ﻣﺬﻛﺮة رﻗﻢ 6 : ﻣﺬﻛﺮة رﻗﻢ 6ﻓﻲ درس اﻟﺪوال اﻷﺳﻴﺔ
اﻷﺳﺘﺎذ :ﻋﺜﻤﺎﻧﻲ ﻧﺠﯿﺐ اﻷھﺪاف اﻟﻘﺪرات اﻟﻤﻨﺘﻈﺮة ﻣﻦ اﻟﺪرس :
(1ﺗﻌﺮﯾﻒ اﻟﺪاﻟﺔ اﻷﺳﯿﺔ اﻟﻨﺒﯿﺮﯾﺔ
اﻟﺪاﻟﺔ اﻷﺳﯿﺔ اﻟﻨﺒﯿﺮﯾﺔ ﯾﺮﻣﺰ ﻟﮭﺎ ب expوھﻲ ﻣﻌﺮﻓﺔ ﻋﻠﻰ ¡ ب :
("x Î ¡);exp x = e x
(2ﺧﺎﺻﯿﺔ ﻣﻘﺒﻮﻟﺔ
) ("y Ρ)("x Î]0;+¥[) , (x = ey Û ln(x ) = y
اﻟﺪاﻟﺔ expﺗﺰاﯾﺪﯾﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ¡ ﯾﻌﻨﻲ ex > ey Û x > y
ex = ey Û x = yﻟﻜﻞ xو yﻣﻦ ¡
ex = 2 (3 ex-2 = e (2 وﻟﺪﯾﻨﺎ e0 = 1:و e1 = e
ﻣﺜﺎل :ﺣﻞ ﻓﻲ ¡ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﯿﺔex = 1 (1:
اﻟﺤﻞex = 1 Û ex = e0 (1 :
x = 0 Ûوﻣﻨﮫ S = {0} :
ex-2 = e1 Û ex-2 = e (2
x = 3 Û x - 2 = 1 Ûوﻣﻨﮫ S = {3} :
x = ln 2 Û ex = 2 (3وﻣﻨﮫ S = {ln 2} :
ﺧﺎﺻﯿﺎت ﺟﺒﺮﯾﺔ
( )("x Ρ)("y Ρ) ("x Î ¡ ); ln ex = x
و ( )erx = ex r exو = ex-y ("x Î ¡) ex f 0و e x ´ e y = e x+yو e-x = 1
ey ex
C = e7 و ( )B = e-4 ´ e6 3 و ﻣﺜﺎل :ﻟﯿﻜﻦ aو bﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﯿﻦ ,أﺣﺴﺐ وﺑﺴﻂ ﻣﺎ ﯾﻠﻲ A = e3 ´e5 :
e4
Cو e7 = Bاﻟﺤﻞ :و ) ( ) ( ) (
= e4 = e7-4 = e3 e-4 ´ e6 3 e-4+6 3 e2 3 = e2´3 = e6 A = e3 ´e5 = e3+5 = e8
= =
= e 2x ´ e 3x ﺗﻤﺮﯾﻦ :1ﺑﺴﻂ ﻣﺎ ﯾﻠﻲ( )B = e2-x 2 ´ e3x-4 , A = e-x ´ e2x :
ex 4
( )C
اﻟﺤﻞB = e2-x 2 ´ e3x-4 = e2´(2-x) ´ e3x-4 = e2´(2-x)+3x-4 = e4-2x+3x-4 = ex A = e- x ´ e2x = e- x+2x = ex :و ) (
= e2x ´ e3x = e2 x +3x = e5x = e5x-4x = ex
ex 4 e4x e4x
( )C
ﺗﻤﺮﯾﻦ :2ﺣﻞ ﻓﻲ ¡ اﻟﻤﻌﺎدﻻت اﻟﺘﺎﻟﯿﺔex+1 = 4 (1 :
e2x - 5ex + 6 = 0 (6 e 2 x +1 =e (5 e2- x = ex-1 (4 e1+ x = 1 (3 e1-x ´ e2x = e (2
e x-3 e1+2 x e 2 x -3
اﻟﺤﻞe1-x+2x = e1 Û e1-x ´ e2x = e (1 :
x = 0 Û 1+ x =1 Û e1+x = e1 Ûوﻣﻨﮫ S = {0} :
ex-2 = e1 Û ex-2 = e (2
x = 3 Û x - 2 = 1 Ûوﻣﻨﮫ S = {3} :
(3e1+x 1
