Lecture Note: 1 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
Topic: 4. CONICS
Sub-Topic: 4.3 Parabolas
Learning Outcomes: At the end of this lesson, students should be able to
(a) find the equation of the parabola.
(b) determine the vertex, focus and directrix of a parabola by completing the square.
The Equation of a Parabola
A graph of parabola looks like a big . Here are the important names:
Opens upward and downward Opens left and right
Vertex, h,k Vertex, h,k
Focus, h,k p Focus, h p,k
Directrix, y k p Directrix, x h p
Equation, x h2 4p y k Equation, y k2 4p x h
1 of 42
Lecture Note: 1 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 1
State the vertex, focus and directrix for each of the following:
(a) y 22 12x 3. (b) x 12 5y 2.
(a) y 22 12x 3
y k2 4p x h
4p 12
p30
V h,k V 3,2
F h p,k F 6,2
Directrix; x h p
33
x0
(b) x 12 5y 2
x h2 4p y k
4p 5
p 50
4
V h,k V 1,2
F h,k p F 1, 34
Directrix; y kp
2 5
4
y 13
4
2 of 42
Lecture Note: 1 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 2
Write down the equation of given parabola below in standard form. For each parabola, state the
coordinates of the vertex, focus and the equation of the directrix. Hence, sketch each graph.
(a) x2 8x 4y 12 0. (b) y2 8y 2x 22 0.
(a) x2 8x 4y 12
x2 8x 4y 12
x 42 42 4y 12
x 42 4y 4
x 42 4y 1
x h2 4p y k
4p 4 0
p 1 0
V h,k V 4,1
F h,k p F 4,0
Directrix; y k p
1 1
y2
(b) y2 8y 2x 22 y
y 42 2x 22 16 0 x
y 42 2x 6
y 42 2x 3 V 3,4 F 72 ,4
y k2 4px h
4p 2
p 1 0
2
V h,k V 3,4
F h p,k F 72 ,4
Directrix; xhp
31
2
x 5
2
3 of 42
Lecture Note: 1 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 3
Find the equation of a parabola, which satisfies the following conditions, vertex 1,2, its axis
parallel to the y-axis and the parabola passes through the point 3,6.
x h2 4p y k
x 12 4p y 2
At point 3,6;
3 12 4p 6 2
16 32p
p1
2
x 12 412y 2
x 12 2y 2
4 of 42
Lecture Note: 2 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
Topic: 4. CONICS
Sub-Topic: 4.2 Ellipses
Learning Outcomes: At the end of this lesson, students should be able to
(a) determine the equation of the ellipse.
(b) determine all the vertices, foci, major and minor axes.
(c) determine the centre and foci of an ellipse by completing the square.
The Equation of an Ellipse
For b > a
c2 b2 a2
Centre, C h,k
Equation of the major axis, x h
Equation of the minor axis, y k
Foci, F h, k c
Vertices on major axis, V h,k b
Vertices on minor axis, V h a,k
Equation of ellipse, x h2 y k2 1
a2 b2
5 of 42
Lecture Note: 2 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
For a > b
c2 a2 b2
Centre, C h,k
Equation of the major axis, y k
Equation of the minor axis, x h
Foci, F h c, k
Vertices on major axis, V h a,k
Vertices on minor axis, V h,k b
Equation of ellipse, x h2 y k2 1
a2 b2
6 of 42
Lecture Note: 2 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 4
Find the centre and the foci of the ellipse x 32 y 12 1. Hence, sketch the graph.
94
x h2 y k2
a2 b2 1
a2 9, a 3, b2 4;
c a2 b2
94
5
C h,k C 3,1
F h c,k F 3 5,1, F 3 5,1
V h a,k V 6,1, V 0,1
V 6,1 V 0,1
0
7 of 42
Lecture Note: 2 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 5
Sketch the ellipse with equation 25x2 16y2 50x 375 0
25x2 16y2 50x 375 0
25x2 2x 16y2 375
25 x 12 1 16y2 375
25x 12 16y2 400
x 12 y2 1
16 25
a2 16, b2 25, b 5;
c b2 a2
25 16
3
C h,k C 1,0
F h,k c F 1,3, F 1,3
V h,k b F 1,5, F 1,5
0
8 of 42
Lecture Note: 2 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 6
Find the equation of an ellipse with centre 3,1 and the major axis running parallel with the
y-axis. The length of the major axis is 10 units and the minor axis is 6 units. Sketch the ellipse.
