SDA Pattern's Monthly Practice Module Sets RISING SCHOLAR PROFICIENCY LEVEL BOOKLETS (STATE-LEVEL) DIGITAL BOOK SDA RISING SCHOLAR SPEED + ACCURACY= SUCCESS 8 th SCHOLARSHIP English Medium * For Privet Circulation Only A BRAND NEW REVOLUTION A.S.R. 1. Numbers 1.1 - International and Roman Numeral Q. 1) Write the given numbers in International numerals. : 9632 1) 9623 2) 9236 3) 9263 4) 9632 Correct Op on : 4 th Explaina on : 9 = 9 , ६ = 6, ३ = 3, २ = 2. 4 op on is correct. Q. 2) Write the given numbers in International numerals. : 41658. 1) 41685 2) 41658 3) 41656 4) 49658 Correct Op on: 2 Explaina on : Interna onal numerals 41658 Think to Remember Solved Example The place values of digits go in the sequence of Ones, Tens, Hundreds, Thousands, Ten Thousands, Hundred Thousands, Millions, Ten Millions and so on, in the international numeral system. In the number 12,345,678 the place values of each digit are: · 8 – Ones · 7 – Tens · 6 – Hundreds · 5 – Thousands · 4 – Ten Thousands · 3 – Hundred Thousands · 2 – Millions · 1 – Ten Millions The relations between them are : · 1 hundred = 10 tens · 1 thousand = 10 hundreds = 100 tens · 1 million = 1000 thousands· 1 billion = 1000 millions International Numeral System Comparison between Indian and International Numeral System Comparing the two numeral systems we observe that: · 100 thousands = 1 lakh · 1 million = 10 lakhs · 10 millions = 1 crore · 100 millions= 10 crores Roman Numeral System Roman numerals are a system of numerical notations used by the Romans. They are an additive (and subtractive) system in which letters are used to denote certain "base" numbers, and arbitrary numbers are then denoted using combinations of symbols. Unfortunately, little is known about the origin of the Roman numeral system (Cajori 1993, p. 30). The following table gives the Latin letters used in Roman numerals and the corresponding numerical values they represent character numerical value I 1 V 5 X 10 Std. - 5 (Eng.Modul - 1) SDA Pattern 1 D.P.P. 1 D.P.P.
1) AmH$bZ 1.1 - CVmam d ˶mda AmYm[aV àíZ WmoS>³¶mV {díbofU ^mfoÀ¶m AmH$bZmgmR>r CVmam AmH$bZ hm ‘hËdmMm ^mJ Amho. CVmè¶mMo àW‘ H$miOrnyd©H$ dmMZ H$éZ ˶mMm {df¶ KQ>Zm àg§J 춺$sMr ‘m{hVr VgoM ZdrZ eãXm§Mo g§X^m©Zwgma AW© bjmV ¿¶mdo CVmè¶mMo XmoZXm dmMZ H$éZ CVmè¶mda AmYmarV àíZm§Mr CÎmao ‘ZmV {ZpíMV Pmë¶mZ§VaM Vr Zm|XdmdrV. CVmè¶mMr H${R>U nmVir, ^mfm e¡br hr nmR>çH«$‘mg AZwén AgVo ˶m‘wio hm h‘Img JwU {‘idyZ XoUmam àíZ àH$ma Amho. ● CVmam em§V {MÎmmZo dmMmdm d ˶mVrb Ame¶ g‘OyZ ¿¶mdm. ● CVmè¶mVrb àg§J, KQ>Zm, g§dmX, dU©Z ¶m ~m~VMr ‘m{hVr ì¶dpñWV g‘OyZ ¿¶mdr. ● à˶oH$ àíZmMm d ˶mImbrb {Xboë¶m n¶m©¶mMm {dMma H$éZ ~maH$mB©Zo AMyH$ n¶m©¶ {ZdS>mdm. ● CVmè¶mdarb àíZ ‘OHw$amÀ¶m H«$‘mZo AgVrbM Ago Zmhr. ● CVmè¶mda {H$‘mZ VrZ àíZ {dMmabo OmVmV. 1) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. à{VH$ åhUOo {MÝh qH$dm IwU. Mma qghmMr ‘wÐm ho Amnbo amï´>r¶ {MÝh Amho. n§I ngabobm JéS> ho A‘o[aHo$Mo {MÝh Amho. {Zio Y‘©MH«$ Agbobm {Va§Jr P|S>m ho gwX²Ym EH$ àH$maMo {MÝh Amho. Aem {MÝhm‘YwZ H$mhr AW© gwMdbobm AgVmo. Ogo AmnU bhmZnUr {eH$Vmo H$s P|S>çm‘Ybm Ho$ear a§J ˶mJmMm, nm§T>am a§J em§VVoMm, Va {hadm a§J g‘¥X²YrMm, Agm ‘moR>m AW© Á¶m {MÝhm§‘ܶo gmR>dbobm AgVmo ˶mbm "à{VH$' Ago åhUVmV. Q. 1) Á¶m {MÝhm§‘ܶo ‘moR>m AW© gmR>dbobm AgVmo ˶mbm H$m¶ åhUVmV ? 1) ‘wÐm 2) MH«$ 3) à{VH$ 4) P|S>m AMwH$ n¶m©¶ : 3 ñnï>rH$aU : à{VH$ Q. 2) H$moUVm a§J ^a^amQ> XmIdVmo ? 1) {Zim 2) nm§T>am 3) Ho$ear 4) {hadm AMwH$ n¶m©¶ : 4 ñnï>rH$aU : {hadm a§J ^a^amQ> XmIdVmo. Q. 3) ¶m CVmè¶mVrb Amnbr XmoZ amï´>r¶ à{VHo$ H$moUVr ? 1) amï´>JrV d amï´>ÜdO 2) Mma qghmMr ‘wÐm d {Va§Jr P|S>m 3) ÜdOJrV d amï´>JrV 4) amO‘wÐm d amï´>JrV AMwH$ n¶m©¶ : 2 Cñnï>rH$aU : Mma qghmMr ‘wÐm d {Va§Jr P|S>m 2) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZm§Mo CÎma Úm. bhmZ ‘wbm§Zm H$mgd AmdS>Vo. H$mgd nmʶmV Am{U O{‘Zrda OJy eH$Umam àmUr Amho. åhUyZM ˶mg "C^¶Ma' åhUVmV. H$mgd nmʶmVrb OrdO§Vy ImD$Z nmUr gm’$ H$aVo. åhUyZ {dhrarV H$mgdo nmiʶmMr nX²YV Amho. H$mgd A{Ve¶ ImXmS> d {MdQ> AgVo. åhUyZM {ZgJm©À¶m ahmQ>JmS>½¶mV ¶wJmZ¶wJo H$mgd {Q>Hy$Z am[hbo. "S>m¶Zmgm°a' hm EH$ A{Ve¶ nwamVZ Am{U àM§S> AmH$mamMm Z‘wZm àíZ (AMyH$ n¶m©¶ d ñnï>rH$aU) Std. - 5 (Eng.Modul - 1 & 2) SDA Pattern 1 D.P.P. 1
àmUr hmoVm. H$mbm§VamZo n¥Ïdrdarb ~è¶mM àmʶm§Mm g§hma Pmbm. ˶mVM "S>m¶Zmgm°a' ¶m àmʶmMm Zme Pmbm. nU H$mgdmMm OÝ‘ hm "S>m¶Zmogmoa' À¶m nyduMm. H$mgd ‘mÌ {Q>Hy$Z am{hbo. Q. 1) H$mgd {MdQ> Amho ho H$emdéZ ? 1) Vo ImXmS> Amho. 2) Vo nmUr gm’$ H$aVo. 3) AZoH$ àmʶmMm g§hma Pmbm Var Vo {Q>Hy$Z Amho. 4) Vo C^¶Ma Amho. AMwH$ n¶m©¶ : 3 ñnï>rH$aU : AZoH$ àmʶmMm g§hma Pmbm Var Vo {Q>Hy$Z Amho. Q.2) H$moUmÀ¶m nydu H$mgdmMm OÝ‘ Pmbm ? 1) gemÀ¶m 2) S>m¶ZmogmoaÀ¶m 3) Q>obmBQ>À¶m 4) O§VyÀ¶m AMwH$ n¶m©¶ : 2 ñnï>rH$aU : S>m¶ZmogmoaÀ¶m nydu H$mgdmMm OÝ‘ Pmbm. Q. 3) ""C^¶Ma'' åhUOo H$m¶ ? 1) nmʶmV d O{‘Zrda amhVmo Vmo 2) {d{h[aV amhVmo Vmo 3) OrdO§Vy ImVmo Vmo 4) nmʶmV d AmH$meV amhVmo Vmo AMwH$ n¶m©¶ : 1 ñnï>rH$aU : nmʶmV d O{‘Zrda amhVmo Vmo C^¶Ma. Aä¶mg - 1.1 3) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. ‘Y‘mí¶m§Mo Ka Vwåhr nm{hbo Amho H$m ? ¶m Kambm nmoio qH$dm ‘mohmoi åhUVmV. ¶m KamMr à˶oH$ Imobr Aï>H$moZr AgVo. ˶mVrb H$moU˶mhr XmoZ Imoë¶m§À¶m {^Vr ‘moOyZ nmhm. ˶m AJXr gma»¶m AgVmV. ‘Y‘mí¶m§Mo ho AO~ Ka nm{hbo åhUOo ˶m§À¶m A§JÀ¶m H$bmH$m¡eë¶m§Mo ’$maM AmíM¶© dmQ>Vo. eoH$S>mo Aï>H$moZr Imoë¶m Agbobo ho Ka ‘Y‘mí¶m§Zr Zoh‘r JO~Obobo AgVo. H$mhr ‘mí¶m ~m§YH$m‘ H$aV AgVmV, Va H$mhr XþaXþaÀ¶m ’w$bm§Vrb ‘Y Jmoim H$éZ AmUVmV. Q. 1) ‘Y‘mí¶m§À¶m Kambm H$m¶ åhUVmV ? 1) Omir 2) nmoio 3) ~ri 4) dméi Q. 2) ‘Y‘mí¶m§À¶m KamÀ¶m Imoë¶m {H$Vr H$moZm§À¶m AgVmV ? 1) Aï>H$moZr 2) n§MH$moZr 3) {ÌH$moZr 4) ï>H$moZr Q. 3) darb CVmè¶mV H$emMo dU©Zo Ho$bo Amho ? 1) ‘Y‘mí¶m§Mo 2) ‘Y‘mí¶m§À¶m H$m¡eë¶m§Mo 3) ‘Y‘mí¶m§À¶m H$m‘mMo 4) ‘Y‘mí¶m§À¶m KamMo 4) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. {haH$Ur JdiU am¶JS>mÀ¶m nm¶Ï¶mer amhV hmoVr. EHo$ {Xder Vr XÿY {dH$m¶bm JS>mda Jobr hmoVr. gw¶m©ñVmbm JS>mMo XadmOo ~§X Pmbo. Kar {VMm bhmZ ‘wbJm EH$Q>mM hmoVm. ˶m‘wio {haH$Urbm H$gohr H$éZ Kar naV ¶m¶MoM hmoVo. Vr JS>mdarb gd© XadmOm§Odi Jobr, na§Vw Imbr CVaʶmMm ‘mJ© gmnS>bm Zmhr. eodQ>r EH$m C§M VwQ>boë¶m H$S>çmdéZ Vr Imbr CVabr. Imbr CVaVmZm {VMo H$nS>o ’$mQ>bo; earamda OI‘m Pmë¶m na§Vy ~mimÀ¶m AmoT>rZo Vr g§H$Q>mda ‘mV H$éZ Kar Ambr. {edmOr ‘hmamOm§Zm hr Jmoï> ‘mhrV Pmbr. ˶m§Zr {haH$UrÀ¶m YmS>gmMo H$m¡VwH$ Ho$bo. ˶m H$S>çmda ~wéO ~m§Ybm d ˶m ~wéOmbm "{haH$Ur ~wéO' Ago Zmd {Xbo. Q. 1) {haH$Ur H$moU˶m {H$ëë¶mÀ¶m nm¶Ï¶mer amhV hmoVr ? 