Fluid Flow 135
Example 2-18: Calculation of Steam Condensate
Flashing
There are 79,500 lbs/hr of 450 psig condensate flowing
�
... into a flash tank. The tank is to be held at 250 psig, gen-
"'
z
0 erating steam at this pressure. Determine the quantity of
... steam produced .
�
"'
...
0
Enthalpy of liquid at 150 psig = 441. l Btu/lb
Enthalpy of liquid at 250 psig = 381.6 Btu/lb
Latent heat of vaporization at 250 psig = 820.1 Btu/lb
Vo· Typicol dtpostion criticol vttocity
Vy· Typicol viau1 tnniitian critiul vllocity 44 381 6
% flash into steam = 1.1 - · (100) = 7.25%
R20.1
LOG V Steam formed = (0.0725) (79,500) = 5,763 lbs/hr
Condensate formed== 79,500 - 5,763 = 73,737 lbs/hr
HETEROGENEOUSSLURRY(A) HOMOGENEOUS SLURRY (Bl
Sizing Condensate Return Lines
FULL SUSPENSION
Steam condensate lines usually present a two-phase
flow condition, with hot condensate flowing to a lower
pressure through short and long lines. As the flow pro-
FULL MOVEMENT FULL TURBULENCE
gresses down the pipe, the pressure falls and flashing of
condensate into steam takes place continuously. For small
AT CRITICAL VELOCITY lengths with low pressure drops, and the outlet end being
-<l
µfiit¥'t\¥i#H41\lW -·� .. ,;: within a few pounds per square inch of the inlet, the flash
will be such a small percent that the line can often be
BED BUILDING - Vo LAMINAR FLOW - Vy sized as an all liquid line. However, caution must be exer-
cised as even 5% flashing can develop an important
Figure 2-48. Critical velocity characteristics depend on whether impact on the pressure drop of the system.
slurry is heterogeneous or homogeneous. By permission, Deramme-
laere, R. H. and Wasp, E. J., "Fluid Flow, Slurry Systems and Calculation of condensate piping by two-phase flow
Pipelines," Encyclopedia of Chemical Processing and Design, J. techniques is recommended; however, the tedious work per
McKetta, Ed., M. Dekker, vol. 22, 1985 [25]. line can often be reduced by using empirical methods
and charts. Some of the best are proprietary and not avail-
able for publication; however, the Sarco method [ 42] has
pounds as well as mixtures. Although this presentation is been used and found to be acceptable, provided no line
limited to steam, the principles apply to other materials.
less than lW is used regardless of the chart reading.
Under some circumstances, which are too random to
Steam condensate systems often are used to generate
lower pressure steam by flashing to a lower pressure. When properly describe, the Sarco method may give results too
small by possibly a half pipe size. Therefore, latitude is
this occurs, some steam is formed and some condensate recommended in selecting either the flow rates or the
remains, with the relative quantities depending upon the pipe size.
pressure conditions. Figure 2-53 is a typical situation.
Design Procedure Using Sarco Chart [42]
Percent incoming condensate flashed to steam:
1. Establish upstream or steam pressure from which
1
(h -h )100 condensate is being produced and discharged into a
2
% flash = (2-132)
L return line through steam traps, or equivalent, psig.
2. Establish the steam condensate load or rate in
lbs/hr flow.
where h 1 = enthalpy of liquid at higher pressure, Btu/lb
h2 = enthalpy of liquid at lower or flash pressure, 3. Establish the pressure of the condensate return
Btu/lb line, psig.
L,. = latent heal of evaporation of steam at flash pres- 4. The method is based on an allowable 5,000 ft/min
sure, Btu/lb velocity in the return line (mixture).
136 Applied Process Design for Chemical and Petrochemical Plants
Particle diameter
(largest 5%)
Tyler
mesh Inches Microns
(Yelocitv = 4 to 7 ft/s I
10000
8000
.250
6000
4 .185
4000
B .093 \.
\
2000
14 .046 HETEROGENEOUS
1000 ...
BOO '
'
28 .023 600 ' ..
�
- -� ...... Based on thick slurries
'\
--=-
,_ -� "'-..
with fine (-325 mesh) vehicle
�
�
43 .012 400 ,. ..
" "" '-...
200 � �- � ,., -........... ..........
100 .006 COMPOUND -
'• I
� •• ,..._ Based on thin slurries or slurries
•••• ..... with graded particle size
100 ..... _
80 -····· ......... , ••
200 .003
60
325 .0017
40
HOMOGENEOUS
20
Figure 2-49. Slurry flow regime (heteroge-
neous, homogeneous) is a function of solid's
size and specific gravity. By permission, Der-
annelaere, R.H. and Wasp, E. J., "Fluid Flow, 10
Slurry Systems and Pipelines," Encyclopedia 2.0 3.0 4.0 5.0
of Chemical Processing and Design, J. Mc- 1.0
Ketta, Ed., M. Dekker, vol. 22, 1985 [25]. Solids, specific gravity
5. Calculate load factor. 6. Establish condensate receiver ( or flash tank) pres-
sure, psig.
7. Referring to Figure 2-54, enter at steam pressure of
(1) above, move horizontally to condensate receiv-
5,000 (100) 500,000 (2-133) er pressme of (6) above, and then up vertically to
Condensate Rate, lbs/hr c the "factor scale."
Fluid Flow 137
Note: V = mean velocity
L = pipe length
�P = total pressure drop
HOMOGENEOUS FLOW----N
HETEROGENEOUS FLOW
�
c.. SALTATION FLOW
<] CLEAR WATER
...!,. FLOW
O')
� FLOW WITH A
STATIONARY BED
log vc
log v
HOMOGENEOUS FLOW
HETEROGENEOUS FLOW
-+ SALTATION FLOW
FLOW WITH A
STA TIO NARY BED
Figure 2-50. Representative plot of pressure drop for slurry flow. By permission, Turian, R. M. and Yuan, T. F., "Flow of Slurries in Pipelines,"
AI.Ch.E. Journal, vol. 23, 1977, p. 232-243.
8. Divide the load factor (step 1) by the value from 10. For pipe sizes larger than 3-in., follow the steps (1)
the "factor scale" of (7) above, obtain ft/min/ (100 thru (8) above. Then enter the vertical scale at the
lb/hr load). steam pressure of (1) above, and more to the 3-in.
pipe size and down to the horizontal velocity scale.
9. Enter chart on horizontal velocity line, go vertical-
ly up to the steam pressure of (l) above, and read
pipe size to the next largest size if the value falls 11. Divide the result of step 8 above by the result of step
between two pipe sizes. (10).
138 Applied Process Design for Chemical and Petrochemical Plants
,o-'......----------------------------------------�------�------------��-
e
6
4 }-.6938
f ,.2ooc -.1611 { V 2
W D D(s-l)g
2
4
2 f-fw=,5513 (2--
io-3
8
6
4
- io-4
2
-
is
I
8
6
4
2
10·5
8
6
4
2
10· 6
10-!5 2 4 e eio-4 2 4 6 e10-2 2 4 6 e10-1
Figure 2-51. Friction factor correlation for slurry flow in heterogeneous flow regime. By permission, Turian, R. M. and Yuan, T. F., "Flow of Slur-
ries in Pipelines," A.I.Ch.E. Journal, vol. 23, 1977, p. 232-243.
12. Refer to the large pipe multipliers shown in the 13. Calculation of "factor scale" for receiver pressures
table on the chart, and select the pipe size whose different than those shown on chart:
factor is equal to or smaller than the result of step
(11) above. This is the pipe size to use, provided a
sufficient factor of safety has been incorporated in factor = 36.2 (V) (h P - h, ) (2-134)
the data used for the selection of pipe size. L" (hp - 180)
Fluid Flow 139
1000
900
800
FLOW WITH A SALTATION FLOW
700 STATIONARY BED (REGIME I)
( REGIME O)
- 600 HETEROGENEOUS
FLOW
c
0
�
- 500 (REGIME 2)
-�
E
,:,
�
w
�
Cl) 400
w
..J
o
i=
a:: HOMOGENEOUS FLOW
� (REGIME 3)
a 300
..J
0
Cl)
T = 22.5 ° C
200 Ps = 2.977 gm/cm 3
C = 5 % by volume
PIPE ID = 0.957 in.
6 7 8 9 10
MEAN SLURRY VELOCITY, v (ft/sec)
Figure 2-52. Flow regime diagram for solid-water flow in 1-in. PVC pipe. By permission, Turian, R. M. and Yuan, T. F., "Flow of Slurries in
Pipelines," A.I.Ch.E. Journal, vol. 23, 1977, p. 232-243.
where V = specific volume of steam at return line pressure, Use the factor so calculated just as if read from the
Ci: ft/lb chart, i.e., in step (8) above.
hp = enthalpy of liquid at supply steam pressure,
Btu/lb Example 2-19: Sizing Steam Condensate Return Line
hr = enthalpy of liquid at return line pressure, Btu/lb
A 450 psig steam system discharges 9,425 lbs/hr of con-
L, = latent heat of evaporation at return line pressure, densate through traps into a return condensate line. The
Btu/lb return header is to discharge into a flash tank held at 90
140 Applied Process Design for Chemical and Petrochemical Plants
Flash Pressure, Z pslg
(Lower than either X or Y)
Vapor
_)
Condensate Flashing
From Various
Collection l
Headers
Liquid
--
Liquid Level
Condensate
Return to
"'-------------�----4 .. ��
Collection Tank
Figure 2-53. Typical steam condensate flashing operation.
psig. The calculated total equivalent length of pipe, 7. Refer to Figure 2-54 and note that required receiver
valves, and fittings is 600 feet. pressure is not shown, so calculate "factor scale" by
Using the Sarco chart, Figure 2-54, determine the rec- previous formula:
ommended line size for the return line.
Data: hp = 441 Btu/lb at 450 psig
I. Upstream steam pressure = 450 psig hr = 302 Btu/lb at 90 psig
2. Condensate load = 9,425 lbs/hr Lr = 886 Btu/lb at 90 psig
3. Return line pressure = 90 psig V = 4.232 cu ft/lb at 90 psig
4. Use the Sarco recommendation of 5,000 ft/min
5. Load factor
36.2 (4.232) (441 - 302)
"factor scale" value = = 0. 092
886 (441 - 180)
= (5,000) (100) = 53.0
9,425
8. Ft/min/100# /hr = 53 = 576
6. Receiver pressure = 90 psig 0.092
Fluid Flow 141
VELOCITY AT PIPE EXIT WHEN DISCHARGING CONDENSATE AT SATURATION TEMPERATURES
FROM VARIOUS PRESSURES TO ATMOSPHERE AT A RATE OF 100 POUNDS/HR.
FOR LARGER PIPES MULTIPLY 3' PIPE
WHEN DISCHARGING TO PRESSURES HIGHER VELOCITY BV FOLLOWING FACTORS:
THAN ATMOSPHERIC, MULTIPLY VELOCITY TO PIPE FACTOR
ATMOSPHERE BY FACTOR CORRESPONDING 4' 0.58
TO SUPPLY PRESSURE ANO RECEIVER PRESSURE. 5• 0.37
6' 0.25
8' 0.15
10• 0.095
FACTOR SCAL£ 12' 0.066
l 2 3 4 5 6 8 1 0 14' 0.054
600 I : I I . I I . . II I I I I I I
I
I
500 . ' I I I I I 7 I
. • T r I I 1 7
400 C., ' I ' I I I I I I I I
�.Q .... . I I . I I , I I I I
-f·
J
300 -&./-c., I I I I J J I I I I
I f'fl ,
0
, �,
I v;I �/ • I . I I I I I I 'T I
200 j I I ' v
/ �, �, _;, l I I I I I I J 7 /
I
�,-
.. I �· fl j I, I v / I I l I
!:JI
ti I
, / , I CJ° . I I I � I '
, _, �I I I 7 y.._. I I I 1 I 1 ' [/ I
I
�I
I
/§ j
I
¢ ... .::$j -·
r v
�L"'
�I
�I
n;)-
=, �/ I I I I ,; 1- :t/-- ...;� rt, -°O' .......... ..... , L fl ... /
O
s
/ -f:2,- .....
e '
/ . I :;;,:-- e -· v I I/ I I I
;� �I- 1-t I I '
' . I j ">' v I !/ I J I v I
40 I
J , I I I ) / / I / /
, r I I / / / f / J
30
/
.,,, / / .I I / j / , / /
, J[ I v v 7
_ ... � / , / / )
20 ' ., 7 v 7
., .,,, J . I / I / /: / / ,
J
, I 7 I / /
J '/ // 1// / / / I
10 60 "
JO 20 30 40 80 100 200 400 600 1000 2000 4000
VELOCITY FT./MIN. PER 100 POUNDS/HR. CONDENSATE
Figure 2-54. Sarco flashing steam condensate line sizing flow chart. By permission, Spirax-Sarco, Inc., Allentown, Pa. [59].
9. Read Chart: At 450 psig and 576, the line size shows Friction factor was calculated:
just under 2-in. Recommend use 2-in.
f = 0.25 [ -log (0.000486/d) 1- 20 (2-135)
Because flashing steam-condensate lines represent two- for complete turbulence in steel pipe. For large pressure
phase flow, with the quantity of liquid phase depending drops through the transmission system, the line should be
on the system conditions, these can be designed following broken into increments of length for successive pressure
the previously described two-phase flow methods. An drop calculations over the length, and the pressure drops
alternate by Ruskin [28) uses the concept but assumes a summed to equal the total available/required.
single homogeneous phase of fine liquid droplets dis- The procedure for using the convenient chart Figure
persed in the flashed vapor. Pressure drop was calculated 2-55 [28] is, for example:
by the Darcy equation: Step 1: Enter the figure at 600 psig below the insert near
the right-hand side, and read down to the 200-psig end-
pressure .
5
.!lP = 0.000336 (f\,\,'2)/d (p), psi/100 ft (2-55A) (text continued on page 153)
Figure 2-55. Flashing steam condensate line sizing chart. By pennission, Ruskin, R. P., "Calculatlng Line Sizes for Flashing Steam Condensate," Chem. Eng., Aug. 18, 1985,
p.101.