x 32 y 12 1
9 25
b2 25, a2 9;
c b2 a2
25 9
4
C h,k C 3,1
F h,k c F 3,3, F 3,5
V h,k b V 3,4, V 3,6
0
9 of 42
Lecture Note: 2 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 7
The center of an ellipse is 1,2, the minor axis is parallel to the y-axis and the ellipse passes
through points 4,2 and 5, 52.Find the general equation of the ellipse. Sketch the ellipse.
x h2 y k2
a2 b2 1
C 1,2,
x 12 y 22 1
b2
a2
At 4,2,
4 12 2 22 1
b2
a2
52 1
a2
a2 25
At 5, 52,
5 12 2 22 1
5
25 b2
42 12 2 1
5
25
b2
b2 16
x 12 y 22 1
25 16
16x 12 25y 22 400
16x2 25y2 32x 100y 284 0
10 of 42
Lecture Note: 2 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
0
11 of 42
Lecture Note: 3 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
Topic: 4. CONICS
Sub-Topic: 4.1 Circles
Learning Outcomes: At the end of this lesson, students should be able to
(a) determine the equation of a circle.
(b) determine the centre and radius of a circle.
Introduction
Circle
o A circle is a set of all points in a plane equidistant from a given fixed point, called the
centre, C.
Radius
o Letter r denotes radius of the circle.
Diameter
o Segment AB is the diameter of the circle. It is the maximum
distance between two opposite points on the circle.
Chord
o The chord of a circle is the one that divides the circle into two
parts called major segment and minor segment.
Tangent
o A line that touches the circle at one and only one point is called
as tangent to the circle.
o At any given point of a circle, there is one and only one tangent.
o The tangent at any point of a circle is always perpendicular to
the radius through the point of contact.
12 of 42
Lecture Note: 3 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
Standard and General Equa tion of a Circle
Standard Equation General Equation
C h,k By expanding x h2 y k2 r2,
x h2 y k2 r2
x2 2hx h2 y2 2ky k2 r2
x2 y2 2hx 2ky h2 k2 r2 0
Let h g, k f, c h2 k2 r2, thus
x2 y2 2gx 2fy c 0, where
Centre, C g,f and Radius, r g2 f 2 c
Equation of a Circle
Given the radius and the centre. (a) Use the formula x h2 y k2 r2.
C h,k
Passing through two points where the (a) Substitute the two points into
equation of the diameter is given. x2 y2 2gx 2fy c 0.
(b) Substitute centre, g,f into
ax by c 0.
(c) Solve all the three equations simultaneously.
13 of 42
Lecture Note: 3 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
Passing through three points. (a) Substitute all the three points into
x2 y2 2gx 2fy c 0.
(b) Solve all the three equations simultaneously.
Given the centre and the tangent. (a) Use the formula x h2 y k2 r2.
ax by c 0 (b) Find r using formula shortest distance
C h,k r ah bk c , where ax by c 0.
a2 b2
EXAMPLE 8
Find the center and radius of the circle x 32 y 52 36.
By comparing x 32 y 52 62 and x h2 y k2 r2,
C h,k C 3,5
r6
EXAMPLE 9
Find the center and radius of the circle 2x2 2y2 20x 8y 14 0.
2x2 2y2 20x 8y 14 0
x2 y2 10x 4y 7 0
By comparing x2 y2 10x 4y 7 0 and x2 y2 2gx 2fy c 0,
2g 10, 2f 4, c 7
g 5 f 2
C g,f C 5,2
r g2 f2 c
52 22 7
6
14 of 42
Lecture Note: 3 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 10
Find the equation of the circle which passes through the points A 1,3,B 1,1 and has its
diameter on the line x 2y 1.
x2 y2 2gx 2fy c 0
Since A1,3,B 1,1 lies on the circle
1 9 2g 6f c 0
2g 6f c 10.........1
1 1 2g 2f c 0
2g 2f c 2.............2
C g,f at x 2y 1
g 2f 1
f 1, g 3, c 10
x2 y2 6x 2y 10 0
EXAMPLE 11
Find the equation of the circle having centre 1, 2 and touch the line 2x y 2 0.