1) àVmnJS> 2) amOJS> 3) am¶JS> 4) H$m|T>mUm Q. 2) JS>mMo XadmOo Ho$ìhm ~§X Pmbo ? 1) gw¶m}X¶mbm 2) gw¶m©ñVmbm 3) Xþnmar 4) ‘ܶamÌr gamd àíZ Std. - 5 (Eng. Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Q. 3) {haH$Ur JS>mdéZ H$moU˶m ‘mJm©Zo Imbr Ambr ? 1) MmoadmQ>oZo 2) ‘w»¶ XadmOmZo 3) VwQ>boë¶m H$S>çmdéZ 4) amO‘mJm©Zo 5) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. amOy CÝhmV Jobm. ˶mÀ¶m EH$m hmVmV {^§J d Xþgè¶m hmVmV H$mJX hmoVm. ˶mZo q^J H$mJXmda Aem [aVrZo Yabo H$s, àH$memMm EH$ Jmob {R>nH$m H$mJXmda C‘Q>bm. WmoS>çm doimZo ˶m {R>n³¶mer H$mJX Oiy bmJbm. AmJnoQ>rVrb H$mS>r Z noQ>dVmM amOyZo H$mJX OmiʶmMr OmXÿ Ho$br. gw¶m©À¶m {H$aUm§V CîUVm AgVo. Vr CîUVm gmR>dyZ EH$ eº$s {Z‘m©U H$aVm ¶oVo. gw¶m©À¶m ¶m eº$sbm "gm¡aD$Om©' åhUVmV. gm¡aD$O}Zo {Xdo noQ>dVm ¶oVmV. ao{S>Amo, Q>r.ìhr. Mmbdbo OmVmV. gm¡aD$O}da ‘moQ>mar MmbdʶmMo à¶moJ Ho$bo OmV AmhoV. gm¡aD$Om© ho ’$ma ‘hmJ Zgbobo B§YZ Amho. Q. 1) amOyZo H$mJX H$emZo noQ>dbm ? 1) ‘m{MgZo 2) {^§JmZoे 3) gm¡aD$O}Zo 4) CÝhmZo Q. 2) gm¡aD$Om© ho ............ B§YZ Amho. 1) ‘hmJS>o 2) ñdñV 3) nadS>Umao 4) ÁdbZerb Q. 3) H$moUmÀ¶m eº$sbm ""gm¡aD$Om©'' åhUVmV ? 1) M§ÐmÀ¶m 2) CîUVoÀ¶m 3) gw¶m©À¶m 4) Vmè¶m§À¶m 6) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. gd© Ñï>rZo àgÞ AgUmam M¡Ì ‘{hZm O|ìhm ¶oVmo, V|ìhm g¥ï>r‘mVoÀ¶m bmS>³¶m dg§VmMr CYiU Mmbbobr AgVo. d¥jm§Zm Zdr nmZo ’w$Qy> bmJVmV. H$modù¶m nmZm§Zr ~habobr PmS>o bhmZ ‘wbm§gmaIr JwQ>JwQ>rV {Xgy bmJVmV. {ZgJ© amOm IwerV {ei KmbV AgVmo. H$moH$si Hw$hÿHw$hÿ JmV AgVo. CËgd, Ioi d H$a‘UyH$ ¶m§Mm {ÌdoUr g§J‘ ¶mM ‘{hݶmV nhmd¶mg {‘iVmo. ¶m ‘{hݶmV qhXÿ Y‘u¶m§À¶m Zd dfm©Mm àma§^ hmoVmo. AmZ§X à{V df© JwT>r C^méZ gmOam Ho$bm OmUmam hm gZ åhUOo ""JwT>rnmS>dm'' ¶m {Xder {dÚm϶mªZr kmZmOm©ZmMm g§H$ën H$éZ ^anya Aä¶mg H$aʶmMo ñdV:bmM dMZ {Xbo nm{hOo. Q. 1) g¥ï>r ‘mVoMm bmS>H$m H$moU Amho ? 1) M¡Ì ‘{hZm 2) dg§V F$Vy 3) {ZgJ© amOm 4) JwT>rnmS>dm Q. 2) {h§Xÿ Y{‘©¶m§À¶m Zd dfm©Mm àma§^ H$Yr hmoVmo ? 1) JwT>rnmS>ì¶mbm 2) dg§V F$VyV 3) M¡Ì ‘{hݶmV 4) {dO¶m Xe‘rbm Q. 3) ¶m {Xder {dÚm϶m©Zo H$emMm g§H$ën H$amdm ? 1) kmZXmZmMm 2) CËgd, Ioi d H$a‘UwH$sMm 3) Aä¶mg H$aʶmMm 4) kmZmO©ZmMm 7) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. OmbZm {OëømVrb D$g VmoS>UrÀ¶m H$m‘mbm Ow§nboë¶m B§Xþbm Amnë¶m ‘wbm§À¶m {ejUmMr H$miOr dmQ>V hmoVr. AmO BWo emim Va CÚm {VWo, {VZo M§J ~m§Ybm H$mhr Pmb§ Var ‘wbm§Zm {eH$dm¶M§. {VZo VS>H$ eha JmR>bo. ehamV PmonS>r dOm Ka ~m§Ybo. {VWë¶mM Zm‘m§{H$V emioV ‘wbm§Zm KmbʶmMm ܶmg KoVbm. Ywݶm ^m§S>çmMr H$m‘o {‘idbr. WmoS>r pñWamdë¶mda {VZo ˶mM emioV ‘wbm§Zm àdoe KoVbm. B§XþZo hbmIrÀ¶m n[apñWVrV Ka H$m‘m~amo~aM H$Yr H$Yr Ho$ir {dHy$Z ‘wbm§À¶m ’$sMm àíZ gmoS>dbm. nU H$Yr Hw$UmnwT>o hmV ngabm Zmhr. ‘wbm§Zmhr AmB©Mr YS>nS> {XgV hmoVr. ˶m§Zrhr ‘Z bmdyZ Aä¶mg Ho$bm. AmO B§XÿMr XmoZ ‘wb§ Cƒ {ejU KoV AmhoV. Va N>moQ>m embo¶ {ejUm~amo~aM H$amQ>o ¶m Ioi n«H$mam‘ܶo n«m{dʶ {‘idV Amho. ˶mÀ¶mgmR>r nmdeoa XþY {‘imd§ åhUwZ Aem YS>nS>Umè¶m AmB©M§, ‘wbm§À¶m àJVrV ‘moR§> ¶moJXmZ Amho. Std. - 5 (Eng. Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Q. 1) B§XþZo H$moUVm M§J ~m§Ybm ? 1) eha JmR>ʶmMm 2) H$m‘o {‘i{dʶmMm 3) ‘wbmZm {eH${dʶmMm 4) ehamV Ka ~m§YʶmMm Q. 2) B§Xÿbm EHy$U {H$Vr ‘wbo hmoVr ? 1) 1 2) 3 3) 4 4) 2 Q. 3) “hmV ngaUo” ¶m dmH²$àMmamMm Zo‘H$m AW© H$moUVm Vo emoYm ? 1) ‘XV ‘mJUo 2) ghmæ¶ H$aUo 3) ì¶m¶m‘ H$aUo 4) Am|Oi H$aUo 8) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. Vm{‘iZmSy>À¶m npíM‘og g‘wÐ {H$Zmar "am‘oída‘' ZmdmMo N>moQ>o Jmd VoWrb {ed‘§{Xam‘wio à{gÜX hmoVo. à^y am‘ M§Ðm§Zr ¶m ^y‘rV nm¶ R>odbo, Aer BWë¶m bmoH$m§Mr YmaUm hmoVr. ¶oWoM 15 Am°³Q>mo~a 1931 amoOr AãXþbMm OÝ‘ Pmbm. AãXþbÀ¶m d{S>bm§Mo CËnÞmMo ‘w»¶ gmYZ am‘oída‘ Vo YÝfH$moS>rn¶ªV ¶mÌoH$éZm Zo-AmU H$aUo ho hmoVo. g§nwU© Hw$Qy>§~mMm M[aÌmW© ˶mda Adb§~yZ hmoVm, na§Vy EH$m ‘moR>çm dmXim‘wio am‘oída‘À¶m {H$Zmè¶mbm O~aXñV VS>mIm ~gbm. ˶mV hmoS>rMo nwU© ZwH$gmZ Pmbo. Aem {~H$Q> àg§Jr AãXþbZo {M§Mmo³¶mÀ¶m {~¶m XþH$mZXmambm {dHy$Z, VgoM MwbV^mdmbm dV©‘mZnÌ {dH$ʶmg ‘XV H$éZ n{hbr H$‘mB© Ho$br. ¶mVyZ Hw$Qy>§~mMm ^ma CMbʶmMm AmZ§X {‘idbm. Q. 1) am‘oída‘ Jmd H$moU˶m ‘§{Xam‘wio à{gÜX hmoVo ? 1) am‘mMo ‘§{Xa 2) e§H$amMo ‘§{Xa 3) {VénVr ‘§{Xa 4) H¥$îUmMo ‘§{Xa Q. 2) dmXim‘wio H$moU˶m {H$Zmè¶mbm O~aXñV VS>mIm ~gbm ? 1) YZwfH$moS>r 2) Vm{‘iZmSy> 3) am‘oída‘ 4) ‘hmamï´> Q. 3) darb CVmè¶mV "H$R>rU' ¶m AWm©Mm Ambobm eãX H$moUVm ? 1) YmaUm 2) VS>mIm 3) ^ma 4) {~H$Q> 9) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. gmVmè¶mnmgyZ Odi Agboë¶m "‘mhþbr' JmdÀ¶m à^yʶm§À¶m Jar~ Hw$Qw>§~mVrb am‘ hm ‘wbJm Iwn Aä¶mg H$éZ Y‘©emómV à{dU Pmbm. bmoH$ ˶mMm gÝ‘mZ H$é bmJbo. AmVm "am‘emór' ¶m ZmdmZo Vo AmoiIbo OmD$ bmJbo. am‘emór nwT>o nwʶmV amhʶmg Ambo. ˶m§Mr hþemar nmhÿZ noeì¶m§Zr ˶m§Zm ݶm¶ Im˶m‘ܶo ZmoH$ar {Xbr. emórMo CÎm‘ kmZ, Z {^Vm ¶mo½¶ ݶm¶ XoʶmMo YmS>g Am{U ñnï>dºo$nUm Iao ~mobʶmMr V¶mar ¶m‘wio am‘emór gdmªMo AmdS>Vo Pmbo. A§JÀ¶m hþemarZo nwT>o Vo ‘amR>r amÁ¶mMo ‘w»¶ ݶm¶mYre ~Zbo. Q. 1) noeì¶m§Zr am‘emótZm ݶm¶Im˶mV ZmoH$ar {Xbr H$maU ... 1) Vo gdmªMo AmdS>Vo hmoVo. 2) Vo Y‘©emómV à{dU hmoVo. 3) Vo hþema hmoVo. 4) ˶m§Mr noeì¶m§H$S>o AmoiI hmoVr. Q. 2) emómV à{dU Pmë¶mda am‘ H$moU˶m ZmdmZo AmoiIbm OmD$ bmJbm ? 1) Y‘©n§{S>V 2) à^wUo 3) ‘w»¶Ý¶m¶mYre 4) am‘emór Q. 3) CVmè¶mVrb "à{dU' ¶m eãXmMm AW© Imbrbn¡H$s H$moUVm ? 1) à»¶mV 2) Va~oO 3) MVwa 4) à{gÜX 10) Imbrb CVmam dmMyZ ˶mImbr {Xboë¶m àíZmMo CÎma Úm. Xod-XmZd-‘mZd ¶m§À¶m g§~§YmV OZ‘mZgmV Á¶m g‘OwVr Ka H$éZ AmhoV d à˶j dñVwpñWVrV IynM ’$aH$ Agbobm {XgyZ ¶oVmo. ‘mUgm§‘ܶoM Xod-XmZd-‘mZd R>aV AgVmV. Xod-XmZd-‘mZd ¶m§Mr gaigmonr ì¶m»¶m nwT>rbà‘mUo gm§JVm ¶oB©b. Xþgè¶m§À¶m Xþ:ImZo Omo gwIr hmoVmo Vmo XmZd, Xþgè¶m§À¶m Xþ:ImZo Omo Xþ:Ir hmoVmo Vmo ‘mZd Am{U Xþgè¶m§À¶m gwImZo Omo gwIr hmoVmo Vmo Std. - 5 (Eng. Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Xod OmUmdm. Ooìhm OJmV gd©Ì dmXi, Jm|Yi, JS>~S>, X§JoYmono, aº$nmV, ¶wX²Y, bT>m¶m Aem A{Zï> Jmoï>r KS>VmV. Voìhm OZ‘mZgmV X¡Ý¶ d Xþ:I ‘moR>çm à‘mUmda {Z‘m©U hmoD$Z bmoH$m§V H$‘mbrMo Z¡amí¶ d d¡’$ë¶ ¶oVo. Aem {~H$Q> n[apñWVrVyZ H$mhrVar ‘mJ© H$mT>mdm Aer Vrd« BÀN>m OZ‘mZgmV {Z‘m©U hmoVo. "‘mJUr Vgm nwadR>m' Agm {ZgJ©XodVoMm - na‘oídamMm {Z¶‘ Amho. Q. 1) darb CVmè¶mV Imbrbn¡H$s H$moUVr CbQ> AWm©Mr OmoS>r Ambobr Zmhr ? 