= )e-( 2 x -3 Û e1+ x = e2 x -3
1 http:// xyzmath.e-monsite.comاﻷﺳﺘﺎذ :ﻋﺜﻤﺎﻧﻲ ﻧﺠﯿﺐ
S = ì 3 ü : وﻣﻨﮫx = 2 Û e1+x = e-2x+3 Û 1+ x = -2x + 3 Û 3x = 2 Û
íî 2 ýþ 3
e( 2- x )-(1+ 2 x ) = ex-1 Û e2-x = ex-1 (4
e1+2 x
2 - x -1- 2x = x -1 Û (2 - x) - (1+ 2x) = x -1 Û
S = ì 1 ü : وﻣﻨﮫ x= 1 Û x = -2 Û -4x = -2 Û -x - 2x - x = -1+1- 2 Û
í 2 ý 2 -4
î þ
e = e Û (52x+1-x+31 e2 x+1
e(2 x+1)- (x-3) = e1 Û e x-3 =e
S ={-3} : وﻣﻨﮫx = -3 Û x+4 =1Û 2x+1-x+3=1Û
: ﻓﻲ اﻟﺤﺎﻻت اﻵﺗﯿﺔf ﺣﺪد ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﯾﻒ اﻟﺪاﻟﺔ:3ﺗﻤﺮﯾﻦ
f (x ) = xe x + 2x .1
f (x) = ex +1 .2
ex -1
Df = ¡ (1 :اﻟﺤﻞ
{ }Df = x Î ¡ / ex -1 ¹ 0 (2
Df =¡-{0} : وﻣﻨﮫx = 0 Û ex = e0 Û ex =1Ûex -1=0
: ﺣﻞ ﻓﻲ ¡ اﻟﻤﺘﺮاﺟﺤﺎت اﻟﺘﺎﻟﯿﺔ:4ﺗﻤﺮﯾﻦ
e7 x-1 ³ e2x-3 ´ e x-2 (2 e2x-1 ³ 1 (1
2x -1 ³ 0 Û e2x-1 ³ e0 Û e2x-1 ³ 1(1 :اﻟﺤﻞ
S = é 1 ; +¥ ëêé : وﻣﻨﮫ x ³ 1 Û 2x ³1Û
ëê 2
2
e7 x-1 ³ e2 x-3+x-2 Û e7 x-1 ³ e2 x-3 ´ ex-2 (2
4x ³ -4 Û 7x -1 ³ 2x - 3 + x - 2 Û
S = [-1; +¥[ : وﻣﻨﮫx ³ -1 Û
: ( اﻟﻨﮭﺎﯾﺎت3
ﻧﻘﺒﻞ اﻟﻨﮭﺎﯾﺘﯿﻦ اﻟﺘﺎﻟﯿﺘﯿﻦ
lim ex = +¥ : 2 و ﺧﺎﺻﯿﺔlim ex = 0 : 1ﺧﺎﺻﯿﺔ
x®+¥ x®-¥
: أﺣﺴﺐ اﻟﻨﮭﺎﯾﺎت اﻵﺗﯿﺔ:5ﺗﻤﺮﯾﻦ
lim 2ex -1 (4 lim e x (3 lim 2ex -1 (2 lim æ 2x -1 ö (1
ex +1 çè ex ø÷
x®-¥ x ®+¥ e x + 3 x®+¥ ex +2 x ®+¥
lim æ 2x - 1 ö = +¥ : اذن lim ex = +¥:ﻷن lim 1 =0:وﻟﺪﯾﻨﺎ lim 2x = +¥ (ﻟﺪﯾﻨﺎ1 :اﻟﺤﻞ
èç ex ø÷
x®+¥ x®+¥ ex®+¥ x x®+¥
ﺷﻜﻞ ﻏﯿﺮ ﻣﺤﺪد lim 2ex -1 = +¥ (2
ex + 2 +¥
x®+¥
lim ex = +¥:ﻷن 2ex -1 = ex æ 2 - 1 ö 2 - 1 = 2-0 =2
çè ex ÷ø ex
x ®+¥ lim lim = lim
x® +¥ e x + 2 x ® +¥ ex æ 1 + 2 ö x ® +¥ 1+ 2 1+0
èç ex ø÷ ex
ﺷﻜﻞ ﻏﯿﺮ ﻣﺤﺪد (3lim ex = +¥
ex +3 +¥
x®-¥
:ﻷنlim ex = +¥ lim ex = lim ex = lim 1 = 1 =1
ex + èæç1 + 1+ 0