By comparing 2x y 2 0 and ax by c 0,
a 2, b 1, c 2
r shortest distance from C 1,2 to the line 2x y 2 0
ah bk c
r
a2 b2
21 12 2
22 12
6
5
x h2 y k2 r2
x 12 y 22 6 2
5
x 12 y 22 36
5
5x 12 5y 22 36
5x2 5y2 10x 20y 11 0
15 of 42
Lecture Note: 3 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 12
Find the equation of the circle which passes through A 1, 8, B 6,1 and C 2,1.
x2 y2 2gx 2fy c 0
1 64 2g 16f c 0
2g 16f c 65
36 1 12g 2f c 0
12g 2f c 37
4 1 4g 2f c 0
4g 2f c 5
14g 14f 28
8g 4f 32
f 2g 8
14g 142g 8 28
14g 28g 112 28
42g 84
g2
f 4, c 5
x2 y2 4x 8y 5 0
16 of 42
Lecture Note: 4 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
Topic: 4. CONICS
Sub-Topic: 4.1 Circles
Learning Outcomes: At the end of this lesson, students should be able to
(c) find the points of intersection of two circles, and a line and a circle.
(d) find the equation of tangents and normal to a circle.
(e) find the length of a tangent from a point to a circle.
The Points of Intersection of Two Circles
Solving the simultaneous equation to find the intersection of two
circles.
The type of intersection between two circles can be determine by using
discriminant b2 4ac OR distance between the two centres
Does NOT intersect. (a) b2 4ac 0
(b) Distance C1C2 r1 r2
Intersect at ONE point. (a) b2 4ac 0
(b) Distance C1C2 r1 r2
(a) b2 4ac 0
Intersect at TWO points.
(b) Distance C1C2 r1 r2
17 of 42
Lecture Note: 4 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 13
Determine the type of intersections between the two circles below:
x 12 y2 1
x 12 y2 1.
x 12 y2 1 When x 0,
x2 2x 1 y2 1 02 y2 20 0
x2 y2 2x 0
y2 0
x 12 y2 1
b2 4ac 02 410
x2 2x 1 y2 1
x2 y2 2x 0 0
Since b2 4ac 0, therefore the two circles intersect
: 4x 0
x0 at one point, i.e. 0,0.
EXAMPLE 14
Find the points of intersection of the two circles with equations x2 y2 3x 13y 48 0 and
x2 y2 x 3y 0.
x2 y2 3x 13y 48 0
x2 y2 x 3y 0
: 4x 16y 48 0
x 4y 12
Substitute into ,
4y 122 y2 4y 12 3y 0
16y2 96y 144 y2 4y 12 3y 0
17y2 95y 132 0
y 317y 44 0
y 3, y 44
17
When y 3, When y 44 ,
17
x 43 12 x 41474 12
28
0 17
the point of intersection are 0, 3 and 28 , 44 .
17 17
18 of 42
Lecture Note: 4 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
The Points of Intersection of a Line and a Circle
The line and the circle does not intersect:
b2 4ac 0
A line that touches the circle at one and only one point is called
as tangent to the circle:
b2 4ac 0
The chord of a circle is the one which divides the circle into two
parts called major segment and minor segments:
b2 4ac 0
EXAMPLE 15
Find the intersections between the circle x2 y2 6x 4y 9 0 and the line y 7 x.
y 7 x
x2 y2 6x 4y 9 0
Substitute into ,
x2 7 x2 6x 47 x 9 0
x2 49 14x x2 6x 28 4x 9 0
x2 8x 15 0
x 3x 5 0
x 3, x 5
When x 3, When x 5,
y 73 y 75
4 2
the intersections point are 3, 4 and 5,2.
19 of 42
Lecture Note: 4 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
EXAMPLE 16
The equation of the circle is given by 9x2 y2 18x 6y 26 0.
(a) Find the coordinates of its centre and radius.
(b) Determine whether the point 0, 4 lies inside or outside to the circle.