1) gwIr x Xþ:Ir 2) Xod x XmZd 3) {~H$Q> x gmonr 4) BÀN>m x A{ZÀN>m Q. 2) Xod H$moUmg åhUmdo ? 1) Xþgè¶m§À¶m Xþ:ImZo gwIr hmoUmè¶mg 2) Xþgè¶m§À¶m gwImZo Xþ:Ir hmoUmè¶mg 3) Xþgè¶m§À¶m Xþ:ImZo Xþ:Ir hmoUmè¶mg 4) Xþgè¶m§À¶m gwImZo gwIr hmoUmè¶mg Q. 3) OZ‘mUgmV X¡Ý¶ d Xþ:I ‘moR>çm à‘mUmda H$Yr {Z‘m©U hmoVo ? 1) A{Zï> Jmoï>r KS>ë¶m‘wio 2) {Zamem Agë¶m‘wio 3) d¡’$ë¶J«ñV Pmë¶m‘wio 4) {~H$Q> n[apñWVr‘wio 11) Imbrb CVmam H$miOrnyd©H$ dmMm. ˶mImbr {Xboë¶m à˶oH$ àíZmgmR>r CÎmamMo Mma n¶m©¶ {Xbo AmhoV. CÎman{ÌHo$V àíZH«$‘m§H$mg‘moarb ¶mo½¶ n¶m©¶mMo CÎma dVw©i H$mio H$éZ Zm|Xdm. S>m°. Pm{H$a hþgoZ A˶§V {dX²dmZ hmoVo. ^maVmMo EH$ gwg§ñH¥$V, gm¡Oݶerb, ì¶mg§Jr amï´>mܶj åhUyZ ˶m§Mr »¶mVr hmoVr. ~{b©Z {dÚmnrR>mMr AW©emómMr S>m°³Q>aoQ> hr ˶m§Zr KoVbr hmoVr. Vo EH$ Zm‘m§{H$V {ejUVÁk g‘Obo OmV. ˶m§À¶m ~wYrMm Vwè¶mÀ¶m {H$VrVar Jmoï>r AmË‘gmV H$aʶmgma»¶m AmhoV. Vo O‘©ZrV Jobo AgVm§Zm ˶m§Zm Amnë¶m EH$m {‘ÌmH$S>o ñdrS>Zbm OmʶmMr BÀN>m {Z‘m©U Pmbr. VoWo Vo Joë¶mZ§Va H$mhr {Xdgm§VM ˶m§À¶m bjmV Ambo H$s, AmVm Amnë¶mH$S>Mo n¡go g§nbo AmhoV. {‘ÌmH$S>o n¡go ‘mJUo ˶m§Zm éMoZm H$m¶ H$amdo ¶m qMVoV Vo nS>bo. ˶mM doir ˶m§Zm EH$m ñdrS>Z nÌH$mamZo Amnë¶m H$m¶m©b¶mV ‘moR>çm gÝ‘mZmZo ~mobmdbo Am{U H$mhr àíZ {dMmabo. Voìhm Pm{H$a hþgoZ åhUmbo, ""Vw‘À¶m gd© àíZm§Mr g{dñVa CÎmao XoʶmgmR>r ‘bm EH$ boI {bhmdm bmJob''. ""haH$V Zmhr {bhm.'' ""{edm¶ ‘hmË‘m Jm§YtÀ¶m H$m¶m©Mr AmoiI H$éZ XoʶmgmR>r boI‘mbmM {bhmdr bmJob. ˶m{edm¶ ˶m§À¶m H$m¶m©Mr AmoiI hmoUma Zmhr.'' ""Mmbob {bhm Amåhr Vo Am‘À¶m d¥ÎmnÌmV à{gÜX H$é.'' Pm[H$a hþgoZ ¶m§Zr VoWo AgVmZm ‘hmË‘m Jm§Yr ¶m§À¶mda boI {bhÿZ n¡go {‘idbo Am{U Amnbm gd© IM© ˶m boImÀ¶m ‘mZYZmVyZ ^mJdbm. ‘mÌ Amnë¶mH$S>o EH$hr n¡gm Zmhr, ¶mMm gwJmdm ˶m§Zr Hw$UmbmM bmJy {Xbm Zmhr. {edm¶ H$moUmH$S>o EH$ n¡gmhr ‘m{JVbm Zmhr. Q. 1) S>m°. Pm{H$a hþgoZ ¶m§Mm CVmè¶mV {H$Vr {deofUm§Zr C„oI Ho$bm Amho ? 1) VrZ 2) Mma 3) nmM 4) ghm Q. 2) H$moR>o AgVmZm ˶m§À¶mOdirb n¡go g§nbo ? 1) ^maVmV 2) ~{b©Z‘ܶo 3) O‘©ZrV 4) {ñdS>Z‘ܶo Q. 3) S>m°. hþgoZZr ‘hmË‘mOtda boI‘mbm {b{hʶmMo H$m R>adbo ? 1) ‘hmË‘mOtMr ‘m{hVr gdmªZm H$imdr 2) ^anya n¡go {‘imdo 3) ‘hmË‘mOtÀ¶m H$m¶m©Mr AmoiI gdmªZm ìhmdr d Amnë¶mbm n¡go {‘imdo. 4) boI‘mbm {b{hUo JaOoMo Agë¶m‘wio Std. - 5 (Eng. Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2) Classification 3) Number The questionnaire consists of four numbers or more numbers and a question mark is given in one place. In given number series student should find the sequence of series and find the answer from the given options In order to find the correct number options, it is important to consider the relationship between the two numbers adjacent to the given question mark. Sometimes the relationship between any of the other two factors has to be taken into account. This relation is based on the mathematical operation and relation of addition, subtraction, multiplication, cube, square, etc. The first, second, third, fourth, and fifth relationships are sometimes related, while the first, second, third, fourth, respectively. Considering all this, one has to find the number that comes in place of the question mark in the numerical order. Sometimes twin series is given so student should find exact answer at that time. 1) Add the numbers and try to make them a series. 2) Check if there are squares / cubes of numbers near them. 3) Compare numerator to denominator in the fractions. 4) Check whether the first digits of the number have ascending / descending order. Like this 5) Differences in the number of neighbors in the series should be shown 6) To see if the next number is the addition / multiplication / division of the neighboring numbers. 7) Check to see if the series numbers are prime numbers, twin prime numbers, co-prime numbers or composite numbers. Q. 1) Find odd man out number. 1) 65 2) 63 3) 62 4) 61 Option : 4 Explaination : 61 is prim no. other are composits no. Q. 2) Find odd man out number. 1) 10 – 3 2) 7 – 5 3) 15 – 8 4) 25 – 18 Option : 2 Explaination : except 7 – 5 subtraction of other no. is 7. Exercise : 2.2 Q. 3) Find odd man out number. 1) 1 2) 8 3) 25 4) 27 Q. 4) Find odd man out number. 1) 1 2) 8 3) 9 4) 27 Let`s Understand Solved Example Practice Example Std. - 5 (Eng.Modul 1 & 2) SDA Pattern 1 D.P.P. 1 1 2 3 4 1 2 3 4
Q. 5) Find odd man out number. 1) 31 2) 27 3) 41 4) 23 Q. 6) Find odd man out number. 1) 77 2) 59 3) 55 4) 33 Q. 7) Find odd man out number. 1) 52 2) 91 3) 56 4) 65 Q. 8) Find odd man out number. 1) 7 2) 9 3) 11 4) 13 Q. 9) Find odd man out number. 1) 51 2) 21 3) 91 4) 31 Q. 10) Find odd man out number. 1) 264 2) 385 3) 473 4) 156 Q. 11) Find odd man out number. 1) 16 2) 26 3) 36 4) 64 Q. 12) Find odd man out number. 1) 57 2) 84 3) 48 4) 65 Q. 13) Find odd man out number. 1) 8 2) 27 3) 125 4) 64 Q. 14) Find odd man out number. 1) 83 2) 73 3) 46 4) 38 Q. 15) Find odd man out number. 1) 6 2) 19 3) 28 4) 18 Q. 16) Find odd man out number. 1) 40 2) 50 3) 32 4) 18 Q. 17) Find odd man out number. 1) 1113 2) 2329 3) 1719 4) 2327 Q. 18) Find odd man out number. 1) 3927 2) 248 3) 124 4) 111 Q. 19) Find odd man out number. 1) 1255 2) 2106 3) 7299 4) 3437 Q. 20) Find odd man out number. 1) 535 2) 416 3) 636 4) 749 Q. 21) Find odd man out number. 1) 351 2) 426 3) 435 4) 832 Std. - 5 (Eng.Modul 1 & 2) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1. Numbers 1.1 - International and Roman Numeral Q. 1) Write the given numbers in International numerals. : 9632 1) 9623 2) 9236 3) 9263 4) 9632 Correct Option : 4 th Explaination : 9 = 9 , ६ = 6, ३ = 3, २ = 2. 4 option is correct. Q. 2) Write the given numbers in International numerals. : 41658. 