5 x 2
4.93
8. Use the trapezium rule to estimate the value of
(a) 5 1 dx with 4 sub-intervals correct to three significant figures.
1 1 ln x
n 4, h 5 1 1
4
xn yn
1 1.0000
2 0.5906
3 0.4765
4 0.4191
5 0.3832
Total 1.3832 1.4862
5 1 1 dx 1 1.3832 2 1.4862
1 ln x 2
2.18
16 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
(b) 4 sec xdx with 4 strips correct to five decimal places.
0
n 4, h 0
4
4 16
xn yn
0 1.000000 1.019591
1.082392
1.414214 1.202690
16 2.414214
3.304673
8
3
16
4
Total
4 sec xdx 16 2.414214 2 3.304673
0 2
0.88589
0
(c) x cos xdx with 4 strips correct to four decimal places.
n 4, h 0 0.25
4
xn yn
0.75 3.14159
0.5
1.66608
0
0.25 -0.55536
0
0.00000
Total 3.14159 1.11072
0 4 3.14159 21.11072
2
x cos xdx
2.1061
17 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
9. The curve with equation y ex 1 is bounded by the curve, the y-axis, the x-axis and the
line with equation x 2.
(a) Complete the table with values of y corresponding to x 3 and x 2.
2
x x0 x 1 x1 x 3 x2
2 2
y 2.0000 2.6487 3.7183
x x0 x 1 x1 x 3 x2
2 3.7183 2 8.3891
y 2.0000 2.6487 5.4817
x
(b) Use the trapezium rule
(i) with the value of y at x 0, x 1 and x 2 to estimate the area of R. Give your
answer to three decimal places.
h 20 1
2
xn yn
0 2.0000
1 3.7183
2 8.3891
Total 10.3891 3.7183
2 ex 1 dx 1 1 10.3891 2 3.7183
0 2
8.913
18 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
(ii) with the value of y at x 0, x 1 , x 1, x 3 and x 2 to find a further
22
estimate of the area of R. Give your answer to three decimal places.
h 20 1
42
xn yn
0 2.0000
1 2.6487
2
1 3.7183
3 5.4817
2
2 8.3891
Total 10.3891 11.8487
1
2 ex 1dx 2 10.3891 211.8487
0 2
8.522
(iii) Find the percentage error between answers from (i) and (ii). Hence, give a conclusion
for the difference of the values.
percentage error 8.522 8.913 100%
8.522
4.59%
The bigger number of strips, n will give more accurate approximate value.
19 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
10. The region A in the first quadrant of the xy-plane is bounded by the y-axis, the x-axis from
0 to and the curve y 2 1 cos x sin x. Find the area of A with integral method. By
2
using the trapezoidal rule with 3 intervals each of width , to estimate the area of A, giving
6
your answer correct to 3 decimal places. Hence, calculate the percentage error in your answer.
u 1 cos x
du sin x
Area of A 2 2 1 cos x sin xdx dx
0 du sin xdx
1 When x 0, u 1 cos 0
0
20 udu
When x , u 1 cos
2 2 3 1 22
3 1
u2 0
4
3
h
6
xn yn
0 0.0000
0.3660
6
1.2247
3
2.0000
2
2.0000 1.5907
22 1 cos x sin xdx 6 2.0000 2 1.5907
0 2
1.356
4 1.356
percentage error 3 4
100%
3
1.70% (3sf)
20 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
11. Use the trapezium rule with ordinates at x 0, , , , to estimate the value of
12 6 4 3
3 ln2 cos xdx, correct to 3 significant figures. Hence, find 3 ln2 cos x8 dx, correct
0 0
to 3 significant figures.
Let y ln2 cos x,
h 0
3
4 12
xn yn
0 1.099
1.087
12
1.053
6
0.9959
4
0.9163
3
2.0153 3.1359
ln 2 cos xdx 2.0153 23.1359
3 24
0
= 1.08
3 ln2 cos x8 dx 8 3 ln2 cos xdx
00
81.08
8.64
21 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
0
12. Show that tan y sec ydy 1 2. Calculate the error of the result using trapezoidal rule
4
for n 5.
0 tan y sec ydy sec y 0
4
4
1 0
cos
y
4
= 1 0 1 4
cos cos
=1 2
Let f y tan y sec y tan y ,
cos y
0
4
h
5 20
yn fn
1.4142
4
0.8981
5 0.5719
3 0.3416
20
0.1604
10 0.0000
20
0
Total 1.4142 1.9720
0 tan y sec ydy 1.4142 21.972
40
4
0.4208
error 1 2 0.4208
0.00659
22 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
2
13. Given that by using trapezoidal rule, 0 f xdx 1.4373, where y0 0, yn 1.6094 and
n1
yi 4.9446. Find the number of strips, n to the nearest integer.
i1
h 20 2
nn
2 h n1
2 y0 yi
f 2
0
xdx yn i1
2
1.4373 n 1.6094 2 4.9446
2
n 8.00014
n8
14. The diagram shows a sketch of the curve with equation y 27 3x.
(a) The curve y 27 3x intersects the y-axis at the point A and the x-axis at the point
B. Find the y-coordinate of point A and the x-coordinate of point B.
When x 0, y 27 30
26
When y 0, 0 27 3x
3x 33
x3
23 of 24
Tutorial 3: 4 Hours Mathematics 2 SM025
Ch. 3 Numerical Method Session 2021/2022
(b) The region, R, is bounded by the curve y 27 3x and the coordinate axes. Use the
trapezoidal rule with four ordinates to find an approximate value for the area of R.
h 30 1 3 27 3x dx
3 0
xn yn
0 26
1 24
2 18
30
Total 26 42
Area of R 1 26 2 42
2
55
Answers (iii) 4.59%, DIY
1. (a) DIY (b) 0.817
2. 0.739
3. 0.587
4. 2.7589
5. DIY, 1.154
6. A 1.9796, 2.9796
7. 4.93
8. (a) 2.18 (b) 0.88589 (c) 2.1061
9. (a) 5.4817, 8.3891 (b) (i) 8.913 (ii) 8.522
4
10. , 1.356, 1.70%
3
11. 1.08, 8.64
12. DIY, 0.00659
13. n 8
14. (a) y 26, x 3 (b) 55
24 of 24