2.0
3A }lo
'O
1.0 � •u -g_
il
0.8
- � :,) "'ti
c o.s
a
8
o
en
1 OA . ::;..-,- 75 18 Cl)
:r:,u
en
to.a � 0
t. .�: (C.
(I)
en
::::,
a-
..,
...
s..s, •IPlil·
100 200 400eoo .M·
':3'
1l.CII . S.tur1tion pr-,re, Plit o
Cl)
3
�
O.oG 50 100 200 400800 ff
Sttp.1 II)
::::,
a.
"'ti
Cl)
- a
o
':3'
Cl)
3
ff
�
"'ti
0 -
iii
::::,
End en
f)f9$SU � ·
ps,g
3 4 8 B 1 1..6 2. 3 4 8 8 1 1.6 2. 3 , 8 8 I Ui 2 3 .4 I 8 1
F�ra. 1,n,
100 1000 10,000 100,000
Figure 2-55. Flashing steam condensate line sizing chart. By pennission, Ruskin, R. P., "Calculatlng Line Sizes for Flashing Steam Condensate," Chem. Eng., Aug. 18, 1985,
p.101.
2.0
3A }lo
'O
1.0 � •u -g_
il
0.8
- � :,) "'ti
c o.s
a
8
o
en
1 OA . ::;..-,- 75 18 Cl)
:r:,u
en
to.a � 0
t. .�: (C.
(I)
en
::::,
a-
..,
...
s..s, •IPlil·
100 200 400eoo .M·
':3'
1l.CII . S.tur1tion pr-,re, Plit o
Cl)
3
�
O.oG 50 100 200 400800 ff
Sttp.1 II)
::::,
a.
"'ti
Cl)
- a
o
':3'
Cl)
3
ff
�
"'ti
0 -
iii
::::,
End en
f)f9$SU � ·
ps,g
3 4 8 B 1 1..6 2. 3 4 8 8 1 1.6 2. 3 , 8 8 I Ui 2 3 .4 I 8 1
F�ra. 1,n,
100 1000 10,000 100,000
Table 2-22
Cameron Hydraulic Data"
Friction losses in pipes carrying water Friction Losses In Pipe; C = 100
Among the many empirical formulae for friction losses that have yg Inch
been proposed that of Williams and Hazen has been most widely
used. In a convenient form it reads: STANDARD WT STEEL EXTRA STRONG STEEL
(100)1.ss q1·s 5 in which FLOW I
f = .208:1 - --- f = friction head 111 ft of liquid per
C d4·8666 100 ft of pipe (if desired in lb per us .269" inside dia .215' inside dia
iia1
sq in. multiply f X .433 X sp gr) per ----------·-·--.....--
d = inside dia of pipe in inches min Velocity Velocity Head loss Velocity Velocity Head loss
ft per 100 ft
q = flow in gal per min ft per sec bead ft ft per 100 ft ft per sec head ft ----
C = constant accounting for surface 0-1 .565 .00 1-75 .884 .01 6-21
roughness 0.2 1.13 .02 6-31 1. 77 .05 18.8
This formula gives accurate values only when the kinematic 0-3 1.69 .04 13.4 2.65 .11 3p
6 -7
viscosity of the liquid is about 1.1 centistokes or :H.5 SSU, which 0-4 2.26 .08 22.8 3.54 .19 102
34-4
4.42
.12
2.83
0-5
.30
is the case with water at about 60F. But the viscosity of water varies -
with the temperature from 1.8 at 32F Lo .29 centistokes at 2l 2F. 0-6 3.39 .18 48.2 5.32 .44 147
.61
191
3.95
64-1
6.29
.24
0-7
The tables are therefore subject to this error which may increase 0-8 4.a2 .32 82-0 7.08 . 78 244
the friction loss as much as 20% at 32F and decrease it as much as 0-9 5.08 .40 102 7.96 .98
20% at 212F. Note that the tables may be used for any liquid 1-0 5.65 .50 124 8.84 1.21 ffl
having a viscosity of the same order as indicated above. ;1Inch
Values of C for various types of pipe are given below together
with the corresponding multiplier which should apply to the tabu-
lated values of the head loss, f, as given on pages 29 to 48. FLOW STANDARD WT STEEL EXTRA STRONG STEEL
us .364• inside dia .302• inside dia
�al
per
min Velocity Velocity I Head loss Velocity Velocity Head loss
VALUES OF C ft per sec head ft ft per 100 ft ft per sec. head ft ft per 100 ft
Range Average Commonly 0-4 1. 23 .02 5.22 1. 79 .05 13-0
value used 0-6 1. 85 .05 11-1 2.69 .11 27-4
High= for value for o.8 2.47 .O? 18-8 3.59 .20 46-7
TYPE OF PIPE hest, good, design 1.0 3.08 .15 28-5 4.48 .31 70-6
smooth, clean, purposes 1.2 3. 71 .21 39.9 5.38 .45 98-9
well laid new
pipe 1-i 4.33 .29 53.0 6.27 .61 132
Low= 1. 4.94 .38 67-9 7.17 .BO 168
poor or 1.8 5.55 .48 84.4 8.07 1.01 20'}
corroded 2-0 6.17 .59 103 8.96 l.25 254
Cement-Asbestos......................................... 160-140 15() t:� 2.6 7.71 .92 155 11.2 1.95 386
Fibre....................................................... 150
Bitumastic-enamel-lined iron or steel centrifugally applied.. 160-130 148 140 �Inch
Cement-lined iron or steel centrifugally applied............ __ 150
__ , __ � 1 4�0 __
Copper, brass, lead, tin or glass pipe and tubing ::-:-:-; 150-120 140 130 STANDARD WT STEEL i>XTR.A STRONG STEEi,
Wood-stave , , , . , 145--110- 120 · �- l--1,..,l"'O __ FLOW
Welded and seamless steel. .°. . . . . . . . . . . . . . . . . . . . . . . . 150-80- -i"40 100
Continuous-interior riveted steel (no projecting rivets or us .493" inside dia .423' inside dia
joints , .. , . . . . . . . . . . . . . . . . . . . . . . 139 100 gal -------------
Wrought-iron .......•... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150-80 130 100 per
Vclocily
Head loss
Head loss
Velocity
� r t-iron.d :........................................... 11540- 5 -8800 113300 mg mln ft per sec Velocily ft per 100 ft ft per sec Velocity ft per 100 ft
head ft
head ft
.
ar.coate cast-iron
Girth-riveted steel {projecting rivets in girth seams only) --- 130- �- 0-8 1.35 .03 4-30 1.83 .05
Concrete ..... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152-85 120 100 1.0 1. 68 .04 6-50 2.28 .OB u·ITT
Full-riveted steel (projecting rivets in girth and horizontal 1-6 2.52 .10 13.8 3.43 .18 L6
seams) , .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 100 2-0 3.36 .IS 23-4 4.57 .32
Vitrified... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 110 100 2-6 4.21 .28 35.4 5. 71 .51 1d
Spiral-riveted steel (flow with lap).......................... 110 100
Spiral-riveted steel (flow against lap)....................... - -WO- 90 3-0 6.05 .40 :9-6 6.85 . 73 105
6.0
Corrugated steel � --- ---W --60-- 3-5 6.89 .54 84.6 8.00 .99 139
9.14
6.73
4-0
.70
1.30
Value of c, , , 150 1140 1130 1120 1110 1100 I I I I 60 6-0 10.1 1.10 m 11.4 2.0 f8
69
8.41
80
90
70
m
6.0
.Multiplicrtocorrecttables., 47 .G4 .62 .71 .84 1.0 1.22 1.58 1.93 U7 1.58 13. 7 2.9
*Ry permission G. V. Shaw and A. W. Loomis C:mn.ermi Hydraulic Data, 11 th Edition, Ingersoll-Rand Co., 1942 [531.
Table 2-22
Cameron Hydraulic Data"
Friction losses in pipes carrying water Friction Losses In Pipe; C = 100
Among the many empirical formulae for friction losses that have yg Inch
been proposed that of Williams and Hazen has been most widely
used. In a convenient form it reads: STANDARD WT STEEL EXTRA STRONG STEEL
(100)1.ss q1·s 5 in which FLOW I
f = .208:1 - --- f = friction head 111 ft of liquid per
C d4·8666 100 ft of pipe (if desired in lb per us .269" inside dia .215' inside dia
iia1
sq in. multiply f X .433 X sp gr) per ----------·-·--.....--
d = inside dia of pipe in inches min Velocity Velocity Head loss Velocity Velocity Head loss
ft per 100 ft
q = flow in gal per min ft per sec bead ft ft per 100 ft ft per sec head ft ----
C = constant accounting for surface 0-1 .565 .00 1-75 .884 .01 6-21
roughness 0.2 1.13 .02 6-31 1. 77 .05 18.8
This formula gives accurate values only when the kinematic 0-3 1.69 .04 13.4 2.65 .11 3p
6 -7
viscosity of the liquid is about 1.1 centistokes or :H.5 SSU, which 0-4 2.26 .08 22.8 3.54 .19 102
34-4
4.42
.12
2.83
0-5
.30
is the case with water at about 60F. But the viscosity of water varies -
with the temperature from 1.8 at 32F Lo .29 centistokes at 2l 2F. 0-6 3.39 .18 48.2 5.32 .44 147
.61
191
3.95
64-1
6.29
.24
0-7
The tables are therefore subject to this error which may increase 0-8 4.a2 .32 82-0 7.08 . 78 244
the friction loss as much as 20% at 32F and decrease it as much as 0-9 5.08 .40 102 7.96 .98
20% at 212F. Note that the tables may be used for any liquid 1-0 5.65 .50 124 8.84 1.21 ffl
having a viscosity of the same order as indicated above. ;1Inch
Values of C for various types of pipe are given below together
with the corresponding multiplier which should apply to the tabu-
lated values of the head loss, f, as given on pages 29 to 48. FLOW STANDARD WT STEEL EXTRA STRONG STEEL
us .364• inside dia .302• inside dia
�al
per
min Velocity Velocity I Head loss Velocity Velocity Head loss
VALUES OF C ft per sec head ft ft per 100 ft ft per sec. head ft ft per 100 ft
Range Average Commonly 0-4 1. 23 .02 5.22 1. 79 .05 13-0
value used 0-6 1. 85 .05 11-1 2.69 .11 27-4
High= for value for o.8 2.47 .O? 18-8 3.59 .20 46-7
TYPE OF PIPE hest, good, design 1.0 3.08 .15 28-5 4.48 .31 70-6
smooth, clean, purposes 1.2 3. 71 .21 39.9 5.38 .45 98-9
well laid new
pipe 1-i 4.33 .29 53.0 6.27 .61 132
Low= 1. 4.94 .38 67-9 7.17 .BO 168
poor or 1.8 5.55 .48 84.4 8.07 1.01 20'}
corroded 2-0 6.17 .59 103 8.96 l.25 254
Cement-Asbestos......................................... 160-140 15() t:� 2.6 7.71 .92 155 11.2 1.95 386
Fibre....................................................... 150
Bitumastic-enamel-lined iron or steel centrifugally applied.. 160-130 148 140 �Inch
Cement-lined iron or steel centrifugally applied............ __ 150
__ , __ � 1 4�0 __
Copper, brass, lead, tin or glass pipe and tubing ::-:-:-; 150-120 140 130 STANDARD WT STEEL i>XTR.A STRONG STEEi,
Wood-stave , , , . , 145--110- 120 · �- l--1,..,l"'O __ FLOW
Welded and seamless steel. .°. . . . . . . . . . . . . . . . . . . . . . . . 150-80- -i"40 100
Continuous-interior riveted steel (no projecting rivets or us .493" inside dia .423' inside dia
joints , .. , . . . . . . . . . . . . . . . . . . . . . . 139 100 gal -------------
Wrought-iron .......•... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150-80 130 100 per
Vclocily
Head loss
Head loss
Velocity
� r t-iron.d :........................................... 11540- 5 -8800 113300 mg mln ft per sec Velocily ft per 100 ft ft per sec Velocity ft per 100 ft
head ft
head ft
.
ar.coate cast-iron
Girth-riveted steel {projecting rivets in girth seams only) --- 130- �- 0-8 1.35 .03 4-30 1.83 .05
Concrete ..... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152-85 120 100 1.0 1. 68 .04 6-50 2.28 .OB u·ITT
Full-riveted steel (projecting rivets in girth and horizontal 1-6 2.52 .10 13.8 3.43 .18 L6
seams) , .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 100 2-0 3.36 .IS 23-4 4.57 .32
Vitrified... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 110 100 2-6 4.21 .28 35.4 5. 71 .51 1d
Spiral-riveted steel (flow with lap).......................... 110 100
Spiral-riveted steel (flow against lap)....................... - -WO- 90 3-0 6.05 .40 :9-6 6.85 . 73 105
6.0
Corrugated steel � --- ---W --60-- 3-5 6.89 .54 84.6 8.00 .99 139
9.14
6.73
4-0
.70
1.30
Value of c, , , 150 1140 1130 1120 1110 1100 I I I I 60 6-0 10.1 1.10 m 11.4 2.0 f8
69
8.41
80
90
70
m
6.0
.Multiplicrtocorrecttables., 47 .G4 .62 .71 .84 1.0 1.22 1.58 1.93 U7 1.58 13. 7 2.9
*Ry permission G. V. Shaw and A. W. Loomis C:mn.ermi Hydraulic Data, 11 th Edition, Ingersoll-Rand Co., 1942 [531.