3
(a) 9x2 y2 18x 6y 26 0
x2 y2 2x 2 y 26 0
39
By comparing;
2g 2, 2f 2 , c 26
g 1 3 9
f 1
3
C g,f C 1, 1
3
r 12 1 2 296
3
2
(b) Distance from the point 0, 4 to the center, d 1 02 13 4 2
3 3
2
Since d r, therefore the point 0, 34 lies inside the circle.
20 of 42
Lecture Note: 4 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
The Equation of Tangents and Normal to a Circle
Method 1: Formula Method 2: Properties of gradient
The diagram shows the tangent to the circle
at point x1, y1 with centre g,f .
g,f
x1, y1 mN mT 1
xx1 yy1 g x x1 f y y1 c 0 Equation of the tangent is
y y1 mT x x1 or y mT x c.
If the centre is 0,0, then the equation of
tangent is xx1 yy1 r2.
THE USE OF DERIVATIVE IS NOT ALLOWED!
EXAMPLE 17
Find the equation of the tangent and normal to a circle x2 y2 6x 10y 82 0 at the point
S 1,5.
By comparing;
2g 6, 2f 10, c 82
g 3 f 5
C g,f C 3,5
mN 5 5
1 3
5
2
Equation of normal;
y 5 5 x 1
2
y 5x5
22
21 of 42
Lecture Note: 4 of 4 Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
Equation of tangent;
mT mN 1
mT 52 1
mT 2
5
y 5 2 x 1
5
y 2 x 27
55
The Length of a tangent from a Point to a Circle
d = Length of tangent from point P to circle.
Using Pythagoras Theorem to find d.
EXAMPLE 18
Find the length of the tangent from point 8,4 to the circle with centre 3,0 and radius 2 units.
Length of BC 8 32 4 02 d
41
d 41 2 22
37
22 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
1. Find the equation of a parabola with vertex 2,1, passes through the point 1,7 and has
a horizontal symmetric axis. Sketch the graph of the parabola.
y 12 4p x 2
At point 1,7,
7 12 4p 1 2
36 12p
p3
y 12 43x 2
y 12 12x 2
2. Find the equation of the parabola with its symmetric axis is parallel to the x-axis, vertex
at 2,1 and passes through 6,3. Hence, sketch the graph.
y 12 4p x 2 y
At point 6,3, O x
3 12 4p 6 2 F 3,1
16 16p
p 1
y 12 41x 2
y 12 4x 2
23 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
3. An equation x2 4x 4y 8 0 represents a parabola.
(a) Determine the vertex, focus and directrix of the parabola.
(b) Show that the tangent lines to the parabola at the points A2,5 and B 3, 54
intersect at the right angle.
(a) x2 4x 4y 8 0
x 22 4 4y 8 0
x 22 4y 1
4p 4
p 1
F 2,2, V 2,1
Directrix: y 0
x2 4x 4y 8 0
y 1 x2 x 2
4
dy 1 x 1
dx 2
At point 2,5,
mA dy 1 2 1 2
dx
(b) x2 2
At point 3, 5 ,
4
mB dy 1 3 1 1
dx 2
x3 2
mAmB 212 1
Since mAmB 1, therefore the tangent lines intersect at the right angle.
24 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
4. If the vertex of the parabola y ax2 bx 2a b is 1,2, find the values of a and b.
y ax2 bx 2a b
ax2 bx y 2a b
a x2 bx y 2a b
a
a x b 2 b 2 y 2a b
2a 2a
a x b 2 a b 2 y 2a b
2a 2a
a x b 2 y 2a b a b 2
2a 2a
x b 2 1 y 2a b 2
2a a 2a
b a
By comparing,
b 1
2a
b 2a
2a b a b 2 2
2a
Substitute into ,
2a 2a a22aa2 2
a 2
When a 2, b 22
4
25 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
5. Show that the equation y2 9x2 18x 6y 0 represents an ellipse, and sketch the graph.
y2 9x2 18x 6y 0
y 32 9 9 x 12 1 0
y 32 9x 12 18
x 12 y 32
1
2 18
the equation y2 9x2 18x 6y 0 represent an ellipse.