x ®+¥ x® +¥ x ® +¥
3 ex 3 ö x® +¥ 1+ 3
ex ø÷ ex
lim 2ex -1 = 2´0 -1 = -1 (4
ex +1 0 +1
x®-¥
x a e x .( ﻣﺸﺘﻘﺔ اﻟﺪاﻟﺔ4
¡ ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻘﺎق ﻋﻠﻰexp ﻧﻘﺒﻞ أن اﻟﺪاﻟﺔ
( )("x Î ¡) : e x ¢ = e x :و ﻟﺪﯾﻨﺎ
ﻋﺜﻤﺎﻧﻲ ﻧﺠﯿﺐ: اﻷﺳﺘﺎذ2 http:// xyzmath.e-monsite.com
(5ﺟﺪول ﺗﻐﯿﺮات اﻟﺪاﻟﺔ : x ® e x
(6ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ : exp
ﺗﻤﺮﯾﻦ :6أﺣﺴﺐ ) f ¢( xﻓﻲ اﻟﺤﺎﻻت اﻵﺗﯿﺔ :
f (x ) = e x -1 (3 f (x ) = xe x + 3x (2 f (x ) = e x + 2 (1
ex +1
اﻟﺤﻞf ¢( x) = (ex + 2)¢ = (ex )¢ + (2)¢ = ex + 0 = ex (1 :
f ¢(x) =( xex +3x)¢ = (xex )¢ +(3x)¢ = (x)¢ ex + x(ex )¢ +3=ex + xex +3(2
)¢(x æ ex - 1 ö¢ (e x - 1)¢ ´ (ex + 1)- (ex ´)- 1 (e x + 1)¢ (3
ç ex ( )e x + 1 2
f = è + 1 ÷ =
ø
´ ( ( ) ( ) ) ( ) ( )f ¢(x) = ex
ex +1 - ex -1 ´ex = ex ´ex + ex -ex ´ex + ex = 2ex
ex +1 2 ex ex +1 2
2
+1
ﺗﻤﺮﯾﻦ :7ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﯾﺔ fاﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﯾﻠﻲf (x ) = e x + 3x :
(1ﺣﺪد Dfﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﯾﻒ اﻟﺪاﻟﺔ f
(2أﺣﺴﺐ ) f (0و ) ) f (1أﻋﻂ ﻗﯿﻤﺔ ﻣﻘﺮﺑﺔ ﻟﻠﻨﺘﺎﺋﺞ(
(3أﺣﺴﺐ ) f ¢(xو وﺑﯿﻦ أن اﻟﺪاﻟﺔ fﺗﺰاﯾﺪﯾﺔ ﻗﻄﻌﺎ ﻋﻠﻰ Df
(4أﺣﺴﺐ ) lim f (xو) lim f (x
x ®+¥ x ® -¥
(5ﺣﺪدﺟﺪول ﺗﻐﯿﺮات اﻟﺪاﻟﺔ f
اﻟﺤﻞDf = ¡ (1 :
f (0) = e 0 + 3´ 0 = 1- 0 = 1(2
f (1) = e1 + 3´1 = e + 3 ; 2, 7 + 3 ; 5, 7
f ¢(x ) = (ex +3x )¢ = (ex )¢ +(3x )¢ =ex +3> 0(3
ﻷن ("x Î ¡) ex > 0 :وﻣﻨﮫ fﺗﺰاﯾﺪﯾﺔ ﻗﻄﻌﺎ ﻋﻠﻰ ¡
(4أﺣﺴﺐ lim f (x ) = lim ex +3x = 0+3(-¥) = -¥
x ®-¥ x ®-¥
lim f (x ) = lim ex +3x = +¥+3(+¥) = +¥
x ®+¥ x ®+¥
(5ﺟﺪول ﺗﻐﯿﺮات اﻟﺪاﻟﺔ f
3 http:// xyzmath.e-monsite.comاﻷﺳﺘﺎذ :ﻋﺜﻤﺎﻧﻲ ﻧﺠﯿﺐ