......
t
Table 2-18: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C = 100 Friction Losses In Pipe; C= 100
.U Inch 1 Inch
Double Double
FLOW Standard Wt Steel Extra Strong Steel Extra Strong Steel FLOW Standard Wt Steel Extra Strong Steel Extra Stronl! Steel
us .622" iuside-� .546" inside dia .252'' inside dia us 1.049" inside dia �"inside di;--- ,599• insirlc dia
·--�ead
Hend
)>
�al / Head Head Head gal Velocity Velocity loss Velocity Velocity loss Head u
per Velocity Velocity loss· Velocity Velocity loss Velocity Velocity loss per Velocity Velocity loss
min ft per head ft per ft per bead ft per ft per head ft per min ft per hea<l ft per ft per head ft per ft per head ft per 'E.
ft
ft
ft
sec
sec
100 ft
100 ft
ft
ft
100 ft
ft
sec
sec
100 ft
:,ICC
sec
-- --- --- --- --- 100 ft --- --- 100 ft --- --- --- --- --- --- --- <ii'
a.
e.s ,528 .00 -682 .686 .01 1.10 3.22 .16 47-2 2 . 742 .01 .595 .892 ,01 -930 2.28 .08 11.1 ,.,
1.0 1.06 .02 2.10 1.37. .03 3,96 6.44 .64 170 3 1.11 .02 1-26 1.34 .03 1-97 3.42 .18 24-8
1-5 1.58 .04 4,44 2.06 .07 8.38 9. 66 1.45 361 4 1.49 .03 2.14 1.79 .05 3-28 4.56 .32 42-2 a
2.0 2.11 • <YT 7.57 2. 74 .12 14-3 12. 9 2.59 614 6 1.86 .05 3°24 2.23 .OB 5.07 5.69 .60 63.8 0
1.10
.08
2.23
.11
6.83
4-64
2.5
6
2.68
.11
3.43
.18
11-4
2."4
16. l
4.03
928
21-6
. 72
-- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 69-4 ID
1/)
3-0 3.17 . 16 16-0 4.11 .26 30.2 8 2.97 .14 1.73 3.57 .20 12.1 9.11 1.29 162 1/)
3,5 3. 70 .21 21.3 4.80 .36 40.2 u 3.71 .21 11.7 4.46 .31 t3 11.4 2.0 230 0
4.D 4.23 .28 27.3 5.48 .47 61.4 4.46 .31 16.4 5.36 .45 6.6 13. 7 2.9 322 (D
64.0
4.6 4. 75 .35 33-9 6.17 .59 n.t 14 5.20 .42 21.s 6.25 . 61 34,0 15.9 3. 9 429 1/)
21.9
43.6
5.1
18.2
. 79
5.0
7. 14
41,2
16
.55
�.94
6.86
. 73
.43
5.28
-- --- --- --- --- --- --- --- --- --- --- ·--- --- --- --- --- --- --- 549 <0'
:::::,
6.5 5.81 .52 49-2 7.54 .88 92-7 18 6.68 . 69 34.7 8.03 1.00 54-2 20.5 6.6 682
.,
6.0 6.34 . 62 67-8 8.23 1.05 109 20 7.43 .86 42.1 8.92 1.24 65-8 22.7 8.0 829 0
6.5 6.87 . 73 67.0 8.91 1.23 126 22 8.17 1.04 60,2 9.82 1.50 78-5 25.1 9.8 989
7-0 7.39 .85 76-8 9.60 1.43 145 24 8.91 1.23 69.0 10.7 1.8 94.4
107
68.4
165
7.5
26
1.45
11. 6
2.1
10.3
9.66
87.3
.97
7.92
l. 6
-- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --
8.o 8.45 1.11 98-3 11.0 I. 9 185 28 10.4 1.7 78,5 12.5 2.1 123
m
u 8.98 1.25 1 � 0 11. 6 2.1 207 35 11.1 2.6 119 13.4 3,8 J85
89,2
2.8
30
1.9
8.6
231
15.6
12.3
2.4
13.0
1 2
9.51
1.4
37
14. 9
17. 9
189
45
4.3
13.7
149
2.9
6.3
280
1, 7
10 .5 10.0 1.6 135 13.0 2.6 255 40 16. 7 3.5 162 20.1 5.0 295
10.6
%Inch l;i Inch
Double Double
FLOW Standard Wt Steel Extra Strong Steel Extra Stron� Steel FLOW Standard Wt Steel Extra Strong Steel Ei:tra Strong Steel
1.278" Inside dia
.896" inside dia
1.380" inside rlia
us .S24h Inside dia .742" inside dia - .434" iilsidc dia· us Head Head Head
�al Head Head Head �al Velocity Velocity loss Velocity Velocity loss Velocity Velocity loss
per Velocity Velocity loss Velocity Vdocity loss Velocity Velocity loss per ft per head ft per ft per head ft per head ft per
min ft per head ft per ft per head ft per ft per head ft fer min sec ft 100 ft sec ft ft fer sec ft 100 ft
10 ft
ft
100 ft
100 ft
sec
10 ft
ft
ft
sec
sec
-- ·--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
1,6 . 903 .01 1.13 1.11 .02 1-88 3.25 .16 25-6 4 .86 .01 .564 1.00 .02 .sr 2.04 .06 4-63
2.0 1.20 .02 1.93 1.48 .03 3-21 4.34 .29 43-6 5 1.07 .02 -853 1.25 .02 1.2 2.54 .10 6-J8
9. 8
1-7
2.5 1.51 ,04 2-91 1.86 .05 4-85 5.42 .46 65.9 6 1.29 .03 1-2 � 1.50 .04 2,31 3.05 .14 13-0
1.5
1.50
3-0 1.81 .05 4-08 2.23 .08 6-79 6.51 . 66 f-3 7 1. 72 .04 2.04 t. 75 .05 2-96 3.56 .20 16-7
.05
4.07
8
.26
.06
2.00
2. so
1 3
9-03
2.11
.11
3.5
6-42
.90
.07
7.60
-- --- --- --- --- --- --- --- --- - --- --- --- --- --- --- --- --- --- ---
3-08
25-2
4-0 2.41 ,09 6-94 2.97 .14 11.6 8.68 1.17 157 18 2.15 .<YT 4.31 2.50 .10 4.47 5.09 .40 35,3
6-26
12
6.11
4.5 2. 71 . 11 8.63 3.34 .17 14-4 9. 77 1.48 195 2.57 .IO 3.00 .14 .58 46.9
14
6 3.01 .14 10,5 3.71 .21 17,5 10.9 1.8 238 16 3.00 .14 6-73 3.50 .19 8-33 7.12 . 79
7,34
3.43
.18
6 3.61 .20 14,7 4.45 .31 24-6 13.0 2. 6 333 18 S.86 .23 9-13 4.00 .25 10-7 8.14 1.03 60-8
74.7
1.30
9.16
.31
13-3
4.50
32.6
.42
5.20
3.6
15.2
4.21
7
19-6
,28
-- --- --- --- --- --- --- --- --- 443 --- --- --- --- --- --- --- --- --- ---
90-7
8 4.82 .36 25-0 5.94 .55 41-7 17.4 4.7 667 20 4.29 .29 11.1 5.00 .39 16-1 10.2 1.6 137
24-9
26
16.8
12. 7
9 5.42 .46 31.1 6. 68 .69 51-8 19.5 5.9 704 30 5.36 .45 23.6 6.25 .61 34.1 2.5 192
10 6.02 .56 37-8 7.42 .86 63.0 21. 7 7.3 866 6.43 .64 7.50 ,87 45,4 15.3 3.6
.88
8. 75
11 6. 62 .68 45,1 8.17 1.04 75, 1 35 7.51 1.14 ,1.2 10.0 1.19 68-1 17.8 4.9 255
o.o
327
40
6.5
8.58
1.6
20.4
88-3
63-0
12
8.91
1.23
.81
7.22
-- --- --- --- --- --- --- --- --- -- --- --- -�- --- --- --- --- --- ---
13 7.82 .95 61-5 9.63 1.44 102 60 10.7 1.8 60.4 12.5 2.4 87-8 25.4 10.0 494
84.7
14 8.43 1.10 70-5 10.4 I. 7 1117 60 12.9 2.6 114 15.0 3.5 123 30.5 14.5 692
is.o
70
921
35.6
16 9.63 1.44 90.2 11.9 2.2 160 3.5 17.5 4.8 u; 19. 7
80
18 10.8 1.8 112 13.4 2.8 187 ,o 17.2 4.6 144 20.0 6.2
.10 12.0 2.2 136 14.8 3.4 227 19.3 5.8 17J 22. 5 7. 9 260
......
t
Table 2-18: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C = 100 Friction Losses In Pipe; C= 100
.U Inch 1 Inch
Double Double
FLOW Standard Wt Steel Extra Strong Steel Extra Strong Steel FLOW Standard Wt Steel Extra Strong Steel Extra Stronl! Steel
us .622" iuside-� .546" inside dia .252'' inside dia us 1.049" inside dia �"inside di;--- ,599• insirlc dia
·--�ead
Hend
)>
�al / Head Head Head gal Velocity Velocity loss Velocity Velocity loss Head u
per Velocity Velocity loss· Velocity Velocity loss Velocity Velocity loss per Velocity Velocity loss
min ft per head ft per ft per bead ft per ft per head ft per min ft per hea<l ft per ft per head ft per ft per head ft per 'E.
ft
ft
ft
sec
sec
100 ft
100 ft
ft
ft
100 ft
ft
sec
sec
100 ft
:,ICC
sec
-- --- --- --- --- 100 ft --- --- 100 ft --- --- --- --- --- --- --- <ii'
a.
e.s ,528 .00 -682 .686 .01 1.10 3.22 .16 47-2 2 . 742 .01 .595 .892 ,01 -930 2.28 .08 11.1 ,.,
1.0 1.06 .02 2.10 1.37. .03 3,96 6.44 .64 170 3 1.11 .02 1-26 1.34 .03 1-97 3.42 .18 24-8
1-5 1.58 .04 4,44 2.06 .07 8.38 9. 66 1.45 361 4 1.49 .03 2.14 1.79 .05 3-28 4.56 .32 42-2 a
2.0 2.11 • <YT 7.57 2. 74 .12 14-3 12. 9 2.59 614 6 1.86 .05 3°24 2.23 .OB 5.07 5.69 .60 63.8 0
1.10
.08
2.23
.11
6.83
4-64
2.5
6
2.68
.11
3.43
.18
11-4
2."4
16. l
4.03
928
21-6
. 72
-- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 69-4 ID
1/)
3-0 3.17 . 16 16-0 4.11 .26 30.2 8 2.97 .14 1.73 3.57 .20 12.1 9.11 1.29 162 1/)
3,5 3. 70 .21 21.3 4.80 .36 40.2 u 3.71 .21 11.7 4.46 .31 t3 11.4 2.0 230 0
4.D 4.23 .28 27.3 5.48 .47 61.4 4.46 .31 16.4 5.36 .45 6.6 13. 7 2.9 322 (D
64.0
4.6 4. 75 .35 33-9 6.17 .59 n.t 14 5.20 .42 21.s 6.25 . 61 34,0 15.9 3. 9 429 1/)
21.9
43.6
5.1
18.2
. 79
5.0
7. 14
41,2
16
.55
�.94
6.86
. 73
.43
5.28
-- --- --- --- --- --- --- --- --- --- --- ·--- --- --- --- --- --- --- 549 <0'
:::::,
6.5 5.81 .52 49-2 7.54 .88 92-7 18 6.68 . 69 34.7 8.03 1.00 54-2 20.5 6.6 682
.,
6.0 6.34 . 62 67-8 8.23 1.05 109 20 7.43 .86 42.1 8.92 1.24 65-8 22.7 8.0 829 0
6.5 6.87 . 73 67.0 8.91 1.23 126 22 8.17 1.04 60,2 9.82 1.50 78-5 25.1 9.8 989
7-0 7.39 .85 76-8 9.60 1.43 145 24 8.91 1.23 69.0 10.7 1.8 94.4
107
68.4
165
7.5
26
1.45
11. 6
2.1
10.3
9.66
87.3
.97
7.92
l. 6
-- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --
8.o 8.45 1.11 98-3 11.0 I. 9 185 28 10.4 1.7 78,5 12.5 2.1 123
m
u 8.98 1.25 1 � 0 11. 6 2.1 207 35 11.1 2.6 119 13.4 3,8 J85
89,2
2.8
30
1.9
8.6
231
15.6
12.3
2.4
13.0
1 2
9.51
1.4
37
14. 9
17. 9
189
45
4.3
13.7
149
2.9
6.3
280
1, 7
10 .5 10.0 1.6 135 13.0 2.6 255 40 16. 7 3.5 162 20.1 5.0 295
10.6
%Inch l;i Inch
Double Double
FLOW Standard Wt Steel Extra Strong Steel Extra Stron� Steel FLOW Standard Wt Steel Extra Strong Steel Ei:tra Strong Steel
1.278" Inside dia
.896" inside dia
1.380" inside rlia
us .S24h Inside dia .742" inside dia - .434" iilsidc dia· us Head Head Head
�al Head Head Head �al Velocity Velocity loss Velocity Velocity loss Velocity Velocity loss
per Velocity Velocity loss Velocity Vdocity loss Velocity Velocity loss per ft per head ft per ft per head ft per head ft per
min ft per head ft per ft per head ft per ft per head ft fer min sec ft 100 ft sec ft ft fer sec ft 100 ft
10 ft
ft
100 ft
100 ft
sec
10 ft
ft
ft
sec
sec
-- ·--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
1,6 . 903 .01 1.13 1.11 .02 1-88 3.25 .16 25-6 4 .86 .01 .564 1.00 .02 .sr 2.04 .06 4-63
2.0 1.20 .02 1.93 1.48 .03 3-21 4.34 .29 43-6 5 1.07 .02 -853 1.25 .02 1.2 2.54 .10 6-J8
9. 8
1-7
2.5 1.51 ,04 2-91 1.86 .05 4-85 5.42 .46 65.9 6 1.29 .03 1-2 � 1.50 .04 2,31 3.05 .14 13-0
1.5
1.50
3-0 1.81 .05 4-08 2.23 .08 6-79 6.51 . 66 f-3 7 1. 72 .04 2.04 t. 75 .05 2-96 3.56 .20 16-7
.05
4.07
8
.26
.06
2.00
2. so
1 3
9-03
2.11
.11
3.5
6-42
.90
.07
7.60
-- --- --- --- --- --- --- --- --- - --- --- --- --- --- --- --- --- --- ---
3-08
25-2
4-0 2.41 ,09 6-94 2.97 .14 11.6 8.68 1.17 157 18 2.15 .<YT 4.31 2.50 .10 4.47 5.09 .40 35,3
6-26
12
6.11
4.5 2. 71 . 11 8.63 3.34 .17 14-4 9. 77 1.48 195 2.57 .IO 3.00 .14 .58 46.9
14
6 3.01 .14 10,5 3.71 .21 17,5 10.9 1.8 238 16 3.00 .14 6-73 3.50 .19 8-33 7.12 . 79
7,34
3.43
.18
6 3.61 .20 14,7 4.45 .31 24-6 13.0 2. 6 333 18 S.86 .23 9-13 4.00 .25 10-7 8.14 1.03 60-8
74.7
1.30
9.16
.31
13-3
4.50
32.6
.42
5.20
3.6
15.2
4.21
7
19-6
,28
-- --- --- --- --- --- --- --- --- 443 --- --- --- --- --- --- --- --- --- ---
90-7
8 4.82 .36 25-0 5.94 .55 41-7 17.4 4.7 667 20 4.29 .29 11.1 5.00 .39 16-1 10.2 1.6 137
24-9
26
16.8
12. 7
9 5.42 .46 31.1 6. 68 .69 51-8 19.5 5.9 704 30 5.36 .45 23.6 6.25 .61 34.1 2.5 192
10 6.02 .56 37-8 7.42 .86 63.0 21. 7 7.3 866 6.43 .64 7.50 ,87 45,4 15.3 3.6
.88
8. 75
11 6. 62 .68 45,1 8.17 1.04 75, 1 35 7.51 1.14 ,1.2 10.0 1.19 68-1 17.8 4.9 255
o.o
327
40
6.5
8.58
1.6
20.4
88-3
63-0
12
8.91
1.23
.81
7.22
-- --- --- --- --- --- --- --- --- -- --- --- -�- --- --- --- --- --- ---
13 7.82 .95 61-5 9.63 1.44 102 60 10.7 1.8 60.4 12.5 2.4 87-8 25.4 10.0 494
84.7
14 8.43 1.10 70-5 10.4 I. 7 1117 60 12.9 2.6 114 15.0 3.5 123 30.5 14.5 692
is.o
70
921
35.6
16 9.63 1.44 90.2 11.9 2.2 160 3.5 17.5 4.8 u; 19. 7
80
18 10.8 1.8 112 13.4 2.8 187 ,o 17.2 4.6 144 20.0 6.2
.10 12.0 2.2 136 14.8 3.4 227 19.3 5.8 17J 22. 5 7. 9 260
Table 2-22: Cameron Hydraulic Data (cont)
Friction. Losses In Pipe; C = 100 Friction Losses In Pipe; C = 100
1,%' Inch 2 Inch
..