1) 41685 2) 41658 3) 41656 4) 49658 Correct Option: 2 Explaination : International numerals 41658 Think to Remember Solved Example The place values of digits go in the sequence of Ones, Tens, Hundreds, Thousands, Ten Thousands, Hundred Thousands, Millions, Ten Millions and so on, in the international numeral system. In the number 12,345,678 the place values of each digit are: · 8 – Ones · 7 – Tens · 6 – Hundreds · 5 – Thousands · 4 – Ten Thousands · 3 – Hundred Thousands · 2 – Millions · 1 – Ten Millions The relations between them are : · 1 hundred = 10 tens · 1 thousand = 10 hundreds = 100 tens · 1 million = 1000 thousands · 1 billion = 1000 millions International Numeral System Comparison between Indian and International Numeral System Comparing the two numeral systems we observe that: · 100 thousands = 1 lakh · 1 million = 10 lakhs · 10 millions = 1 crore · 100 millions= 10 crores Roman Numeral System Roman numerals are a system of numerical notations used by the Romans. They are an additive (and subtractive) system in which letters are used to denote certain "base" numbers, and arbitrary numbers are then denoted using combinations of symbols. Unfortunately, little is known about the origin of the Roman numeral system (Cajori 1993, p. 30). The following table gives the Latin letters used in Roman numerals and the corresponding numerical values they represent character numerical value I 1 V 5 X 10 Std. - 5 (Eng.Modul - 1) SDA Pattern 1 D.P.P. 1
Q. 3) Write the given number in Roman numerals. : 35. 1) XXXII 2) XXXI 3) XXXV 4) XXXIV Correct Option: 3 Explaination : Roman numerals : XXXV Q. 4) Write the given number in Devnagari numerals. : 432769 1) 432769 2) 432796 3) 432779 4) 432967 Correct Option: 1 Explaination : Devnagari numerals 432769 Q. 5) Write the given number in Devnagari. : 789 1) 789 2) 879 3) 987 4) 897 Correct Option: 1 Explaination: Devnagari numerals 789 Q. 6) Write the given number in Devnagari. : 7945. 1) 7954 2) 7495 3) 7945 4) 7594 Q. 7) Write the given number in Devnagari. : 16953 1) 16935 2) 16953 3) 19653 4) 19635 Q. 8) Write the given number in Devnagari. : 45768. 1) 45768 2) 45678 3) 45869 4) 45786 Q. 9) Write the given number in Devnagari. : 779966 1) 797966 2) 779966 3) 796796 4) 796697 Q. 10) 36 d 9 - 2 = ? 1) 6 2) 4 3) 3 4) 2 Q. 11) How the number 24 is written in Roman numerals ? 1) XIV 2) XXVI 3) XVI 4) XXIV Q. 12) XI + IV x II=......... 1) XXX 2) XIX 3) XVII 4) XV Q. 13) How the number 19 can be written in Roman numerals ? 1) XIV 2) XIX 3) XXIX 4) XXIV Q. 14) How the number 8 can be written in Roman numerals ? 1) V 2) VII 3) VIII 4) IIIV Q. 15) Twice of IX. 1) IXIX 2) XII 3) XVIII 4) XIX Excercise 1.1 Practice Example Std. - 5 (Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Q. 16) How the number 29 can be written in Roman numerals ? 1) XXXI 2) XXVIIII 3) XXX 4) XXIX Q. 17) II + XI = IX Why this wrong sum feels correct if it is seen in reverse direction is correct ? 1) sum XI = II + XI see like this sum 2) sum XI = II + IX see like this sum 3) sum IX = IX - II see like this sum 4) sum XI = IX + II see like this sum Q. 18) What is the time when hour hand is next to XII and minute hand is on two ? 1) XII hrs. 2 min. 2) XII hrs. 10 min less 3) XII hrs. 10 min. 4) XII hrs. 2 min. less Q. 19) What is the number between the table XXVI to XXXIV ? 1) XIII 2) VIII 3) XI 4) IX Q. 20) XI + IX = ? 1) XIIX 2) XX 3) IXXI 4) VIIV Q. 21) VI - V = ? 1) V 2) VI 3) VVI 4) I Q. 22) If the ten minutes is less to quarter to 10 then minute hand will be at which Roman Numerals ? 1) VII 2) VIII 3) IX 4) X Q.23) If Six minutes is less to 11 o`clock then the hour hand and min. hand will be between which of the following two digits? 1) X & XI 2) XI & XII 3) V & VI 4) VIII & IX Q. 24) There are Roman numerals symbols on a clock disc then at 11 o`clock where will be hour hand ? 1) VI 2) XXI 3) IX 4) XI Q. 25) There are Roman numerals symbols on a clock disc then where will be hour hand at 1 o`clock ? 1) II 2) I 3) IV 4) VI Q. 26) Write down the following subtraction in International numerals ? 50304 - 38235 = ? 1) 12169 2) 12069 3) 12069 4) 12059 Q. 27) Write down two Lakh Six thousand forty nine in Dvenagari script ? 1) 206049 2) 260049 3) 206049 4) 260049 Q. 28) Write down twelve lakh twenty thousand twenty three in International script ? 1) 12200023 2) 1220023 3) 12200023 4) 1220023 Q. 29) How does ७६५६४९ number will be written in International symbols ? 1) 795946 2) 765946 3) 765649 4) 765646 Std. - 5 (Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1) Vocabulary 1.1 - Word Formation Learning vacabulary means knowing more and more words and using them in day-to-day life in school and even outside the school. It plays a very important role in teaching and learning process. Learning the words with contextual meaning and the use of dictionary, will help the students to enrich their vocabulary. Let`sRemember: w Study the word carefully. w Select the correct option for your answer. w The newly formed word should be meaningful and in use. Q. 1) Select the correct pair of letters which can replace the first and last letters of the following word to form a new word : s e a t 1) r , g 2) r , d 3) p , m 4) n , m Correct Option : 2 Explaination : Only when you replace s with r , and t with d , will you get a new sensible word read. So the option (2) is the answer. Q. 2) Select a suitable letter in place of the v to form two new sensible words : 1) H 2) B 3) R 4) D Correct Option : 4 Explaination : If you put H or B or R. you do not get two sensible words. If we put D, we get MAID and DEAD which are both sensible words. So the option (4) is the answer. Let`s Understand Solved Example Excercise 1.1 Practice Example Q. 3) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : fire 1) d , m 2) d , t 3) m , n 4) p , t Q. 4) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : beet 1) p , y 2) r , l 3) s , t 4) s , d Q. 5) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : young 1) r , d 2) r , t 3) s , m 4) t , r Std. - 5 (Eng.Modul - 1) SDA Pattern 1 D.P.P. 1 M A I v E A D