C 1,3
c2 b2 a2
18 2
16
V 1,3 18 , V 1,3 18
F 1,1 , F 1,7
0
26 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
6. If the ellipse 16x2 y2 px qy r 0 touches the x-axis at the point 1,0 and passes
through the point 2,4.
(a) Determine the values of p, q and r.
(b) Express the equation of the ellipse in the standard form.
(c) Find the centre, major vertices and foci of the ellipse.
(a) At point 1,0;
1612 02 p 1 q 0 r 0
16 p r 0
p r 16
At point 2,4;
1622 42 p2 q 4 r 0
2p 4q r 80
32x 2y dy p q dy 0
dx dx
dy 0 at 1,0;
dx
321 200 p q 0 0
p 32
When p 32, 32 r 16
r 16
When p 32, r 16, 232 4q 16 80
q 8
(b) 16x2 32x y2 8y 16
16(x2 2x) y2 8y 16
16 x 12 1 y 42 16 16
16(x 1)2 y 42 16
(x 1)2 y 42 1
1 16
(c) a2 1, b2 16, c2 b2 a2
a 1 b 4 c 16 1
c 15
C h,k C 1,4
V h,k b V 1,4 4 V 1,0,V 1,8
F h,k c F 1,4 15 F 1,4 15,F 1,4 15
27 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
7. (a) Find the equation in standard form of an ellipse which passes through the point 1,6
and having foci at 5,2 and 3,2.
(b) From the result obtained in part (a), sketch the graph of the ellipse.
(a) C 52 3 , 2 2 C 1, 2
2
2c 3 5
2c 8
c4
c2 a2 b2
a2 b2 16
At 1,6,
1 12 6 22 1
b2
a2
16 1
b2
b2 16
Substitute into ,
a2 16 16
a2 32
x 12 y 22 1
32 16
(b)
0
28 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
8. If 9x2 25y2 225 and k2 1x2 2k2 1y2 k2 12k2 1 has the same foci. Find
the values of k.
9x2 25y2 225
9x2 25y2 225
225 225 225
x2 y2 1
25 9
a2 25, b2 9;
c2 a2 b2
25 9
16
k2 1x2 2k2 1y2 k2 12k2 1
k2 1x2 2k2 1y2 k2 12k2 1
k2 12k2 1 k2 12k2 1 k2 12k2 1
x2 1 y2 1 1
2k2 k2
2k2 1 k2 1 16
k2 16
k 4
9. The length of the major axis of an ellipse is 12. Given the focus is at 0,3 and the minor
axis lies on the line x 2, find its equation.
2a 12, c 2
a6
c2 a2 b2
22 62 b2
b2 32
x 22 y 32 1
36 32
29 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
10. Write the general equation of each of the circle that satisfies the stated conditions.
(a) Tangent to the x-axis, a radius of length 4 units and x-ordinate of center is 3.
(b) Tangent to both axes, a radius of 6 units and the center in the third quadrant.
C 3,4
C 3,4
(a)
Circle with centre, C 3,4,
x 32 y 42 42
x2 y2 6x 8y 9 0
Circle with centre, C 3,4,
x 32 y 42 42
x2 y2 6x 8y 9 0
(b)
C 6,6
x 62 y 62 62
x2 y2 12x 12y 36 0
30 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
11. Find the equation of a circle that is passing through points 1,2, 1,2 and 0,1. Hence,
determine its center.
At point 1,2,
12 22 2g 1 2f 2 c 0
c 5 2g 4f
At point 1,2,
12 22 2g 1 2f 2 c 0
c 5 2g 4f
At point 0,1,
02 12 2g 0 2f 1 c 0
c 2f 1
Substitute into ,
5 2g 4f 5 2g 4f
g0
When g 0, c 5 20 4f
5 4f
Substitute into ,
2f 1 5 4f
f 2
3
When f 2 , c 5 4 32
3 7
3
x2 y2 4 y 7 0
33
3x2 3y2 4y 7 0
C g,f C 0, 2
3
31 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
12. Find the equation of the circle passing through points 1,1 and 3,2 with diameter
y 3x 7 0.