Double Double
Standard Wt Steel Extra Srrorig Steel Extra Strong Steel Standard Wt Steel Extra Strong Steel Extra Strong Steel
PLOW now
us !. 610' inside dia 1.500" inside dia 1.100" inside dia us 2.067' inside dia I. 939" inside dia 1.503" inside dia
!lBI -- �al ---------
per Head Head per Head I Head
Head Velocity Velocity loss
min Velocity Velocity loss Velocity Velocity loss min Velocity Velocity loss Velocity Velocity loss
Head Velocity Velocity loss
ft per I head I rt per ft per head ft per ft per head ft per ft per bead ft per ft per I brad I ft per ft per head ft per
sec ft 100 ft sec ft 100 ft sec ft 100 ft sec ft 100ft sec ft 100 ft sec ft 100 ft
---'------ --- --- --- --- --- --- ------ -------- ---------
4 . 63 .01 -267 . 73 .01 -376 1.35 .03 1-70 5 .48 .00 -120 .54 .00 -163 .90 .01 -563
5 . 79 .01 -403 .91 .01 -569 1.69 .04 2-57 6 .57 .01 -167 .65 .01 -229 1.0? .02 -18'
6 .95 .01 -565 1.09 .02 -797 2.0.3 .06 3-60 7 .67 .01 -223 . 76 .01 -304 1.27 .03 1-05
7 1.10 .02 -751 1.27 .03 1-06 2.36 .09 4-79 8 .77 .01 ,285 .87 .01 -389 1.45 .03 1-34
1.63
1.45
8
1.26
.02
.98
.04
.86
.01
.01
.11
-484
9
-355
2. 70
-962
.03
1-67
1-36
6-14
--·- --- --- -- --- --- --- --- --- --- --- --- --- --- ---- --- --- --- --- --
9 1.42 .03 1-20 1.63 .04 1-69 3.04 .14 7.63 10 .96 .01 -431 1.09 .02 .588 1.81 .05 2-03
10 1.58 .04 1,45 1.82 .05 2-05 3.�8 .18 9-27 12 1.15 .02 -604 1.30 .03 -824 2.17 .07 2-85
12 1.89 .06 2,04 2.18 ,07 2-87 4.05 .25 13-0 14 1.34 .03 -803 1.52 .04 1-10 2.53 .10 3-78
14 2.21 .08 2-71 2.54 ,10 3-82 4. 73 .35 17,3 16 1.53 .04 1-03 1. 74 .05 1-40 2.89 .13 4-85
16 2.52 .10 3-47 2.90 .13 4,89 5.40 .45 22-1 18 1. 72 .05 1-28 I. 96 .06 1-74 3.25 .16 6-02
-- --- --- -- --- --- --- --- --- --- -- --- --- -- --- --- --- --- --- --
1.91
18 2.84 .13 4-31 3.27 .17 6-08 6.08 .67 27-5 20 2.10 .06 1-55 2.17 .07 2.12 3.62 ,20 7-32
.07
.)5
3.63
.09
22
2.39
3.15
3.98
.25
8-73
� 3.47 .19 5-24 3. 99 .20 7-39 6.75 . 71 33-4 24 2.29 .08 1-85 2.61 .JI 2-53 4.34 .29 10-3
.25
2-97
2-18
7.43
.86
6-25
8-82
39-9
24 3. 78 .22 7,34 4.36 .30 10-4 8.10 1.02 46-8 26 2.49 .10 2-52 2.63 .12 3-44 4. 70 .34 11-9
26 4.10 .26 8,51 4.72 .35 12-0 8. 78 1.20 54-3 28 2.68 .11 2-89 3.04 .14 3,95 5.06 .40 13-6
-- ---· -·-- -- --- --- --- --- --- -- --- --- --- --- --- --- --- --- --
28 4.41 .30 9-76 5.08 .40 13-8 9.45 1.39 62,3 30 2.87 .13 3-29 3.26 .17 4-49 5.43 .46 16-6
30 4. 73 .35 11-1 5.45 .46 15-7 10.1 1.6 70,8 35 3.35 , 17 4-37 3.80 .22 5-97 6.33 .62 20-6
32 5.04 .39 12-5 5.81 .52 17-6 10.8 1.8 79-8 i� 3.82 .23 5-60 4.35 .29 7-64 7 .23 .81 26-4
34 5.36 .45 14-0 6. 17 .59 19-7 11.5 2.1 � -2 4.30 .29 6-96 4.89 .37 9,60 8.14 l.03 32-8
.46
9.04
5.67
5.43
4.18
.36
6.54
2.3
12.2
1.27
.66
50
15-5
39-9
.50
8-46
11,5
36
-- --- --- -- --- --- 21-9 --- --- 9 -2 -- --- --- --- ----- --- --- --- --- --
38 5.99 .56 17-2 6.90 .74 24-2 12.8 2.5 110 55 5.26 .43 10-1 5. 98 .56 13-7 9.95 1.54 47-5
40 6.30 .62 18-9 7.26 .82 26-7 13.5 2.8 121 60 5. 74 .51 11-9 6.52 .66 16-2 10.9 1.8 54-6
42 6.1·2 .68 20-7 7.63 .90 29-2 14.2 3.1 132 66 6.21 .60 13,7 7.06 .77 18-8 11.8 2.2 64-8
44 6. 93 . 75 22-5 7.99 .99 31-8 14. 9 3.5 144 70 6.69 .70 15-8 7.61 .90 21-6 12.7 2.5 74-3
46
8.15
2.9
1.03
13.6
7.17
.80
7.25
75
.82
1.08
24-6
8.35
17-9
84-4
3.8
15. 6
34-5
24-5
·-- --- --- --- --- --- --- --- --- 156 -- --- --- -- ---· --- --- --- --- --
48 7.57 .89 27-1 8.72 1.18 37-3 16.2 4.1 169 80 7.65 . 91 20-2 8.69 1.17 27-6 14.5 3.3 95-2
50 7.88 .97 28-5 9.08 1.28 40-3 16.9 4.4 182 85 8.13 1.03 22-6 9.03 1.27 30-8 15.4 3. 7 106
56 8.67 1.17 34-0 9. 99 1.55 49-0 18.6 5.4 217 90 8.61 1.15 25-1 9. 78 1.49 34-3 16.3 4.1 118
9.46
60 10.2 1.39 40-0 10. 9 1.8 56-4 20.3 6.4 255 95 9.08 1.28 27-7 10.3 1.6 37-9 17.2 4.6 131
18.1
1.6
10. 9
1.42
65
9.56
11.8
5.1
1. 8
7.5
30-6
21. 9
65.4
41-6
46-4
144
100
2.2
-- --- --- -- --- --- --- --- --- 296 -- ---- --- --- --- --- -- --- --- ---
70 11.0 I. 9 53-2 12. 7 2.5 75.0 2J.6 8. 7 339 110 10.5 I. 7 36-4 12.0 2.2 49-7 19. 9 6.2 172
75 11.8 2,2 60-4 13. 6 2.9 85,3 25.3 9.9 386 120 11.5 2.1 42-7 13.0 2. 6 58-3 21. 7 7.3 201
80 12.6 2.5 68-1 14.5 3.3 96-1 27. 0 11.3 435 130 12.4 2.4 49-6 14.1 3.1 67-7 23.5 8.6 234
85 13.4 2.8 76-2 15.4 3. 7 107 28. 7 12.8 486 140 13.4 2.8 56-9 15.2 3. 6 77-6 25.3 9.9 268
14.3
--- --- --- ---- --- --- --
4.1
30.4
14.4
16.3
90
14.2
3, i
160
3.2
--- --- --- --- --- ---· --- --- ---- --- -- --- --- 64-7 16.3 4.1 88-4 27.1 11.4 306
84-7
540
119
95 15.0 3.5 93-6 17.2 4.6 132 32.1 16.0 597 160 15.3 3. 6 72-B 17.4 4. 7 99-3 28.9 13.0 343
100 15.8 3.9 103 18.2 6.1 145 33.8 17.8 657 170 16.3 4.1 81-4 18.5 5.3 111 30. 7 14. 6 384
110 17.3 4. 7 123 20.0 6.2 173 180 l'l.2 4.6 90-5 19. 6 6.0 124 32.5 16.4 427
120 18. 9 5.6 144 21.8 7.4 203 190 18.2 G.1 100 20.6 6. 6 137 34.1 18.4 471
20.4
36.2
21. 7
5. 7
20.5
19.1
8. 7
7.3
23. 6
-·-- --- --- --- --- ---· --- --- --- --- --- --- --- ---· ---- --- ---- --- --- --
6.6
518
130
236
150
110
200
167
140 22. l 7.6 192 25.4 10.0 271 220 21.0 6.8 131 23. 9 8.9 179 39. 8 24.6 618
151) 23.6 8.7 218 �7.2 11.5 308 240 22.9 8.2 154 26. l 10. 6 210 43.4 29.3 726
160 25.2 9.9 246 29.0 13.1 346 260 24. 9 9.6 179 28.3 12A 244 47.0 34.3 842
170 26.8 11.2 275 30.9 14.8 387 280 26.8 ll.2 205 30.4 14.4 I 280
180 28.4 12.5 305 32. 7 16.6 431 300 28. 7 12.8 233 32. 6 16.5 318
Table 2-22: Cameron Hydraulic Data (cont)
Friction. Losses In Pipe; C = 100 Friction Losses In Pipe; C = 100
1,%' Inch 2 Inch
..