Q. 6) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : floor 1) t , g 2) s , n 3) b , d 4) m , t Q. 7) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : chore 1) f , n 2) s , t 3) p , m 4) g , t Q. 8) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : door 1) c , l 2) p , r 3) a , t 4) y , z Q. 9) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : boy 1) f , t 2) r , t 3) c , l 4) g , t Q. 10) Select a suitable letters in place of each v to form two new sensible words: 1) C 2) H 3) B 4) W Q. 11) Select a suitable letters in place of each v to form two new sensible words : 1) T 2) S 3) C 4) W Q. 12) Select a suitable letters in place of each v to form two new sensible words : 1) M 2) C 3) D 4) L Q. 13) Select a suitable letters in place of each v to form two new sensible words : 1) S 2) O 3) A 4) I Q. 14) Select a suitable letters in place of each v to form two new sensible words : 1) T 2) P 3) M 4) N Std. - 5 (Modul - 1) SDA Pattern 1 v E R B A R D v H E R E H A N K v F R A I D R O U N D B R E A v R E A M S P U R v O I S 1 2 3 4 E 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Q. 15) Q. 16) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : fire 1) d , m 2) d , t 3) m , n 4) p , t Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : beet 1) p , y 2) r , n 3) s , t 4) s , d Q. 17) Select the correct pairs of letters which can replace the first and last letters of the following word to form new words : chore 1) f , n 2) s , t 3) p , m 4) g , t Q. 18) Fill in the blank. The ............. king sat on his throne. 1) proud 2) pride 3) precious 4) prince Q. 19) Fill in the blank. It was a .................. victory. 1) glory 2) glorious 3) glorify 4) glorification Q. 20) Pick out the wrong option. A group of musicians and singers who play modern music together. 1) band 2) orchestra 3) choir 4) ballet Q. 21) Choose the option which is the basic / root word. 1) undo 2) unfit 3) unpack 4) unity Q. 22) Find the odd man out. 1) honest 2) kind 3) harworking 4) eagerly Q. 23) I did that without your ............ 1) permitted 2) permission 3) permissiable 4) permissive Q. 24) Pick out the correct option. To give someone a set of questions in order to measure their knowledge or learning. 1) match 2) test 3) game 4) race Q. 25) What do the four words above suggest ? Impossible, disappear, incorrect, unite 1) positive meaning 2) negative meaning 3) Meaningless 4) None of the above Std. - 5 (Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1) dmMyZ H$ënZm d g§H$ënZm ñnï> H$aUo 2) H${dVm d ˶mda AmYm[aV àíZ ^m{fH$ AmH$bZ j‘Vm OmUʶmgmR>r H${dVoMo AmH$bZ hr ‘hÎdmMr H$gmoQ>r Amho. ˶mgmR>r hm àíZàH$ma A§V^©yV Ho$bm Amho. CVmè¶m nojm hm àH$ma H$R>rU AgVmo H$maU H${dVoV H$‘rVH$‘r eãXmV ‘moR>m Ame¶ XS>bobm AgVmo. ^mfm Ab§H$marH$ d AmH$f©H$ AgVo. H${dVoMo AmH$bZ hmoʶmgmR>r H${dVm nwÝhm-nwÝhm dmMmdr, H${R>U eãXmMo AW© ܶmZmV ¿¶mdo. H${dVoMr ‘ܶdVu H$ënZm d ^mdmW© ܶmZmV ¿¶mdm. H${dVoda gmYmaUV: VrZ àíZ {dMmabobo AgVmV. CÎmao {bhrVmZm g§^«‘ Agë¶mg H${dVoVrb g§~§YrV ^mJ nwÝhm dmMmdm. n¶m©¶r CÎmamVrb nhrboM CÎma ~amo~a dmQ>bo, Var KmB© H$é ZH$m. gd© n¶m©¶ ~maH$mB©Zo dmMm d ImÌr H$éZM ¶mo½¶ n¶m©¶ {ZdS>m. 1) Imbrb H${dVm dmMyZ ˶mImbr {Xboë¶m àíZmMr CÎmao Úm. {Xdg gwJrMo gwé Omhbo Amobm Mmam, ~¡b ‘mObo eoVH$ar ‘Z à’w$„ Pmbo N>Z Ii² Ii² N>Z Tw>‘² Tw>‘² nQ> Tw>‘² boPr‘ Mmbo OmoamV ! ^a^a S>’$ Vmo ~mobo Kw‘wZr boPr‘ Mmbo ‘§S>b YéZr, ~mOyg ‘mJo nwT>o dmHw$Zr N>Z² Ii Ii² N>Z² Tw>‘² Tw>‘ nQ> Tw>‘² boPr‘ Mmbo OmoamV ! nhmQ> Pmbr, Vmam WH$ë¶m, ‘mdiVrbm M§Ð CVabm, nar Z WH$bm boPr‘ - ‘oim N>Z² Ii Ii² N>Z² Tw>‘² Tw>‘ nQ> Tw>‘² boPr‘ Mmbo OmoamV ! Q. 1) eoVH$ar AmZ§XmV H$m hmoVo ? 1) ˶m§Zm boPr‘ Ioim¶bm {‘imbo hmoVo åhUyZ 2) eoVmVrb H$m‘o AmVm g§nbr hmoVr åhUyZ 3) Vo gwJrMo {Xdg hmoVo åhUyZ 4) Ymݶ ‘w~bH$ Zgbo Var ~¡bm§gmR>r Mmam ‘wbH$ hmoVm åhUyZ AMyH$ n¶m©¶ - 3 ñnï>rH$aU - Vo gwJrMo {Xdg hmoVo åhUyZ eoVH$ar AmZ§XmV hmoVo. Q.2) boPr‘ IoiʶmgmR>r eoVH$ar H$go C^o hmoVo ? 1) g‘moamg‘moa XmoZ AmoitV 2) dVw©imH$ma 3) EH$mM AmoirV 4) EH$EH$Q>o AMyH$ n¶m©¶ - 2 ñnï>rH$aU - boPr‘ IoiʶmgmR>r eoVH$ar dVw©imH$ma C^o hmoVo. Q. 3) boPr‘ - ‘oim {H$Vr doi Mmbbm hmoVm ? 1) {Xdg^a 2) g§Ü¶mH$minmgyZ ‘ܶamÌrn¶ªV 3) amÌ^a 4) g§nyU© {Xdg d g§nyU© amÌ AMyH$ n¶m©¶ - 3 ñnï>rH$aU - boPr‘ - ‘oim amÌ^a Mmbbm hmoVm. 2) Imbrb H${dVm dmMm d ˶mImbr {Xboë¶m àíZmMr CÎmao Úm. C^o ^d§Vr àmgmX JJZ^oXr nWt bmoH$m§Mr hmo¶ XmQ> JXu à^m Xrnm§Mr ’w$bo A§Vamir Xm¡bVrMr {ZV MmbVo {Xdmir WmoS>³¶mV {díbofU Z‘wZmàíZ (AMwH$ n¶m©¶ d ñnï>rH$aU) D.P.P. 1 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
H$monè¶mgr JwUJwUV AZ² A^§J C^m Ho$ìhmMm Vmo EH$ An§J ^m¡dVrMm A§Yma Omo {Z‘mbm õX¶r ˶mÀ¶m OUy OmV Aml¶mbm ! Or^ Pmbobr AmoaSy>Z, emof Mma {Xdgm§Mm ˶m§Vhr Cnmg Z¶Z {WObo WaWaVr hmVnm¶ én X¡Ý¶mMo C^o ‘yV© H$m¶ ? H$sd ¶mdr nU ˶mMr Hw$Umbm ? OmV CnhmgwZr ngaë¶m H$ambm VmoM ¶oB© Hw$Ur naVwZr ‘Oya ~KwZr XrZm ˶m CYmUyZ D$a åhUo "amhrZ {XZ EH$ ‘r Cnmer nar bm^y Xo XmoZ Kmg ¶mg,' {Igm AmoVyZr V¶m Am|OirV Mmby bmJo Vmo XrZ~§Yw dmQ> Am{U Y{ZH$m§Mr dmhZo nWm§V OmV hmoVr Vr Amnwë¶m ‘Xm§V Q. 1) XrZ~§Yy Ago H$moUmbm åhQ>bo Amho ? 1) bmoH$m§Zm 2) An§Jmbm 3) ‘Owambm 4) Y{ZH$mbm AMyH$ n¶m©¶ - 3 ñnï>rH$aU - XrZ~§Yy Ago ‘Owambm åhQ>bo Amho. Q. 2) ‘OwamZoM An§Jmda X¶m H$m Ho$br ? 1) An§J ˶mMm {‘Ì hmoVo 2) ˶mbm ‘moR>onUm XmIdm¶Mm hmoVm 3) ˶mbm lr‘Vm§Zm {hUdm¶Mo hmoVo 4) ˶mbm ˶mÀ¶m Xþ:ImMr OmUrd hmoVr AMyH$ n¶m©¶ - 4 ñnï>rH$aU - ˶mbm ˶mÀ¶m Xþ:ImMr OmUrd hmoVr åhUyZ ‘OwamZo An§Jmda X¶m Ho$br. Q. 3) An§JmMo hmVnm¶ H$m WaWaV hmoVo ? 1) ˶mbm Vmn Ambobm hmoVm 2) Vmo EH$gmaIm AmoaS>V hmoVm 3) Vmo Mma {Xdg Cnmer hmoVm 4) Vmo Km~abobm hmoVm AMyH$ n¶m©¶ - 1 ñnï>rH$aU - An§JmMo hmVnm¶ ˶mbm Vmn Ambobm hmoVm åhUyZ WaWaV hmoVo. Aä¶mg 1.2 3) Imbrb H${dVm dmMm d ˶mImbr {Xboë¶m àíZm§Mr CÎmao Úm. Mm§Xþ‘m‘m S>moH$mdVmo qb~moUrÀ¶m PmS>mVyZ & g¶ ~minUmMr J ¶oVo ¶mObm XoIyZ && ‘m¶‘mD$brZo ‘bm hmM Mm§Xmo~m XmdrV & H$S>oda KoD${Z¶m ^adbm XÿY^mV && ‘m¶m ‘m‘mMm AmR>do ‘bm {Mao~§Xr dmS>m & A§JUmV g¶o ~mB© ! Ioibo ‘r XþS>XþS>m && H$m¶ gm§Jy ~minUr {H$Vr ^moJr¶bo gwI & H$m¶ gm§Jy AmOmoiMo g¶o, Vwbm ‘r H$m¡VwH$ ?&& AmOmAmOtMr bmS>H$s ZmV Zì¶m ZdgmMr hmoVo & VerM bmS>H$s ^mMr ‘m{P¶m ‘m‘mMr boV hmoVo && ‘mo{V¶m§Mr ~mB©, q~Xr ¶m ^m§JmV Zogbo ‘r M§ÐH$im Mmoir IS>rMr A§JmV. gamd àíZ Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