y 3x 7 0
3, 2
1,1 C g,f
At point1,1,
12 12 2g 1 2f 1 c 0
1 1 2g 2f c 0
c 2g 2f 2
At point 3,2,
32 22 2g 3 2f 2 c 0
9 4 6g 4f c 0
c 6g 4f 13
At centre g,f ,
f 3g 7 0
f 3g 7
Substitute into , Substitute into , Substitute g 5 into ,
2
2g 2f 2 6g 4f 13 4g 23g 7 11
4g 2f 11 f 3 52 7
g 5 1
2 2
Substitute f 1 , g 5 into ,
22
c 2 52 2 12 2
4
x2 y2 2 5 x 2 12 y 4 0
2
x2 y2 5x y 4 0
32 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
13. A circle which lies in the first quadrant, touches the x-axis, y-axis and the straight line
4x 3y 30 0. Find the equation of the circle.
4x 3y 30 0
r 4r 3r 30
42 32
5r r 30
r 30 5r or r 30 5r
r 15 r5
2
x 52 y 52 25
x2 y2 10x 10y 25 0
14. If the line 4x 3y k 0 is the tangent to the circle x2 y2 2x 4y 20 0, find the
values of k.
x2 y2 2x 4y 20 0
By comparing;
2g 2, 2f 4, c 20
g 1 f 2
C g,f C(1,2)
r 12 22 20
5
41 32 k
5
42 32
5 k2 k 2 25
5 k 23
k 2 25
k 2 25 or
k 27
33 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
15. Given that the straight line x 2y 5 0 intersect with another straight line 3x y 0
at the point P.
(a) Determine the coordinates of P.
(b) A circle touches the straight line 3x y 0 at point P and its centre lies on the straight
line 2x y 0. Find the equation of the circle.
(a) x 2y 5 0
3x y 0
y 3x
Substitute into ,
x 23x 5 0
x 1
When x 1, y 31
3
P 1,3
(b) 3x y 0
y 3x
mN 1
3
Equation of normal;
y 3 1 x 1
3
x 3y 10 0
y 2x
Substitute into ,
x 32x 10 0
x2
When x 2, y 22
4
C 2,4
x 22 y 42 r2
1 22 3 42 r2
r2 10
x 22 y 42 10
Other option (general equation):
x2 4x 4 y2 8y 16 10
x2 y2 4x 8y 10 0
34 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
16. Find the equation of the tangents to a circle x2 y2 25 from the point A1,5.
B a,b A 1,5
T1
N1
N2
C 0,0
T2
x2 y 2 52
C 0,0
mT1 5b, mN1 b0 b
1a a0 a
Since T1 and N1 are perpendicular, therefore mT1 mN1 1, i.e.
15 b ab 1
a
5b b2 1
a a2
5b b2 a2 a
5b a a2 b2
At point a,b;
a2 b2 25
Substitute into ,
5b a 25
a 25 5b
Substitute into ,
25 5b2 b2 25
625 250b 25b2 b2 25 0
13b2 125b 300 0
b 513b 60 0
b 5, b 60
13
35 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
When b 5, a 25 55
0
When b 60 , a 25 51630
13
25
13
B 0,5, B 1235 , 60
13
At point B 0,5;
mT1 55
10
0
y 5 0x 1
y5
At point B 1235 , 60 ;
13
5 60
13
mT2 1 25
13
5
12
y 5 5 x 1
12
y 5 x 65
12 12
36 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
17. The equation of circle P is given by x2 y2 4x 6y 12 0.
(a) Find the coordinates of its centre and radius.
(b) Find the perpendicular distance from the centre of P to the line 3x 4y k in term
of k, where k is a constant.
(c) Hence, find the values of k such that the line 3x 4y k is a tangent to P.
(a) By comparing x2 y2 2gx 2fy c 0 and x2 y2 4x 6y 12 0,
2g 4, 2f 6, c 12
g 2 f 3
C 2,3
r 22 32 12
5
32 43 k
(b) d
32 42
6 k
5
(c) 6 k 5
5
6 k 25
6 k 25, 6 k 25
k 19 k 31
37 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
18. Find the radius and the coordinates of the centre of the circle x2 y2 2x 6y 6 0.
Prove by calculation that the point R 5,6 lies outside the circle. Hence, given that a
tangent to the circle with gradient 4 passes through the point R 5,6, find the equation of
the tangent and its length.