Double Double
Standard Wt Steel Extra Srrorig Steel Extra Strong Steel Standard Wt Steel Extra Strong Steel Extra Strong Steel
PLOW now
us !. 610' inside dia 1.500" inside dia 1.100" inside dia us 2.067' inside dia I. 939" inside dia 1.503" inside dia
!lBI -- �al ---------
per Head Head per Head I Head
Head Velocity Velocity loss
min Velocity Velocity loss Velocity Velocity loss min Velocity Velocity loss Velocity Velocity loss
Head Velocity Velocity loss
ft per I head I rt per ft per head ft per ft per head ft per ft per bead ft per ft per I brad I ft per ft per head ft per
sec ft 100 ft sec ft 100 ft sec ft 100 ft sec ft 100ft sec ft 100 ft sec ft 100 ft
---'------ --- --- --- --- --- --- ------ -------- ---------
4 . 63 .01 -267 . 73 .01 -376 1.35 .03 1-70 5 .48 .00 -120 .54 .00 -163 .90 .01 -563
5 . 79 .01 -403 .91 .01 -569 1.69 .04 2-57 6 .57 .01 -167 .65 .01 -229 1.0? .02 -18'
6 .95 .01 -565 1.09 .02 -797 2.0.3 .06 3-60 7 .67 .01 -223 . 76 .01 -304 1.27 .03 1-05
7 1.10 .02 -751 1.27 .03 1-06 2.36 .09 4-79 8 .77 .01 ,285 .87 .01 -389 1.45 .03 1-34
1.63
1.45
8
1.26
.02
.98
.04
.86
.01
.01
.11
-484
9
-355
2. 70
-962
.03
1-67
1-36
6-14
--·- --- --- -- --- --- --- --- --- --- --- --- --- --- ---- --- --- --- --- --
9 1.42 .03 1-20 1.63 .04 1-69 3.04 .14 7.63 10 .96 .01 -431 1.09 .02 .588 1.81 .05 2-03
10 1.58 .04 1,45 1.82 .05 2-05 3.�8 .18 9-27 12 1.15 .02 -604 1.30 .03 -824 2.17 .07 2-85
12 1.89 .06 2,04 2.18 ,07 2-87 4.05 .25 13-0 14 1.34 .03 -803 1.52 .04 1-10 2.53 .10 3-78
14 2.21 .08 2-71 2.54 ,10 3-82 4. 73 .35 17,3 16 1.53 .04 1-03 1. 74 .05 1-40 2.89 .13 4-85
16 2.52 .10 3-47 2.90 .13 4,89 5.40 .45 22-1 18 1. 72 .05 1-28 I. 96 .06 1-74 3.25 .16 6-02
-- --- --- -- --- --- --- --- --- --- -- --- --- -- --- --- --- --- --- --
1.91
18 2.84 .13 4-31 3.27 .17 6-08 6.08 .67 27-5 20 2.10 .06 1-55 2.17 .07 2.12 3.62 ,20 7-32
.07
.)5
3.63
.09
22
2.39
3.15
3.98
.25
8-73
� 3.47 .19 5-24 3. 99 .20 7-39 6.75 . 71 33-4 24 2.29 .08 1-85 2.61 .JI 2-53 4.34 .29 10-3
.25
2-97
2-18
7.43
.86
6-25
8-82
39-9
24 3. 78 .22 7,34 4.36 .30 10-4 8.10 1.02 46-8 26 2.49 .10 2-52 2.63 .12 3-44 4. 70 .34 11-9
26 4.10 .26 8,51 4.72 .35 12-0 8. 78 1.20 54-3 28 2.68 .11 2-89 3.04 .14 3,95 5.06 .40 13-6
-- ---· -·-- -- --- --- --- --- --- -- --- --- --- --- --- --- --- --- --
28 4.41 .30 9-76 5.08 .40 13-8 9.45 1.39 62,3 30 2.87 .13 3-29 3.26 .17 4-49 5.43 .46 16-6
30 4. 73 .35 11-1 5.45 .46 15-7 10.1 1.6 70,8 35 3.35 , 17 4-37 3.80 .22 5-97 6.33 .62 20-6
32 5.04 .39 12-5 5.81 .52 17-6 10.8 1.8 79-8 i� 3.82 .23 5-60 4.35 .29 7-64 7 .23 .81 26-4
34 5.36 .45 14-0 6. 17 .59 19-7 11.5 2.1 � -2 4.30 .29 6-96 4.89 .37 9,60 8.14 l.03 32-8
.46
9.04
5.67
5.43
4.18
.36
6.54
2.3
12.2
1.27
.66
50
15-5
39-9
.50
8-46
11,5
36
-- --- --- -- --- --- 21-9 --- --- 9 -2 -- --- --- --- ----- --- --- --- --- --
38 5.99 .56 17-2 6.90 .74 24-2 12.8 2.5 110 55 5.26 .43 10-1 5. 98 .56 13-7 9.95 1.54 47-5
40 6.30 .62 18-9 7.26 .82 26-7 13.5 2.8 121 60 5. 74 .51 11-9 6.52 .66 16-2 10.9 1.8 54-6
42 6.1·2 .68 20-7 7.63 .90 29-2 14.2 3.1 132 66 6.21 .60 13,7 7.06 .77 18-8 11.8 2.2 64-8
44 6. 93 . 75 22-5 7.99 .99 31-8 14. 9 3.5 144 70 6.69 .70 15-8 7.61 .90 21-6 12.7 2.5 74-3
46
8.15
2.9
1.03
13.6
7.17
.80
7.25
75
.82
1.08
24-6
8.35
17-9
84-4
3.8
15. 6
34-5
24-5
·-- --- --- --- --- --- --- --- --- 156 -- --- --- -- ---· --- --- --- --- --
48 7.57 .89 27-1 8.72 1.18 37-3 16.2 4.1 169 80 7.65 . 91 20-2 8.69 1.17 27-6 14.5 3.3 95-2
50 7.88 .97 28-5 9.08 1.28 40-3 16.9 4.4 182 85 8.13 1.03 22-6 9.03 1.27 30-8 15.4 3. 7 106
56 8.67 1.17 34-0 9. 99 1.55 49-0 18.6 5.4 217 90 8.61 1.15 25-1 9. 78 1.49 34-3 16.3 4.1 118
9.46
60 10.2 1.39 40-0 10. 9 1.8 56-4 20.3 6.4 255 95 9.08 1.28 27-7 10.3 1.6 37-9 17.2 4.6 131
18.1
1.6
10. 9
1.42
65
9.56
11.8
5.1
1. 8
7.5
30-6
21. 9
65.4
41-6
46-4
144
100
2.2
-- --- --- -- --- --- --- --- --- 296 -- ---- --- --- --- --- -- --- --- ---
70 11.0 I. 9 53-2 12. 7 2.5 75.0 2J.6 8. 7 339 110 10.5 I. 7 36-4 12.0 2.2 49-7 19. 9 6.2 172
75 11.8 2,2 60-4 13. 6 2.9 85,3 25.3 9.9 386 120 11.5 2.1 42-7 13.0 2. 6 58-3 21. 7 7.3 201
80 12.6 2.5 68-1 14.5 3.3 96-1 27. 0 11.3 435 130 12.4 2.4 49-6 14.1 3.1 67-7 23.5 8.6 234
85 13.4 2.8 76-2 15.4 3. 7 107 28. 7 12.8 486 140 13.4 2.8 56-9 15.2 3. 6 77-6 25.3 9.9 268
14.3
--- --- --- ---- --- --- --
4.1
30.4
14.4
16.3
90
14.2
3, i
160
3.2
--- --- --- --- --- ---· --- --- ---- --- -- --- --- 64-7 16.3 4.1 88-4 27.1 11.4 306
84-7
540
119
95 15.0 3.5 93-6 17.2 4.6 132 32.1 16.0 597 160 15.3 3. 6 72-B 17.4 4. 7 99-3 28.9 13.0 343
100 15.8 3.9 103 18.2 6.1 145 33.8 17.8 657 170 16.3 4.1 81-4 18.5 5.3 111 30. 7 14. 6 384
110 17.3 4. 7 123 20.0 6.2 173 180 l'l.2 4.6 90-5 19. 6 6.0 124 32.5 16.4 427
120 18. 9 5.6 144 21.8 7.4 203 190 18.2 G.1 100 20.6 6. 6 137 34.1 18.4 471
20.4
36.2
21. 7
5. 7
20.5
19.1
8. 7
7.3
23. 6
-·-- --- --- --- --- ---· --- --- --- --- --- --- --- ---· ---- --- ---- --- --- --
6.6
518
130
236
150
110
200
167
140 22. l 7.6 192 25.4 10.0 271 220 21.0 6.8 131 23. 9 8.9 179 39. 8 24.6 618
151) 23.6 8.7 218 �7.2 11.5 308 240 22.9 8.2 154 26. l 10. 6 210 43.4 29.3 726
160 25.2 9.9 246 29.0 13.1 346 260 24. 9 9.6 179 28.3 12A 244 47.0 34.3 842
170 26.8 11.2 275 30.9 14.8 387 280 26.8 ll.2 205 30.4 14.4 I 280
180 28.4 12.5 305 32. 7 16.6 431 300 28. 7 12.8 233 32. 6 16.5 318
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C = 100 Friction Losses in Pipe; C= 100
275 Inch 3 Inch
Double Double
Standard Wt Steel Extra StronC Steel Extra Strong Steel Cast Iron Std Wt Steel Extra Strong Steel Extra Stronl! Steel
FLOW FLOW
11
us 2.469' inside dia 2.323• inside dia 1.771' inside dia us 3.0 inside dia 3.066 inside dia 2.900• inside dia 2.300" inside dia
aal gal Ve- Ve· Head Ve- Ve- Head Vc-�Hcad Ve- Ve- Head
per Head Head Head per lodty 11��'.r loss locity locity loss locity locity loss lol'ity locity Joss )>
min Velocity Velocity loss Velocity Velocity Joss Velocity Velocity loss min ft ft ft head ft ft head ft ft bean ft "O
ft per head ft per ft per head ft per !t per head fier per ft per per ft per per it per per ft per "2..
sec
ft
ft
100 ft
sec
ft
sec
sec.
sec
100 ft
100 ft
too ft sec
100 ft
100 ft sec
-- --- --- --- --- --- --- --- --- 1 ft -- -- -- -- -- -- -- -- -- -- -- -- -- !
8 .54 .00 .120 . 61 .OJ -163 1.04 .02 -60i 10 .45 .00 .010 .43 .00 .063 .52 .00 ,083 .77 .01 -256 ""O
10 .67 .01 .1al .76 .01 -244 1.30 .03 0 91 it .68 .01 -149 .65 .01 -134 . 78 .01 .176 J.16 .02 ,543 a
12 .80 .OJ -25 . 91 .OJ -342 1.56 .04 1-28 .91 .01 .254 .87 .01 .221 1.04 .02 .299 l.54 .04 .924
lt 1.07 .01 -338 1.06 .02 -455 1.82 .05 .10 25 1.13 .02 -383 1.09 .02 ,344 1.30 .03 0 .633 1.98 .06 U! 0
. 94
462
(1)
.02
1.21
2.08
.583
.02
.03
.04
2.32
.03
.537
1.30
-433
1.36
,481
1.56
.07
2-18
30
.08
-- --- --- --- --- --- --- --- --- --- -- -- -- -- -- -- --- -- -- -- -- -- -- (/)
(/)
1.21 .02 0 538 1.36 .03 l4 2.34 .09 2.11 35 1.59 .04 -714 1.52 .04 -640 1.82 .05 .842 2.70 . II 2.60
J� 1.34 .03 0 654 1.51 .04 . 80 2. 73 .12 3-30 40 1.82 .05 -914 1. 74 .05 ,820 2.08 .07 1,08 3.09 .15 3,33 0
(1)
.09
22 1.47 .03 0 -9!7 1.67 .04 1-050 2.87 .13 3.93 45 2.04 .06 1.14 I. 95 .06 1.02 2.34 . II J .63 3.47 .19 4,14 !!! .
780
1-34
�i
1.82
. 05
-
.23 5,03
.15
3.13
.04
2.27
l.61
t.38
1-23
50
.08
1,24
2.60
2.17
.07
3.86
4-62
.06
I. 74
.05
I. 97
·-- --- --- --- --- --- --- --- --- 5.35 --- -- -- -- -- -- -- -- -- -- -- -- -- cc
2.39
2.50
.18
.10
1,43
3.39
1.0
1,47
.09
.13
1-64
2.86
55
.28
4.25
6,99
1.94
::::,
28 1.88 .05 1,22 2.12 .07 1-64 3. 65 .21 6.14 60 2. 72 .12 1-94 2.60 . II 1,74 3.12 .15 2,28 4. 63 .33 7.\1 0
30 2.01 .06 1,39 2.27 .08 1,86 4.00 .as 6-;8 65 2.95 .14 2.24 2.82 .12 2.01 3 .38 .18 2.66 6.02 .39 8,1 ....
36 2.35 .09 1-� 2.65 . 11 2-48 4.56 .32 9. 8 70 3.18 .16 2.57 3.04 .14 2.31 3.64 .21 3-04 5.40 .45 9,38 o
40 2.68 .11 2.36 3.03 .14 3.17 5.21 .42 11.1 75 3.40 .18 2-92 3.25 .16 2-62 3.90 .24 3.45 5. 79 .52 =r
lt&
3.41
45
.18
5.86
3.02
2.93
.14
3. 63
.53
.27
.19
3.47
4.16
80
-- --- --- --- --- --- 3.95 --- --- --- -- -- -- -- -- -- -- -- -- -- --· -- -- (1)
6.18
.20 3-30
2-96
3.89
14.
.59
3
50 3.35 .17 3.56 3. 79 .22 4.79 6.51 .66 � 8-0 85 3.86 .23 3.69 3.69 .21 3.31 4.42 .30 4,35 6.56 .67 13,4 c;·
65 3.69 .21 4-24 4.16 . ?:1 5.71 7.16 .80 t.4 90 4.09 .26 4.10 3. 91 .24 3.67 4.68 ,34 4.83 6. 95 . 75 1f �
9
60 4.02 .25 4,99 4.64 .32 6-72 7.81 . 95 25.2 4.31 .29 4.53 4.12 ,26 4,06 4.94 .38 5.34 7.34 .84 1 ,5
65 4.36 .30 F9 4.92 .38 7,79 8.47 1.11 29.2 1is 4.54 .32 4-98 4.34 .29 4.47 5.21 .42 5,87 7. 72 . 93 18-1 Ill
::::,
5.30
4.69
.64
.34
.44
9.12
.39
1.29
4. 99
70
5.94
119
8-94
-- -- -- -- -- -- -- --- --
-- --- --- --- --- --- --- --- --- 33.5 -- -- -- -- 4. 77 .35 5.33 5. 73 .51 1.01 8.49 1.12 21. a.