Q. 1) H$d{¶Ìrbm H$moUmbm nmhÿZ ~mbnUmMr AmR>dU ¶oVo ? 1) qb~moZrMo PmS> 2) Mm§Xmo~m 3) ‘m‘m 4) ‘mD$br Q. 2) bhmZnUr Mm§Xmo~m XmIdV H$moU XþY^mV ^adV Amho ? 1) AmB© 2) AmOr 3) ‘mB© 4) AmOmo~m Q. 3) H$d{¶Ìr AmOmoiMo H$m¡VwH$ H$moUmbm gm§JV Amho ? 1) ZmVrbm 2) ‘¡{ÌUrbm 3) ^mMrbm 4) Mm§Xmo~mbm 4) Imbrb H${dVm dmMm d ˶mImbr {Xboë¶m àíZm§Mr CÎmao Úm. Xodm Zmam¶Um Vw‘À¶m ‘moOy H$m ‘r MwH$m ? & ‘r bhmZ åhUyZ Vwåhr {MSy> ‘mÌ ZH$m && àmOº$mMr ZmOyH$ ’w$bo {Q>H$mD$ H$m ZmhrV ? & a§JrV ’w$bmV dmg KmbUo {dgabmV H$m KmB©V ? && hmnyg Am§ã¶mV {dZmH$maU Ho$dT>r ‘moR>r H$mo¶ ? & Am{U EH$m nnB©V hOma {~¶m hmo¶ ? && OXm©iyVë¶m ~Xm‘m§da H$emgmR>r gmb ? & AH«$moS>Mo H$dM åhUOo ’w$¸$Q> Am‘Mo hmb ! && AmVm {ZXmZ nwT>À¶m doir ZrQ> H$am & gJio H$mdio WmoS>o Jmoao H$am, a§JrV H$am ~Jio && Q. 1) Xod {MS>ob Ago ‘wbmbm dmQ>bo, H$maU - 1) MwH$m XmIdë¶m 2) bhmZ Vm|S>r ‘moR>m Kmg KoVbm 3) àíZ {dMmabm 4) CÕQ>nUm Ho$bm Q. 2) ‘wbmMo CJmMM hmb Hw$Um‘wio Pmbo ? 1) ~Xm‘m‘wio 2) Am§ã¶mVrb H$mo¶r‘wio 3) nnB©Vrb {~¶m§‘wio 4) AH«$moS>mÀ¶m H$dMm‘wio Q. 3) ‘wbmZo dñVy§‘Yrb JwUm§n¡H$s H$moUVr MyH$ XmIdbr Zmhr ? 1) a§JmMr 2) dmgmMr 3) AmH$mamMr 4) MdrMr 5) Imbrb H${dVm dmMm d ˶mImbr {Xboë¶m àíZmMr CÎmao Úm. ¶m bmS>³¶m ‘wbm§Zmo, Vwåhr ‘bm AmYma Zd qhXdr ¶wJmMo, VwåhrM {eënH$ma AmB©g Xod ‘mZm, d§Xm JwéOZm§Zm OJr ^mdZohþZr Vo, H$V©ì¶ Wmoa OmUm J§Jonar n{dÌ, R>odm ‘Zr {dMma {ed~mnar OJmV, {XbXma eya ìhmdo {R>H$mU gX¡d, ܶo¶mg ˶m nwOmdo Oo Mm§Jbo OJr ¶m, ˶m§Mm H$am ñdrH$ma emiog amoO OmVm, Vo kmZq~Xÿ {‘idm õX¶mV Amnë¶m ˶m, Xoem{^‘mZ R>odm Hw$berb N>mZ amIm, R>ody ZH$m {dH$ma Q. 1) H$moUmgmaIo ‘§Jb {dMma ‘ZmV R>odmdo Ago H$dr åhUVmo ? 1) AmB©gmaIo 2) {ed~mgmaIo 3) J§JogmaIo 4) ‘wbm§gmaIo 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
Q. 2) {edmOrÀ¶m A§JMo H$moUVo JwU H${dVoV gm§{JVbo AmhoV ? 1) {XbXma 2) eya 3) {XbXma d eya 4) ¶mn¡H$s Zmhr Q. 3) Zì¶m ^maVmMo {eënH$ma H$moU ? 1) ‘wbo 2) nwT>mar 3) JwéOr 4) Xod 6) Imbrb H${dVm dmMm d ˶mImbr {Xboë¶m àíZmMr CÎmao Úm. ‘mD$brÀ¶m Xþ½Ymnar Ambo ‘¥JmMo Vwfma ^wHo$boë¶m VmÝømg‘ Vm|S> ngar {edma VwH$mo~mÀ¶m A^§Jmbm ‘§X {Mnù¶m§Mr gmW WamaVmo amZdmam Vg§ PmS>mPwS>nm§V {nD${Z¶m amZdmam Im|S> Ymdo dmao‘mn ¶oVm ‘mVrMm gwJ§Y ñVãY Pmbo AmnmoAmn Ymam df©Vm déZ ~¡b dqeS> hmbdr AdoirM ’w$Q>o nmÝhm Jm¶ dËgmbm ~mobdr JmdmZoM C§M Ho$bm hmV X¡dr àgmXmg {^Ow{Z¶m qM~ Pmbm JmdXodrMm H$ig ! {ZgJm©Zo {Xbo YZ Úmdo Xþgè¶m OmUwZr Pmbr N>ßnao CXma Amë¶m nmJmoù¶m A§JUr H$mù¶m‘mù¶m H$[aVmV ~mio CKS>r ZmJS>r gmMboë¶m nmʶm‘Yr ZmMVmV KS>moKS>r ñZmZ Pmbo YaUrMo nS>o gmoݶmMm àH$me! AmVm ~gob ‘mD$br AÞ~«÷mÀ¶m nyOog Q. 1) ¶m H${dVoVrb dU©Z Imbrbn¡H$s H$emMo Amho ? 1) eodQ>À¶m nmdgmMo 2) eaX F$VyMo 3) gwédmVrÀ¶m nmdgmMo 4) {e{ea F$VyMo Q. 2) ¶m H${dVoVrb ‘¥J hm eãX H$em~m~V ¶moObm Amho ? 1) F$Vy~m~V 2) ZjÌm~m~V 3) haUm~m~V 4) {eH$mè¶m~m~V Q. 3) Jm¶ dmgambm H$m ~mobmdV Amho ? 1) {Vbm nmÝhm ’w$Q>bm åhUyZ 2) {Vbm nmÝhm ’w$Q>mdm åhUyZ 3) ˶mZo amZmo‘mi ^Q>Hy$ Z¶o åhUyZ 4) ˶mZo Amnë¶mOdi amhmdo åhUyZ 7) Imbrb H${dVm dmMm d ˶mImbr {Xboë¶m àíZm§Mr CÎmao Úm. adr Jobm Ho$ìhmM npíM‘obm a§J gmoݶmMm VmoM ‘brZ Pmbm AmVm bdH$a H$mimoI ngaUma Am{U J[a~m§Mo H$ï> g§nUma ! nbrH$S>À¶m S>m|JamVyZ JmB© MéZr ‘mJo bmJë¶m naVʶmhr Jwa»¶m§Mr YmHw$Q>r d«m˶ ~mio Jwam§‘mJo Mmbbr H$arV Mmio ! ‘im Anwbm IwanyZ Zm§JéZ ~¡b hmH$sV naVbm ~mJdmZ Kar ˶mMr ~mbHo$ A§JUmV 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
C^r Ag{Vb - AgVrb ~KV dmQ>o ! C^r CËgwH$ AgUmam ~KV dmQ> YZrU ˶mMr Jar~rV ^m½¶d§V Zgo VrMm H¥${Ì‘ S>m‘S>m¡b ào‘ gmpËdH$ VoWoM nhmb ! H$ï> {XZ^a O[a H$[aVgo CÝhmV Oar Mmbo g§gma J[a~rV Kar ¶oV ñdJ© Vmo VwÀN> ˶mg ZoÌ {^S>bo ‘J C{Ud ZM gwImg ! Q. 1) ¶m H${dVoVrb dU©Z H$moU˶m doioMo Amho ? 1) gH$miMo 2) XþnmaMo 3) g§Ü¶mH$miMo 4) ‘ܶamÌrMo Q. 2) ¶m doir JmB© H$m¶ H$arV AmhoV ? 1) {dlm§Vr KoV AmhoV 2) Kar naVV AmhoV 3) S>m|Jamda MT>V AmhoV 4) Kar naVë¶m AmhoV Q. 3) Jwam»¶m§Mr ‘wbo H$er AmhoV ? 1) ImoS>H$a 2) em§V 3) Xþï> 4) {eñVera 8) Imbrb H${dVm dmMm d ˶mImbr {Xboë¶m àíZm§Mr CÎmao Úm. Zgo amCir dm Zgo ‘§{Xar {OWo am~Vr hmV {VWo har ! {VWo ^y‘rMm nwÌ Jmirb Km‘ {VWo AÞ hmoD$Z í¶m‘ {Xgo gmdio én ˶mMo {edmar ! {eim ’$mo{S>Vr g§K nmWadQ>m§Mo Hw$Ur H$mngm én XoVr nQ>m§Mo V¶m§À¶m Kar Zm§XVmo ‘wamar ! {OWo H$m‘ {VWo C^m í¶m‘ Amho Zìho Y‘© ao Y‘© Vo én nmho Ago {dídH$‘m© l‘m§Mm nwOmar ! Q. 1) Zgo amCir dm Zgo ‘§{Xar Ago H$m åhQ>bo Amho ? 1) H$dr ZmpñVH$ d¥ÎmrMm Amho åhUyZ 2) bmoH$m§Zr XodimV OmD$ Z¶o åhUyZ 3) XodmÀ¶m ApñVËdm{df¶rMr bmoH$m§Mr MwH$sMr g‘OyV Xÿa ìhmdr åhUyZ 4) bmoH$m§Zr XodimV JXu H$é Z¶o åhUyZ Q. 2) ^y{‘nyÌ Ago H$moUmbm åhQ>bo Amho ? 1) eoVH$è¶mbm 2) PmonS>rV amhUmè¶mbm 3) ’$º$ O{‘Zrda H$m‘ H$aUmè¶mbm 4) ‘Owar H$éZ nmoQ> ^aUmè¶mbm Q. 3) eoVmV na‘oída H$moU˶m ñdénmV AgVmo ? 1) l{‘H$m§À¶m 2) YmݶmÀ¶m 3) PmS>m§À¶m 4) l‘m§À¶m 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
1) Vocabulary 1) Similar Meanings Let`s Understand Solved Example Words that mean same : Some words have same meaning or similar meaning are also called synonyms. Words that are synonyms are referred to as being synonyms and the state of being of synonym is called synonymy. In practice, some words are called synonyms, just because they are used to describe the 'same 1 fact in different parts of the world. For example : 'Autumn and 'fall' are synonyms, with only difference that 'autumn'is used in British English and'fall'in American English. List of same meaning words. • smart - clever • important - essential • good - excellent • stupid - dumb • irrelevant - useless • bad-inferior • awful - horrible • interesting - fascinating • exact - specific Words with same meaning can be life savers, especially when you want to avoid repeating the same word over and over. Also, sometimes the word you have in mind, might not be the most appropriate word, which is why finding a word with same meaning can came in handy. For example : One synonym of 'sad' is 'gloomy' however word carries a negative connotation. Depending on the circurnstan you can use. it, but if you just, want to say that someone is dow then 1 another word, which conveys, the same meaning are 'blue' 'unhappy may be more applicable. X Synonyms of some words : • beautiful : attractive, pretty, lovely, stunning, cute • fair : benevolent, just, objective, Impartial, unbiased. • funny : humorous, comical, hilarious, hysterical , jocular. • happy : blissful content, joyful, mirthful, upbeat. • hard working . : diligent, determined, industrious, enterprising. • honest : honourable, fair, sincere, trustworthy Q. 1)Which of the following means the same as "contour" 1) model 2) dominate 3) outline 4) robust Correct Option: 3 Q. 2) Which of the following means the same as "fragile" 1) dishonest 2) rude 3) delicate 4) humble Correct Option: 3 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1 D.P.P. 1