By comparing x2 y2 2gx 2fy c 0 and x2 y2 2x 6y 6 0,
2g 2, 2f 6, c 6
g 1 f 3
r 12 32 6
2
C g,f C 1,3
CR 5 12 6 32
5
Since CR r, therefore the point 5,6 lies outside the circle.
Equation of the tangent, y 6 4x 5
y 4x 14
Lenght of the tangent, d2 52 22
d 21
38 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
19. Let L be a line passing through the centre of the circle x2 y2 2x 2y 7 and
perpendicular to the line 3x 4y 7. Find
(a) the coordinates of the points of intersections of L and the circle.
(b) the equations of the tangents to the circle parallel to 3x 4y 7.
(a) By comparing x2 y2 2x 2y 7 0 and x2 y2 2gx 2fy c 0,
2g 2, 2f 2, c 7
g 1 f 1
C 1,1
mK 3
4
mL 4
3
y 1 4 x 1
3
y 4 x 1 ...
33
x2 y2 2x 2y 7
Substitute into ,
x2 4x 12 2x 2 4x 1 7 0
3 3
25x2 50x 56 0
5x 45x 14 0
x 4 , x 14
55
39 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
When x 4 , y 4 54 1 When x 14 , y 4154 1
5 3 5 3
7 17
5 5
the point of intersections are 4 , 7 and 154 , 17 .
5 5 5
(b)
Equation of tangents,
y 75 3 x 54
4
or y 3x2
4
y 17 3 x 154
5 4
y 3 x 11
42
40 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
20. A circle with centre 4,2 touches two perpendicular lines at the points V and W. Given
that the point of intersection between the two lines is 3,3. Find the equation of the
circle.
CV VP
(4 a)2 2 b2 3 a2 3 b2
(4 a)2 2 b2 3 a2 3 b2
16 8a a2 4 4b b2 9 6a a2 9 6b b2
2 2a 10b
a 1 5b
CP 4 32 2 32
26
CV 2 VP 2 CP 2
4 a2 2 b2 3 a2 3 b2 26
16 8a a2 4 4b b2 9 6a a2 9 6b b2 26
a2 b2 b 7a 6
Substitute into ,
(1 5b)2 b2 b 7 1 5b 6
b2 b 0
b b 1 0
b 0, b 1
When b 0, a 1 50 When b 1, a 1 51
1 6
V 1,0, W 6,1
r2 4 12 2 02
=13
x 42 y 22 13
41 of 42
Tutorial 4: 6 Hours Mathematics 2 SM025
Ch. 4 Conics Session 2021/2022
21. Find an equation of the circle passing through the origin and its centre is the focus of the
parabola x2 8y 16.
x2 8y 16
x2 42y 2
C 0,4
x 02 y 42 42
x2 y2 8y 16 16
x2 y2 8y 0
Answers 11. 3x2 3y2 4y 7 0, C 0, 2
3
1. y 12 12x 2 , DIY
12. x2 y2 5x y 4 0
2. y 12 4x 2, DIY
13. x2 y2 10x 10y 25 0
3. (a) F 2,2, V 2,1, y 0 (b) DIY 14. k 27, 23
4. a 2, b 4 15. (a) P 1,3
5. DIY
6. (a) p 32, q 8, r 16 (b) x2 y2 4x 8y 10 0
16. y 5
x 12 y 42
y 5 x 65 (b) d 6 k
(b) 1 12 12 5
1 16
17. (a) C 2,3, r 5
(c) C 1, 4, V 1,0, V 1,8,
(c) k 19, 31
F 1, 4 15, F 1,4 15
18. C 1,3, r 2
7. (a) x 12 y 22 1 (b) DIY
y 4x 14, d 21
32 16
8. k 4 19. (a) 4 , 75 , 154 , 17
5 5
9. x 22 y 32 1
(b) y 3 x 2 , y 3 x 11
36 32 4 42
10. (a) x2 y2 6x 8y 9 0
20. x 42 y 22 13
x2 y2 6x 8y 9 0
(b) x2 y2 12x 12y 36 0
21. x2 y2 8y 0
42 of 42