75 5.03 .39 7,55 5.68 .50 10.2 9. 77 1.48 38.0 120 5.45 .46 6.98 5.21 .42 6.26 6.25 .61 8.23 9.27 1.34 25.4 ""O
80 5.36 .45 8.50 6.05 .57 11-4 10.4 1.7 42.8 130 5.90 .54 8-09 5. 64 .49 1.26 6. 77 . 71 9.54 IO.O 1. 6 29,5 �
85 5.70 .50 9,51 6.43 .64 12,8 11.1 I. 9 47-J 148 6.35 .63 9.28 6.08 .57 8-f2 7.29 .83 10,9 10.8 1.8 33°8 a
90 6.03 .57 10-6 6.81 .72 13-J 11. 7 2.1 53. 15 6.81 . 72 10-6 6.51 . 66 9. 8 7.81 .95 12.5 11. 6 2.1 38-5
95 6.37 .63 11,7 7.19 .80 15- 12.4 2.4 58.9 -- -- -- --- -- -- -- -- -- -- -- -- -- 0
7.26
160
. 75 10.1
.82 11,9
6.94
8.33
12.4
2.4 43,3
1.08 14,0
-- --- --- --- --- --- --- --- --- =r
(1)
100 6. 70 .70 12.8 7.57 .89 17-f 13.0 2.6 64.7 189 8.16 1.03 14,8 7.81 .95 13-2 9.37 1.36 17-4 13. 9 3.0 52.6 3
1 � 0 7.37 .84 15,3 8.33 1.08 20. 14.3 3.2 11.2 200 9.08 1.28 !8.o 8. 68 1.17 16-1 10.4 I. r 21.2 15.4 3. 7 66,4 s
1 0 8.04 1.00 18-0 9.08 1.28 24-2 15.6 3.8 90-7 220 9. 99 1.55 1,4 9.55 1.42 JP 11.5 2.1 25.3 17.0 4.5 78.0
130 8. 71 I.IS 20.9 9.84 1.50 28- � 16.9 4.4 105 240 10. 9 1.8 25,2 10.4 1.7 .6 12.5 2.4 29.7 18.5 5.3 91-6 �
1.7
10.6
1.37
2:8
13.5
2.0 26,2
11.3
9.38
149
11.8
2.2 29,2
5.1
18.2
260
34.4
20.1
121
-- --- --- 23-9 --- --- --- --- --- -- -- -- -- -- -- -- -- -- -- -- -- -- ""O
32-
6.3 106
U8 10.0 1.6 27,3 11.3 2.0 41-2 20.8 5.9 137 280 12.7 2.5 33-5 12.2 2.3 30,0 14.6 3.3 39.5 23.2 7.3 122 ai
19.5
36-7
21.6
.....
::::,
13.6
12.1
300
1.8
13.0
30,7
38,0
2.3
10.7
6. 7
2. 9
15.6
3.8 44-8
2.6 34-1
154
8.4 13f
170 11.4 2.0 34,3 12. 9 2.6 46-1 22.2 7.7 173 320 14.5 3.3 42.8 13. 9 3.0 38.4 16. 7 4.3 50.5 24.7 9.5 15 (/)
180 12.1 2.3 38-1 13.6 2.9 lil-3 23.4 8.5 192 m 15.4 3. 7 47-9 14.8 3.4 43,0 17. 7 4. 9 66-5 26.3 10. 7 175
12. 7
2.5
3.2
14.4
16.3
15.6
24. 7
27.8
9.5
42,1
4.1 53.3
5.4 62.8
18. 7
190
12.0 194
-- --- --- --- --- --- 5 .7 --- --- -- --- -- -- --- -- 3.8 47,8 -- -- -- -- --
212
200 13.4 !.8 46.3 15.1 3.5 ,u 26.1 JO. 6 233 380 17.3 4. 6 58.9 16.5 4.2 52.8 19.8 6.1 69-4 29.3 13.3 214
220 14.7 3.4 55.3 16.7 4.3 28. 7 12.8 278 400 18.2 5.1 64,7 17.4 4.7 68.0 20.8 6.7 7�.3 30.9 H.S 23(,
240 16.1 4.0 66.4 18.2 5.1 87,3 31.3 15.2 327 420 1<).1 5.7 70.8 I 18.2 5.1 63.6 21. 9 7.5 83.5 32.4 16.3 258
260 17.4 4. 7 75.3 19.7 6.0 101 33. 9 17. 9 379 us 20.0 6:2 77.2 19.1 5.7 69-2 22.9 8.2 91-1 34.0 18.0 281
280
20.9
21.2
18.8
20.7
5.5
86,3
7.0
-- --- --- --- --- --- --- --- --- -- -- -- 6.8 83-8 20.0 6.2 75.3 23. 9 8.9 98-9 35.5 19.6 305
36.5
116
436
300 20,1 6.3 98,1 22.7 8.0 132 39.1 23.8 494 480 21.8 7.4190.7 20.8 6. 7 81-3 25.0 9.7 107 37. I 21.4 3'30
360 23.6 8.6 130 26.5 10.9 175 45.6 32.3 657 500 22. 7 8.0 97,8 21. 7 7 .3 87.7 26.0 10.5 116 38.6 23.2 356
400 26.8 11.2 J67 30.3 14.3 225 52. l 42.Z 841 560 25.0 9. 7 117 23.9 8. 9 105 28.6 12. 7 138 42.5 28.1 425
4liO 30.2 14.2 34.l 18.1 279 tg� 27.2 11.5 137 26.0 10.5 123 31.2 15.1 162 46.3 33.3 m
500 33.6 17.4 2� 37.9 22.3 340 29.5 13.5 l69 28.2 12.4 143 33.8 17.8 187 50.2 39.0
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C = 100 Friction Losses in Pipe; C= 100
275 Inch 3 Inch
Double Double
Standard Wt Steel Extra StronC Steel Extra Strong Steel Cast Iron Std Wt Steel Extra Strong Steel Extra Stronl! Steel
FLOW FLOW
11
us 2.469' inside dia 2.323• inside dia 1.771' inside dia us 3.0 inside dia 3.066 inside dia 2.900• inside dia 2.300" inside dia
aal gal Ve- Ve· Head Ve- Ve- Head Vc-�Hcad Ve- Ve- Head
per Head Head Head per lodty 11��'.r loss locity locity loss locity locity loss lol'ity locity Joss )>
min Velocity Velocity loss Velocity Velocity Joss Velocity Velocity loss min ft ft ft head ft ft head ft ft bean ft "O
ft per head ft per ft per head ft per !t per head fier per ft per per ft per per it per per ft per "2..
sec
ft
ft
100 ft
sec
ft
sec
sec.
sec
100 ft
100 ft
too ft sec
100 ft
100 ft sec
-- --- --- --- --- --- --- --- --- 1 ft -- -- -- -- -- -- -- -- -- -- -- -- -- !
8 .54 .00 .120 . 61 .OJ -163 1.04 .02 -60i 10 .45 .00 .010 .43 .00 .063 .52 .00 ,083 .77 .01 -256 ""O
10 .67 .01 .1al .76 .01 -244 1.30 .03 0 91 it .68 .01 -149 .65 .01 -134 . 78 .01 .176 J.16 .02 ,543 a
12 .80 .OJ -25 . 91 .OJ -342 1.56 .04 1-28 .91 .01 .254 .87 .01 .221 1.04 .02 .299 l.54 .04 .924
lt 1.07 .01 -338 1.06 .02 -455 1.82 .05 .10 25 1.13 .02 -383 1.09 .02 ,344 1.30 .03 0 .633 1.98 .06 U! 0
. 94
462
(1)
.02
1.21
2.08
.583
.02
.03
.04
2.32
.03
.537
1.30
-433
1.36
,481
1.56
.07
2-18
30
.08
-- --- --- --- --- --- --- --- --- --- -- -- -- -- -- -- --- -- -- -- -- -- -- (/)
(/)
1.21 .02 0 538 1.36 .03 l4 2.34 .09 2.11 35 1.59 .04 -714 1.52 .04 -640 1.82 .05 .842 2.70 . II 2.60
J� 1.34 .03 0 654 1.51 .04 . 80 2. 73 .12 3-30 40 1.82 .05 -914 1. 74 .05 ,820 2.08 .07 1,08 3.09 .15 3,33 0
(1)
.09
22 1.47 .03 0 -9!7 1.67 .04 1-050 2.87 .13 3.93 45 2.04 .06 1.14 I. 95 .06 1.02 2.34 . II J .63 3.47 .19 4,14 !!! .
780
1-34
�i
1.82
. 05
-
.23 5,03
.15
3.13
.04
2.27
l.61
t.38
1-23
50
.08
1,24
2.60
2.17
.07
3.86
4-62
.06
I. 74
.05
I. 97
·-- --- --- --- --- --- --- --- --- 5.35 --- -- -- -- -- -- -- -- -- -- -- -- -- cc
2.39
2.50
.18
.10
1,43
3.39
1.0
1,47
.09
.13
1-64
2.86
55
.28
4.25
6,99
1.94
::::,
28 1.88 .05 1,22 2.12 .07 1-64 3. 65 .21 6.14 60 2. 72 .12 1-94 2.60 . II 1,74 3.12 .15 2,28 4. 63 .33 7.\1 0
30 2.01 .06 1,39 2.27 .08 1,86 4.00 .as 6-;8 65 2.95 .14 2.24 2.82 .12 2.01 3 .38 .18 2.66 6.02 .39 8,1 ....
36 2.35 .09 1-� 2.65 . 11 2-48 4.56 .32 9. 8 70 3.18 .16 2.57 3.04 .14 2.31 3.64 .21 3-04 5.40 .45 9,38 o
40 2.68 .11 2.36 3.03 .14 3.17 5.21 .42 11.1 75 3.40 .18 2-92 3.25 .16 2-62 3.90 .24 3.45 5. 79 .52 =r
lt&
3.41
45
.18
5.86
3.02
2.93
.14
3. 63
.53
.27
.19
3.47
4.16
80
-- --- --- --- --- --- 3.95 --- --- --- -- -- -- -- -- -- -- -- -- -- --· -- -- (1)
6.18
.20 3-30
2-96
3.89
14.
.59
3
50 3.35 .17 3.56 3. 79 .22 4.79 6.51 .66 � 8-0 85 3.86 .23 3.69 3.69 .21 3.31 4.42 .30 4,35 6.56 .67 13,4 c;·
65 3.69 .21 4-24 4.16 . ?:1 5.71 7.16 .80 t.4 90 4.09 .26 4.10 3. 91 .24 3.67 4.68 ,34 4.83 6. 95 . 75 1f �
9
60 4.02 .25 4,99 4.64 .32 6-72 7.81 . 95 25.2 4.31 .29 4.53 4.12 ,26 4,06 4.94 .38 5.34 7.34 .84 1 ,5
65 4.36 .30 F9 4.92 .38 7,79 8.47 1.11 29.2 1is 4.54 .32 4-98 4.34 .29 4.47 5.21 .42 5,87 7. 72 . 93 18-1 Ill
::::,
5.30
4.69
.64
.34
.44
9.12
.39
1.29
4. 99
70
5.94
119
8-94
-- -- -- -- -- -- -- --- --
-- --- --- --- --- --- --- --- --- 33.5 -- -- -- -- 4. 77 .35 5.33 5. 73 .51 1.01 8.49 1.12 21. a.
75 5.03 .39 7,55 5.68 .50 10.2 9. 77 1.48 38.0 120 5.45 .46 6.98 5.21 .42 6.26 6.25 .61 8.23 9.27 1.34 25.4 ""O
80 5.36 .45 8.50 6.05 .57 11-4 10.4 1.7 42.8 130 5.90 .54 8-09 5. 64 .49 1.26 6. 77 . 71 9.54 IO.O 1. 6 29,5 �
85 5.70 .50 9,51 6.43 .64 12,8 11.1 I. 9 47-J 148 6.35 .63 9.28 6.08 .57 8-f2 7.29 .83 10,9 10.8 1.8 33°8 a
90 6.03 .57 10-6 6.81 .72 13-J 11. 7 2.1 53. 15 6.81 . 72 10-6 6.51 . 66 9. 8 7.81 .95 12.5 11. 6 2.1 38-5
95 6.37 .63 11,7 7.19 .80 15- 12.4 2.4 58.9 -- -- -- --- -- -- -- -- -- -- -- -- -- 0
7.26
160
. 75 10.1
.82 11,9
6.94
8.33
12.4
2.4 43,3
1.08 14,0
-- --- --- --- --- --- --- --- --- =r
(1)
100 6. 70 .70 12.8 7.57 .89 17-f 13.0 2.6 64.7 189 8.16 1.03 14,8 7.81 .95 13-2 9.37 1.36 17-4 13. 9 3.0 52.6 3
1 � 0 7.37 .84 15,3 8.33 1.08 20. 14.3 3.2 11.2 200 9.08 1.28 !8.o 8. 68 1.17 16-1 10.4 I. r 21.2 15.4 3. 7 66,4 s
1 0 8.04 1.00 18-0 9.08 1.28 24-2 15.6 3.8 90-7 220 9. 99 1.55 1,4 9.55 1.42 JP 11.5 2.1 25.3 17.0 4.5 78.0
130 8. 71 I.IS 20.9 9.84 1.50 28- � 16.9 4.4 105 240 10. 9 1.8 25,2 10.4 1.7 .6 12.5 2.4 29.7 18.5 5.3 91-6 �
1.7
10.6
1.37
2:8
13.5
2.0 26,2
11.3
9.38
149
11.8
2.2 29,2
5.1
18.2
260
34.4
20.1
121
-- --- --- 23-9 --- --- --- --- --- -- -- -- -- -- -- -- -- -- -- -- -- -- ""O
32-
6.3 106
U8 10.0 1.6 27,3 11.3 2.0 41-2 20.8 5.9 137 280 12.7 2.5 33-5 12.2 2.3 30,0 14.6 3.3 39.5 23.2 7.3 122 ai
19.5
36-7
21.6
.....