Excercise 1.1 Practice Example Q. 3) candid" 1) important 2) reserved 3) special 4) frank Q. 4) Which of the following means the same as "exaggerated" 1) complete 2) confidence 3) overstated 4) belief Q. 5) Which of the following means the same as "Ensure" 1) Confirm 2) Unsure 3) See 4) Find Q. 6) Find the pair of opposite word from jumbled letters. BSUEYLL 1) Buy x sell 2) Elss x yub 3) Yell x sell 4) Lyse x buy Q.7)Find out the similar meaning for the following underlined word. Efim had enough money at home. 1) a lot off 2) very less 3) not at all 4) Sufficient Q. 8) Choose two alternatives which mean the same as “sprightly”. 1) lively 2) beautiful 3) energetic 4) indigenious Q. 9) Match the following words with similar meanings AB 1) caverns a) being alone 2) rack b) large deep spaces 3) mournful c) a very difficult situation 4) solitude d) very sad 1) (1-b) (2-c) (3-d) (4-a) 2) (1-c) (2-a) (3-d) (4-c) 3) (1-c) (2-d) (3-b) (4-a) 4) (1-d) (2-c) (3-b) (4-a) Q. 10) Which one of the following means the same as “Evaluate” ? 1) decision 2) modify 3) analyse 4) devaluate Q. 11) Find the incorrect pair of similar words. 1) headache – migrane 2) disable – damage 3) jovial – merry 4) juicer – jar Q. 12) Which one of the following does not mean the same as “God” ? 1) deity 2) divinity 3) devil 4) spirit Q. 13) Choose the correct pair of words which mean the same. 1) shine – glum 2) shabby – deteriorated 3) clumsy – fickle 4) expansion – binding Q. 14) Which one of the following is not of the same type ? 1) folk 2) clan 3) customs 4) tribe Q. 15) Choose the pair/pairs of similar meanings. 1) Sensitive – insensitive 2) stable – firm 3) kind – considerate 4) finish – begin Q.16)Choose the similar meaning for the underlined phrase. The students got through the examination. 1) passed 2) succeed 3) dismissed 4) failed Which of the following means the same as " Std. - 8 (Eng. Modul - 1) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1) Numbers & Operation on numbers. 1) Natural, Whole, integer, Rational, Irrational & real numbers * Integr Numbers : 1, 2, 3, 4, 5, ........... Counting numbers is called natural numbers. * Integer numbers : 0, 1, 2, 3, 4, 5..... These are whole numbers. * Integer Number : ........, -4, -3, -2, -1, 0, 1, 2, 3, 4,.......... * Integer No. : If a is an integer and b is non zero integer then is rational number. * Irrational Number : The numbers which have non terminating non we carring decimal form are called irrational number. Ex. 2 = 1.41421356 .......... * Square root of non perfect square numbers are irrational. * Integer Number : A set of rational & irrational numbers is a set of real number. * Each rational number is real number. * Each irrational number is real number. Keep in mind : * Smallest natural number = 1 & Biggest natural number if cant tale. * 0 is the smallest whole number & biggest number it can`t tell. * 0 is not positive or negative number. * -1 is the biggest negative integer & smallest negative integer it can`t tell. Q.1) What is difference between place value of 4 in 52.354 and 25342 numbers ? 1) 27.212 2) 0.036 3) 0.212 4) 0.044 Correct Option : 2 Explaination : Place values of 4 in given numbers and are 0.044 and 0.04 difference between them 0.04 - 0.0.40 = 0.040 - 0.004 = 0.036 so option 2 is right. Q. 2) Hundred, Tens and unit places of a number are x, y, z respectively. 1) 100x + 10y + z 2) 100z +10y + x 3) 100y +10z + x 4) 100y +10x + z Correct Option: 1 Explaination : Place value of x = 100x ; place value of y : 10y ; place valve of z : z their sum is 100x + 10y + z. So option 1 is right. Q. 3) 2 x 75 x 3 In this number x substitute same number difference between their place value is 79920. Find x = ? 1) 237533 2) 277573 3) 287583 4) 267563 Correct Option: 3 Explaination : In this number, Ten thousand place and tens place have same number is (10000 - 10) = 9990 Synopsis Solved Example a b D.P.P. 1 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
Q. 4) Find difference between smallest and biggest number formed by 5, 2 and 9 using number once. 1) 646 2) 656 3) 693 4) 676 Correct Option: 3 Explaination : 5, 2 and 9 largest and smallest number are 952 and 259. difference between them = 952 - 259 = 693 so option 3 is right answer. Q. 5) Which is smallest 5 digit number have not consisting 0 and 2 and other digits are used once. 1) 13548 2) 13456 3) 13564 4) 13546 Correct Option: 2 Explaination : digits which will used should be 1, 3, 4, 5, 6, 7, 8, 9, we wanted smallest number hence avoiding big digits 13456 is a number. So option 2 is correct answer. Exercise : 1.1 Q. 6) Find smallest sum digit in 8, 0, 9, 2. these four digit number are one digit is only one time used. 1) 2980 2) 2890 3) 2098 4) 2089 Q. 7) Find the sum of all three digit number formed by using the digits 4, 2, 5 once. 1) 2321 2) 2442 3) 2211 4) 2121 Q. 8) In the number 3430258, how many times the place value of 2 to that of place value of 8. 1) 200 2) 1/200 3) 1/25 4) 25 Q. 9) In number 908495 how many times the place value of 9 at left side is to that of place value of 9 at right side. -3 1) 10 2) 10 3) 10 4) 10 Q. 10) Choose correct expanded form of number 3800008. 3 7 6 1 0 1) (1) x 10 +8 x 10 +6 x 10 +8 x 10 7 6 5 3 2 1 0 2) 3 x 10 + 8 x 10 + 0 x 10 + 0 x 10 + 0 x 10 + 0 x 10 + 8 x 10 0 1 2 3 4 5 0 3) 3 x 10 + 8 x 10 + 0 x 10 + 0 x 10 + 0 x 10 + 0 x 10 + 8 x 10 6 5 4 3 2 1 0 4) 3 x 10 + 8 x 10 + 0 x 10 + 0 x 10 + 0 x 10 +0 x 10 + 8 x 10 Q. 11) 2700067 Find the difference between the place values of 7. 1) 369999 2) 639963 3) 693999 4) 699993 Q. 12) ( 7 + 4A ) and (5 + 2B ) are the digits at thousand and tenth place of number 98637 then which of the following are value of A and B. 1) -1, 0.5 2) 0.25, -1 3) -0.25, -1 4) -1/4, 1 Q. 13) In number 86346 how many times the value of 6 at right side to that of value of 6 at left side ? 1) 100 2) 1/1000 3) 1/100 4) 1000 Practice Example 3 4 -4 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Q. 14) Choose the expanded form of 953218. 