::::,
13.6
12.1
300
1.8
13.0
30,7
38,0
2.3
10.7
6. 7
2. 9
15.6
3.8 44-8
2.6 34-1
154
8.4 13f
170 11.4 2.0 34,3 12. 9 2.6 46-1 22.2 7.7 173 320 14.5 3.3 42.8 13. 9 3.0 38.4 16. 7 4.3 50.5 24.7 9.5 15 (/)
180 12.1 2.3 38-1 13.6 2.9 lil-3 23.4 8.5 192 m 15.4 3. 7 47-9 14.8 3.4 43,0 17. 7 4. 9 66-5 26.3 10. 7 175
12. 7
2.5
3.2
14.4
16.3
15.6
24. 7
27.8
9.5
42,1
4.1 53.3
5.4 62.8
18. 7
190
12.0 194
-- --- --- --- --- --- 5 .7 --- --- -- --- -- -- --- -- 3.8 47,8 -- -- -- -- --
212
200 13.4 !.8 46.3 15.1 3.5 ,u 26.1 JO. 6 233 380 17.3 4. 6 58.9 16.5 4.2 52.8 19.8 6.1 69-4 29.3 13.3 214
220 14.7 3.4 55.3 16.7 4.3 28. 7 12.8 278 400 18.2 5.1 64,7 17.4 4.7 68.0 20.8 6.7 7�.3 30.9 H.S 23(,
240 16.1 4.0 66.4 18.2 5.1 87,3 31.3 15.2 327 420 1<).1 5.7 70.8 I 18.2 5.1 63.6 21. 9 7.5 83.5 32.4 16.3 258
260 17.4 4. 7 75.3 19.7 6.0 101 33. 9 17. 9 379 us 20.0 6:2 77.2 19.1 5.7 69-2 22.9 8.2 91-1 34.0 18.0 281
280
20.9
21.2
18.8
20.7
5.5
86,3
7.0
-- --- --- --- --- --- --- --- --- -- -- -- 6.8 83-8 20.0 6.2 75.3 23. 9 8.9 98-9 35.5 19.6 305
36.5
116
436
300 20,1 6.3 98,1 22.7 8.0 132 39.1 23.8 494 480 21.8 7.4190.7 20.8 6. 7 81-3 25.0 9.7 107 37. I 21.4 3'30
360 23.6 8.6 130 26.5 10.9 175 45.6 32.3 657 500 22. 7 8.0 97,8 21. 7 7 .3 87.7 26.0 10.5 116 38.6 23.2 356
400 26.8 11.2 J67 30.3 14.3 225 52. l 42.Z 841 560 25.0 9. 7 117 23.9 8. 9 105 28.6 12. 7 138 42.5 28.1 425
4liO 30.2 14.2 34.l 18.1 279 tg� 27.2 11.5 137 26.0 10.5 123 31.2 15.1 162 46.3 33.3 m
500 33.6 17.4 2� 37.9 22.3 340 29.5 13.5 l69 28.2 12.4 143 33.8 17.8 187 50.2 39.0
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C= 100 Friction Losses In Pipe; C= 100
3_0 Inch 4 Inch
Double Double
Cast Iron Std Wt Steel Enra Strong Steel Extra Stronll Steel now\ Ca.st Iron Std Wt Steel E:ittra Strong Steel Eztra Strong Steel
FLOW
us 3.6 inside dia 3.548' inside dfa 3.364' inside dia 2. 728" Inside dia us 4.0 inside die 4.026• inside dia 3.826' inside dia 3.152" inside dia
tial ,,.;:--vc:-Head Ve· Ve-1 Head -Ve- Ve- Ve- Head 11,al VC-:-�-Head Ve- Ve- Head Ve- Ve- Head Ve- Ve- Head
Ve- Head
per locity locity loss !ocity loci1 loss locity locity Joss l � ty locity loss per locity locity loss locity locity Joss locity locity loss locity locity loss
min ft head ft ft hea rt ft head ft head ft min ft head ft ft head ft ft head ft ft bead ft
per ft per per ft per per ft I per per ft per per ft � er per ft per per ft per Pet' ft
1ro'1t
-- --
see
100 ft sec
100 ft sec
100 ft
sec
sec
100 ft
100 ft sec
100 ft
... c
sec
-- -- -- -- -- -- -- -- -- --- -- -- -- - 1 0 ft ---- -- �- -- -- -- --
16 .50 .00 .061 .49 .00 .058 .54 .00 -075 .82 .01 -208 20 .51 .00 .063 .00 .061 .56 .00 .078 .82 .01 .199
20 .67 ,01 .120 ,65 .01 -112 .72 .Ol -145 1.10 .02 .493 30 .77 .01 .132 .501 .01 -128 .84 .01 , 164 1.23 .02 .422
.76
26 .84 .01 -181 .81 .01 .90 .01 .220 1.37 .03 .689 40 1,02 .02 .226 I.DI .02 .219 1.12 .02 .280 1.65 .04 .719
30 1.00 .02 .264 .97 .01 :ill 1.08 .02 -308 I. 65 .04 -863 60 UIB .03 -341 1.26 ,03 .330 1.40 .03 .423 2.06 .07 1-09
.463
-316
60
.04
.10 J.52
.593
-477
36 1.17 1.14 .02 ------ -409 1.92 .06 1.13 -- -- -- -- -- -- -- -- -- -- -- -- --
.04
2.47
.O'.I
1. iil
1.63
I. 67
.04
1.26
.03
.432
1.34 � I__:'!) 1.30 .03 ·"'1 .524 2.20 .08 1-45 70 I. 79 .05 .635 I. 76 .05 .615 1. 95 .06 .789 2.88 .13 2.02
� UH .OJ .537 l.46 .03 .603 i. •••• -651 2.47 .10 1-81 80 2.04 .06 .813 2.02 .06 .788 2.23 .08 1.01 3.29 .17 2.59
I. 63
. 04
60 1.67 .04 .653 l. 62 .04 .611 1.801 . 05 -791 2.74 , 12 2-19 90 2.30 ,08 1.01 2.27 .08 .980 2.51 .JO 1-26 3.70 .21 3-22
60 2.01 .06 -9H !. 95 .os -856 2.17 . 07 1.11 a.29 .17 3.07 100 2.55 .10 1-23 2.52 .10 1.19 2. 79 . 12 1-53 4.11 .26 3.92
.32 4-67
.15 1-82
.09 1-22
.12 1-47
70 2.34 ----- 2.27 .08 1.14 2.53 .10 1-47 3.84 .23 4-09 -- -- -- -- -- -- -- -- -- -- -- -- --
, 12 1-42
2.81
110
2. 77
3.07
4.52
------
80 2.68 . II 1,56 2.60 .11 1-46 2.89 .13 p9 4.39 .30 6-23 120 3.06 .15 1- � 3.02 .14 p1 3.35 .17 2. 14 4.94 .38 5.49
90
.44 6-36
3.28
.20 2. 9
100 3.01 .14 1.94 2.92 .13 1-81 3.25 .16 -35 4.94 .38 6-51 130 3.32 .17 2. 0 3. 53 .17 .93 3,(,3 .20 2.48 5.36 .52 1-fi
.19 2.22
.16 2.20
140
.17 2-35
3. 91
.20 2-85
6.76
.24 2-84
.47 7.91
5.49
3.57
3.33
3.25
3.61
110 3.68 .21 2-81 3.57 .20 2.63 3. 97 .Z4 3-40 6.04 .57 9.4J lliO 3.83 .23 2-61 3. 78 .22 2.53 4. 19 .27 3-24 6.17 .59 8. l
120 4.02 .25 3.30 3. 99 .25 3-08 4.33 .29 4.00 6.59 .67 11.1 160 4.08 .26 2.93 1.03 .25 2.84 4.47 .31 3,64 6.58 .67 9-�
-- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -
130
.92 14-7
.34 4,38
.32 3.63
.39 4.5
.40 6.32
.85 11.
140 4.35 .29 3.82 4.22 .28 3.58 4. 69 .34 4.64 7.13 . 79 12-8 170 4.34 .29 3.28 4.29 .29 3-18 4. 75 .3.5 4-0 � 6.99 .76 10.i
.as 3-64
4.54
7.40
.32 4-10
180
5.02
7.68
4.68
4.60
5.05
4.54
. 95 12-8
190
160 5.02 .39 4.99 4.87 .37 4,67 5.41 .52 2.06 8,23 1.05 16-8 200 4.86 .37 4-03 5.05 .36 3-90 5.30 .48 5-60 7.82 1.05 14, 1
4 79
.45
4415.00
.42 5-25
.81
160
- .50 6-28 -- .47 5.85 -- -- -- -- -- 220 --- .49 6.28 5.55 .48 5-12 -- �� -- -- --
1.20 18-9
.40 4-29
.41 4.43
6.78
8.23
.44 5-61
5.58
5.19
5.35
8. 78
5.11
170
1.35 21.1
5.62
.59 7-61
9.33
9.05
6.14
1.27 16-8
--
5.62
�.69
6.14
.66 8-46
180
9.87
9.88
.59 1.22
.67 6.97
.82 8-93
.69 1.20
1.8 22.9
260
7.26
6 55
. 63 1.11
1.7 25-
190 6.02 .66 6.98 5.85 .53 6.53 6.60 . 73 9.36 10.4 1.52 22-; 240 6.13 .58 6.21 6.05r�16.0t 6.70 . 70 7-70 10.7 1.51 19.8
6 64
6.8.S
6.17
6.35
.95 10.2
.77 8-00
2.1 26.3
200 6. 69 .70 8.48 6.50 . 66 7-94 7.22 .81 10,3 11.0 2.3 34.D 280 7 .16 .79 8.25 1.57 .89 9.09 7 .82 1.09 11-6 12.3 2.4 29.9
!. 9 28-5
11.5
7.06
220
300
. 98 12.3
. 79 9.47
.84 10.1
.91 9.38
7. 94
7.36
12.1
7.14
7.66
8 38
-- 8.03 1.00 11-9 -- . 94 11-1 -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- --
2. 7 39.9
1.01 10.2
320
8.17
8.07
1.04 10-6
1.17 14-4
2. 7 33-7
1.24 13-1
13.2
13.2
s. 66
240
8. 94
7. 79
--
260 8.70 1.18 13.8 8.4·l J .11 12.9 9.38 1.37 16.7 14.3 3. 2 46.3 ffi 8.68 8.58 1.14 11.5 9.50 1.40 14.7 14.0 3.0 37.7
280 9.36 1.36 15-8 9.09 1.28 14.8 10. l I. 6 19-2 16.4 3. 7 5J.l 9.19 1.31 1 � .1 9.08 1.28 12.1 10.0 1. 6 16-3 14.8 3.4
4!-9 .3
300 10.0 1.55 � 8.0 9. 74 1.47 16.8 10.8 1.8 21-8 16.5 4.2 60. 380 9.70 1.16 1 .5 9.59 1.43 14.1 10. 6 1. 7 18-0 15.6 3.8 4
'·"1"·' 10.1
370 10. 7 1.8 0-2 10.4 1.7 18-9 n.s 2.1 24.6 17.6 4.8 68-0 10.2 1.6 16.0 1.6 15-5 II. 2 J..9 19-8 16.5 4.2 50-9
�
u.r
2.1 21.7
1.7 16,9
-- -- 2.0 22-6 11.0 I. 9 21.2 -- -- -- -- -- -- -- -- 1.8 17-6 -- -- -- -- -·- -- -- 4.7 56-7
340
10.6
17.3
--
5.4 76-1
12.8
18. 7
2.4 27-4
10.7
11.4
360 12.0 2.2 25-2 II. 7 2.1 23.5 13,0 2.6 30.5 19.8 6.1 84-6 440 11.2 IJ.J I. 9 18.5 12.3 2.3 23-6 18. l 6.1 60.7
2.1 20.7
380 12. 7 2.5 27-f 12.3 2.4 26.0 13. 7 2.9 ;}3.7 20. 9 6.8 93-6 m II. 7 1.9119.0 11.6 2.1 20.0 12.8 2.5 26-7 18.9 5.6 � -9
p
2.3 21-7
2.8 27.8
a.s 28.6
2.8 30.
7.5 103
3.2 37.1
2.3 22-4
13.4
�� 13.4 3.1 33.5 13.0 2.9 31.3 14.4 3.6 40-6 22.0 8.2 112 500 12.3 2.5 23.1 12. l 2.5 23.4 14.0 3.0 30-0 19. 7 6.0
"13.6
12.6
20.6
23.0
15.2
12.8
6.6 7 -9
14.0
3.6 36.7
3.0 2 .8
22.6
440
9.0 123
3.0 27-9
15.3
14.0
7.9 91-7
-- -- 3.4 36,5 -- 3.2 34.1 -- -- -- -- -- -- 660 -- -- -- -- -- -- -- -- -- -- -- --
3. 9 44-2
13. 9
24.1
15. 9
14. 7
14.3
4.3 42.0
4(,0
9.5 108
9.9 133
4.2 38.0
4.3 39-2
18.1
17.3
26. 7
16. 6
26.3
660
3.8 40.1
16.4
480 15.4 3. 7 39-6 14. 9 3.5 37.1 16. 6 1.3 48.0 25.2 10. 7 144 600 15.3 3.6 3J.8 Jr,.J 3.5 32-8 16. 7 5.1 48.7 24.7 11.l 125
1.0 42-8
4.7
15. 6
16.1
6!-9 .e
5.9 55,8
12.9 143
ro
5.1 5
600
11.7 155
4.8 43-6
5.0 45.0
4.1 43.3
700
17.9
28.8
18.1
16. 7
17.6
16. 2
19.5
27.4
1.3 46-2
5.3 66,1
5. 7 51.1
20.9
6.8 63-4
14. 7 163
19.2
6.6 49-6
30.8
6. 2 66-8
19. 9
30.2 14.2
18. 9
u-6
17. 9
18.4
5.0
J85
-- -- -- -- -- -- -- -- -- -- -- -- -- 750 -- -- -- --- -- -- -- -- -- -- -- --
7. 7 n.s
6.3 ss.a
32.9
16.8 18
22.3
7.3 78-5
20.2
16.8 183
800
6.5 67-6
20.4
6.3 64-7
19.6
21. 7
-6
6.9
20. l
32. 9
'88 21.8 7.4 75-1 21.1 6.9 70.2 23.5 8.6 91.0 35.7 19.8 252 m 21. 7 7.3 64,: 21.4 7 .1 62.4 23. 7 8.7 79,9 35.0 19.0 205
u;
� 2.71 8.0 so.,
S.2 11.