1) 9 x 100000 + 5 x 10000 + 3 x 1000 + 2 x 100 + 1 x 10 + 8 x 1 2) 9 x 1 + 5 x 10 + 3 x 100 + 2 x 1000 + 1 x 10000 + 8 x 100000 3) 9 x 10000 + 5 x 100000 + 3 x 1000 +2 x 100 + 1 x 10 + 8 x 1 4) 9 x 100000 + 5 x 10000 +3 x 1000 +2 x 10 + 1 x 100 + 8 x 1 Q. 15) In number 23427 how many time place value of right 2 to that of left 2 ? 1) 100 2) 3) 1000 4) Q. 16) ( 2p + q) is two digit number and 7 is ant unit place then p = ? 1) 9 2) 7 3) 5 4) 3 Q. 17) What is the place value of digit 5 in number 4683251. 2 1) 5 x 10 2) 5 x 10 3) 5 x 10 4) 5 x 10 Q. 18) In number 9 * 5 * there is same value in the place of star and difference between their place values in 198 then find the digit in the place of star. 1) 1 2) 3 3) 5 4) 2 Q. 19) In the number 53.436 how many times the place value of 3 which is at right of 4 to that of 3 which is at left of 4. 2 -2 1) 10 2) 3) 4) 10 Q. 20) Which of the following number shows highest sum of the place value of digit 3 and 6. 1) 7683 2) 7863 3) 7638 4) 7836 Q. 21) What is the difference between the place values of 5 in number 75635. 1) 4985 2) 4995 3) 5995 4) 4975 Q. 22) If ( 2a + b ) is two digit number 45. If b is at unit place then a = ? 1) 18 2) 19 3) 2 4) 20 Q. 23) Which is biggest even number formed from digits 6, 2, 0, 8, 9 only once ? 1) 98602 2) 86209 3) 68029 4) 98620 Q. 24) Find the biggest even 5 digit number which start by digit 6. 1) 69998 2) 69899 3) 68998 4) 69996 Q. 25) Find the number obtained by the difference biggest 4 digit and smallest 3 digit number. 1) 9998 2) 8989 3) 9899 4) 8999 1 4 3 1 1000 1 2 10 1 100 1 10 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 D.P.P. 1 1) Comprehension 1.1 Following Instruction, analysis the content Let`s Understand Solved Example Practice Example In this type of questions specific instructions are given for each question and the candidate is required to follow them properly and solve questions correctly. This type of questions involve : I) words II) sentences III) numbers IV) letters. This questions test the students power of comprehesion. Q. 1) In the series 116, 100, 256, 274, 124, which digit appears most number of times ? 1) 2 2) 1 3) 4 4) 0 Correct Option: 2 Explaination: 1 appears 4 times , 0 – 2 times , 2 – 3 times , 3 – 0 times , 4 – 2 times , 5 , 6 , 7 one time each. Q. 2) In the following number series how many times sequence 11 has appeared? 101101100101101100101101101101100100101100100 1) 7 times 2) 9 times 3) 11 times 4) 8 times Correct Option: 2 Explaination: 11 has appeared 9 times. Q. 3) In the following number series how many even numbers are present ? 12, 46, 41, 84, 27, 73, 58, 51, 4, 75, 52, 70, 16, 6, 62, 66, 29, 67, 77, 92 1) 12 2) 16 3) 10 4) 9 Q. 4) In the following number series, which digit occurs least number of times ? 2 1 2 3 4 3 2 4 1 3 3 4 1 1 2 2 3 4 1 3 4 2 4 3 1 2 4 1) 2 2) 1 3) 4 4) 3 Q. 5) In the series 578, 448, 804, 468, 768 which digit appears least number of times ? 1) 6 2) 7 3) 5 4) All 5, 6 and 7 Q. 6) In the following number series how many numbers are divisible by 3 ? 35, 42, 63, 26, 43, 60, 30, 47, 48, 71, 96, 67, 78, 52, 86, 54, 80, 72 1) 7 2) 11 3) 5 4) 9 Excercise 1.2 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
Q. 7) In the following number series how many times it happens that an odd number comes between two even numbers ? 5, 5, 4, 6, 5, 4, 5, 6, 5, 5, 3, 7, 5, 7, 3 1) 4 times 2) 1 time 3) 3 times 4) 2 times Q. 8) In the following number series how many even numbers are present ? 11, 14, 12, 15, 5, 6, 9, 10, 34, 56, 22, 17 1) 9 2) 5 3) 6 4) 7 Q. 9) In the following number series, how many numbers are divisible by 4 ? 30, 38, 12, 42, 44, 6, 34, 76, 68, 84, 56, 36, 4, 94, 78, 66, 72, 54, 64, 74 1) 10 2) 12 3) 8 4) 7 Q. 10) NPWGGNPWGWPGWGPWGNWNPWGW In the above series, how many times does it occur that P is followed by W? 1) 3 2) 4 3) 5 4) 6 Q. 11) a b d d a b c a b d c a d b d a b d b a d c c d Which letter has occured maximum times in the above letter series ? 1) a 2) b 3) c 4) d Q. 12) A C M Q Q A C M Q M C Q M Q C M Q A M A C M Q M In the above series, how many times does it occur that A is followed by C, which is followed by M ? 1) 4 2) 3 3) 5 4) None of these Q. 13) P g g P p P g P g P P r r P g P p P P g P P r In the above series, how many times do you find p which has g before it but not after it 1) 2 times 2) 3 times 3) 4 times 4) 5 times Q. 14) A C M Q Q A C M Q M C Q M Q C M Q A M A C M Q M In the series above, how many times does it occur that M is followed by Q? 1) 2 2) 4 3) 5 4) 6 Q. 15) AUEIIAUEIEUIEIUEIAEAUEIE In the above sequence , how many times does it occur that U follows A and U is followed by E. 1) 5 times 2) 2 times 3) 4 times 4) 3 times Q. 16) In a class the teacher instructed the students in a specific manner . The instructions were 1 means to get up . 2 means hands up , 3 means jump lf the teacher instructed the students in the following manner 1 2 3 2 3 3 2 1 3 3 1 3 2 1 3 1 3 2 1 3 1 2 3 1 3 How many times the students were instructed to jump immediately after the instruction to get up was given ? 1) right 2) four 3) six 4) ten Q. 17) [abcdabdefeab] ln the given letter series how many times "a" is followed by "b" but not preceded by "d" 1) one 2) 2 three 3) 3 never 4) two 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Std. - 8 (Eng.Modul - 1 & 2) SDA Pattern 1
SCIENCE DIGITAL ACADEMY Email : [email protected] H.O. : Plot No.23, Behind Kanda Market, Shrirampur, Dist. Ahmednagar. (M.S.) INDIA 88301 15763, 8421895385 Do More Than Just Look—Observe. Do More Than Just Read - Digest Do More Than Just Listen, SCAN QR CODE Do Something More By Just Solving D.P.P. SDA School level Batch Topic-wise Tests: Instant Result, Right Wrong , Explanation with Solutions Analysis Free Scholarship Foundation CONCEPT VDO SDA District Level Batch: Criteria: The first ten meritorious students will get admission to the district level batch by recommendation of Scholarship teacher. Or free test score SDA State Level Batch: Criteria: The first three meritorious students of District Level Batch will be absorbed from two tests from each school. Then students will get 50% discount in State Level Batch. Month 1 Module 1 Month 2 Module 2 Month 3 Module 3 Month 4 Module 4