23.0
25.1
9.4 194
.23.4 , 8.5 81,.1
22.7
37.0 21.3 228
8.0 69-3
9.8
38.4 22.9
88. �
25.3
750 25.l 9.8 97.8 21.4 9.3 91.6 27.1 11.4 11' 41. 2 26.4 24.3 9.2 7'J. f 21.0 9.0 76-6 26.5 10. 9 98. 39.1 23.8 m
800 26.8 11.2 1io 26.0 10.5 103 28.9 13,0 131 43.9 30.0 371 1000 25.5 10.1 87-0 25.2 9. 9 84-3 27.9 12.1 108 41.1 26.3
850 28.4 12.6 1 3 27.6 11.8 115 30. 7 14.6 150 46. 7 33.9 414 1100 28.1 12.3 104 27. 7 11. 9 101 30. 7 14.6 ,129 45.2 31.7 331
'l'he National Bureau or Staadards has recommended the ebmrnattou o( this pipe size.
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C= 100 Friction Losses In Pipe; C= 100
3_0 Inch 4 Inch
Double Double
Cast Iron Std Wt Steel Enra Strong Steel Extra Stronll Steel now\ Ca.st Iron Std Wt Steel E:ittra Strong Steel Eztra Strong Steel
FLOW
us 3.6 inside dia 3.548' inside dfa 3.364' inside dia 2. 728" Inside dia us 4.0 inside die 4.026• inside dia 3.826' inside dia 3.152" inside dia
tial ,,.;:--vc:-Head Ve· Ve-1 Head -Ve- Ve- Ve- Head 11,al VC-:-�-Head Ve- Ve- Head Ve- Ve- Head Ve- Ve- Head
Ve- Head
per locity locity loss !ocity loci1 loss locity locity Joss l � ty locity loss per locity locity loss locity locity Joss locity locity loss locity locity loss
min ft head ft ft hea rt ft head ft head ft min ft head ft ft head ft ft head ft ft bead ft
per ft per per ft per per ft I per per ft per per ft � er per ft per per ft per Pet' ft
1ro'1t
-- --
see
100 ft sec
100 ft sec
100 ft
sec
sec
100 ft
100 ft sec
100 ft
... c
sec
-- -- -- -- -- -- -- -- -- --- -- -- -- - 1 0 ft ---- -- �- -- -- -- --
16 .50 .00 .061 .49 .00 .058 .54 .00 -075 .82 .01 -208 20 .51 .00 .063 .00 .061 .56 .00 .078 .82 .01 .199
20 .67 ,01 .120 ,65 .01 -112 .72 .Ol -145 1.10 .02 .493 30 .77 .01 .132 .501 .01 -128 .84 .01 , 164 1.23 .02 .422
.76
26 .84 .01 -181 .81 .01 .90 .01 .220 1.37 .03 .689 40 1,02 .02 .226 I.DI .02 .219 1.12 .02 .280 1.65 .04 .719
30 1.00 .02 .264 .97 .01 :ill 1.08 .02 -308 I. 65 .04 -863 60 UIB .03 -341 1.26 ,03 .330 1.40 .03 .423 2.06 .07 1-09
.463
-316
60
.04
.10 J.52
.593
-477
36 1.17 1.14 .02 ------ -409 1.92 .06 1.13 -- -- -- -- -- -- -- -- -- -- -- -- --
.04
2.47
.O'.I
1. iil
1.63
I. 67
.04
1.26
.03
.432
1.34 � I__:'!) 1.30 .03 ·"'1 .524 2.20 .08 1-45 70 I. 79 .05 .635 I. 76 .05 .615 1. 95 .06 .789 2.88 .13 2.02
� UH .OJ .537 l.46 .03 .603 i. •••• -651 2.47 .10 1-81 80 2.04 .06 .813 2.02 .06 .788 2.23 .08 1.01 3.29 .17 2.59
I. 63
. 04
60 1.67 .04 .653 l. 62 .04 .611 1.801 . 05 -791 2.74 , 12 2-19 90 2.30 ,08 1.01 2.27 .08 .980 2.51 .JO 1-26 3.70 .21 3-22
60 2.01 .06 -9H !. 95 .os -856 2.17 . 07 1.11 a.29 .17 3.07 100 2.55 .10 1-23 2.52 .10 1.19 2. 79 . 12 1-53 4.11 .26 3.92
.32 4-67
.15 1-82
.09 1-22
.12 1-47
70 2.34 ----- 2.27 .08 1.14 2.53 .10 1-47 3.84 .23 4-09 -- -- -- -- -- -- -- -- -- -- -- -- --
, 12 1-42
2.81
110
2. 77
3.07
4.52
------
80 2.68 . II 1,56 2.60 .11 1-46 2.89 .13 p9 4.39 .30 6-23 120 3.06 .15 1- � 3.02 .14 p1 3.35 .17 2. 14 4.94 .38 5.49
90
.44 6-36
3.28
.20 2. 9
100 3.01 .14 1.94 2.92 .13 1-81 3.25 .16 -35 4.94 .38 6-51 130 3.32 .17 2. 0 3. 53 .17 .93 3,(,3 .20 2.48 5.36 .52 1-fi
.19 2.22
.16 2.20
140
.17 2-35
3. 91
.20 2-85
6.76
.24 2-84
.47 7.91
5.49
3.57
3.33
3.25
3.61
110 3.68 .21 2-81 3.57 .20 2.63 3. 97 .Z4 3-40 6.04 .57 9.4J lliO 3.83 .23 2-61 3. 78 .22 2.53 4. 19 .27 3-24 6.17 .59 8. l
120 4.02 .25 3.30 3. 99 .25 3-08 4.33 .29 4.00 6.59 .67 11.1 160 4.08 .26 2.93 1.03 .25 2.84 4.47 .31 3,64 6.58 .67 9-�
-- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -
130
.92 14-7
.34 4,38
.32 3.63
.39 4.5
.40 6.32
.85 11.
140 4.35 .29 3.82 4.22 .28 3.58 4. 69 .34 4.64 7.13 . 79 12-8 170 4.34 .29 3.28 4.29 .29 3-18 4. 75 .3.5 4-0 � 6.99 .76 10.i
.as 3-64
4.54
7.40
.32 4-10
180
5.02
7.68
4.68
4.60
5.05
4.54
. 95 12-8
190
160 5.02 .39 4.99 4.87 .37 4,67 5.41 .52 2.06 8,23 1.05 16-8 200 4.86 .37 4-03 5.05 .36 3-90 5.30 .48 5-60 7.82 1.05 14, 1
4 79
.45
4415.00
.42 5-25
.81
160
- .50 6-28 -- .47 5.85 -- -- -- -- -- 220 --- .49 6.28 5.55 .48 5-12 -- �� -- -- --
1.20 18-9
.40 4-29
.41 4.43
6.78
8.23
.44 5-61
5.58
5.19
5.35
8. 78
5.11
170
1.35 21.1
5.62
.59 7-61
9.33
9.05
6.14
1.27 16-8
--
5.62
�.69
6.14
.66 8-46
180
9.87
9.88
.59 1.22
.67 6.97
.82 8-93
.69 1.20
1.8 22.9
260
7.26
6 55
. 63 1.11
1.7 25-
190 6.02 .66 6.98 5.85 .53 6.53 6.60 . 73 9.36 10.4 1.52 22-; 240 6.13 .58 6.21 6.05r�16.0t 6.70 . 70 7-70 10.7 1.51 19.8
6 64
6.8.S
6.17
6.35
.95 10.2
.77 8-00
2.1 26.3
200 6. 69 .70 8.48 6.50 . 66 7-94 7.22 .81 10,3 11.0 2.3 34.D 280 7 .16 .79 8.25 1.57 .89 9.09 7 .82 1.09 11-6 12.3 2.4 29.9
!. 9 28-5
11.5
7.06
220
300
. 98 12.3
. 79 9.47
.84 10.1
.91 9.38
7. 94
7.36
12.1
7.14
7.66
8 38
-- 8.03 1.00 11-9 -- . 94 11-1 -- -- -- -- -- -- -- -- ----- -- -- -- -- -- -- -- -- --
2. 7 39.9
1.01 10.2
320
8.17
8.07
1.04 10-6
1.17 14-4
2. 7 33-7
1.24 13-1
13.2
13.2
s. 66
240
8. 94
7. 79
--
260 8.70 1.18 13.8 8.4·l J .11 12.9 9.38 1.37 16.7 14.3 3. 2 46.3 ffi 8.68 8.58 1.14 11.5 9.50 1.40 14.7 14.0 3.0 37.7
280 9.36 1.36 15-8 9.09 1.28 14.8 10. l I. 6 19-2 16.4 3. 7 5J.l 9.19 1.31 1 � .1 9.08 1.28 12.1 10.0 1. 6 16-3 14.8 3.4
4!-9 .3
300 10.0 1.55 � 8.0 9. 74 1.47 16.8 10.8 1.8 21-8 16.5 4.2 60. 380 9.70 1.16 1 .5 9.59 1.43 14.1 10. 6 1. 7 18-0 15.6 3.8 4
'·"1"·' 10.1
370 10. 7 1.8 0-2 10.4 1.7 18-9 n.s 2.1 24.6 17.6 4.8 68-0 10.2 1.6 16.0 1.6 15-5 II. 2 J..9 19-8 16.5 4.2 50-9
�
u.r
2.1 21.7
1.7 16,9
-- -- 2.0 22-6 11.0 I. 9 21.2 -- -- -- -- -- -- -- -- 1.8 17-6 -- -- -- -- -·- -- -- 4.7 56-7
340
10.6
17.3
--
5.4 76-1
12.8
18. 7
2.4 27-4
10.7
11.4
360 12.0 2.2 25-2 II. 7 2.1 23.5 13,0 2.6 30.5 19.8 6.1 84-6 440 11.2 IJ.J I. 9 18.5 12.3 2.3 23-6 18. l 6.1 60.7
2.1 20.7
380 12. 7 2.5 27-f 12.3 2.4 26.0 13. 7 2.9 ;}3.7 20. 9 6.8 93-6 m II. 7 1.9119.0 11.6 2.1 20.0 12.8 2.5 26-7 18.9 5.6 � -9
p
2.3 21-7
2.8 27.8
a.s 28.6
2.8 30.
7.5 103
3.2 37.1
2.3 22-4
13.4
�� 13.4 3.1 33.5 13.0 2.9 31.3 14.4 3.6 40-6 22.0 8.2 112 500 12.3 2.5 23.1 12. l 2.5 23.4 14.0 3.0 30-0 19. 7 6.0
"13.6
12.6
20.6
23.0
15.2
12.8
6.6 7 -9
14.0
3.6 36.7
3.0 2 .8
22.6
440
9.0 123
3.0 27-9
15.3
14.0
7.9 91-7
-- -- 3.4 36,5 -- 3.2 34.1 -- -- -- -- -- -- 660 -- -- -- -- -- -- -- -- -- -- -- --
3. 9 44-2
13. 9
24.1
15. 9
14. 7
14.3
4.3 42.0
4(,0
9.5 108
9.9 133
4.2 38.0
4.3 39-2
18.1
17.3
26. 7
16. 6
26.3
660
3.8 40.1
16.4
480 15.4 3. 7 39-6 14. 9 3.5 37.1 16. 6 1.3 48.0 25.2 10. 7 144 600 15.3 3.6 3J.8 Jr,.J 3.5 32-8 16. 7 5.1 48.7 24.7 11.l 125
1.0 42-8
4.7
15. 6
16.1
6!-9 .e
5.9 55,8
12.9 143
ro
5.1 5
600
11.7 155
4.8 43-6
5.0 45.0
4.1 43.3
700
17.9
28.8
18.1
16. 7
17.6
16. 2
19.5
27.4
1.3 46-2
5.3 66,1
5. 7 51.1
20.9
6.8 63-4
14. 7 163
19.2
6.6 49-6
30.8
6. 2 66-8
19. 9
30.2 14.2
18. 9
u-6
17. 9
18.4
5.0
J85
-- -- -- -- -- -- -- -- -- -- -- -- -- 750 -- -- -- --- -- -- -- -- -- -- -- --
7. 7 n.s
6.3 ss.a
32.9
16.8 18
22.3
7.3 78-5
20.2
16.8 183
800
6.5 67-6
20.4
6.3 64-7
19.6
21. 7
-6
6.9
20. l
32. 9
'88 21.8 7.4 75-1 21.1 6.9 70.2 23.5 8.6 91.0 35.7 19.8 252 m 21. 7 7.3 64,: 21.4 7 .1 62.4 23. 7 8.7 79,9 35.0 19.0 205
u;
� 2.71 8.0 so.,
S.2 11.
23.0
25.1
9.4 194
.23.4 , 8.5 81,.1
22.7
37.0 21.3 228
8.0 69-3
9.8
38.4 22.9
88. �
25.3
750 25.l 9.8 97.8 21.4 9.3 91.6 27.1 11.4 11' 41. 2 26.4 24.3 9.2 7'J. f 21.0 9.0 76-6 26.5 10. 9 98. 39.1 23.8 m
800 26.8 11.2 1io 26.0 10.5 103 28.9 13,0 131 43.9 30.0 371 1000 25.5 10.1 87-0 25.2 9. 9 84-3 27.9 12.1 108 41.1 26.3
850 28.4 12.6 1 3 27.6 11.8 115 30. 7 14.6 150 46. 7 33.9 414 1100 28.1 12.3 104 27. 7 11. 9 101 30. 7 14.6 ,129 45.2 31.7 331
'l'he National Bureau or Staadards has recommended the ebmrnattou o( this pipe size.
.....
Table 2-22: Cameron Hydraulic Data (cont) .,:,..
00
Friction Losses In Pipe; C= 100 Friction Losses In Pipe; C = 100
5 Inch
6 Inch
=========================================-=�--� Double
Double
Cast Iron Std Wt Steel Extra Stronj; Steel Extra Strong Steel Cast Iron Std Wt Steel Extra Strong Steel Extra Strong Steel
FLOW I
6.065'' iusidc din
6.0 inside dla
us 5.0 inside dia 5.047" inside dia 4.813" inside dia 4.063" inside db us ----------- ----- ------- 5. 761" inside ,Ha , 4.897" inside dia _
�al Ve- • Ve- Head Ve- Ve- Head Ve- Ve.Jlcad Ve- Head 11,al Ve- v�- 1 Head Ve- Ve- Head Ve- Ve- Head Ve- Ve- Head
per locily locity loss locily locity loss Iocity locity loss locity Jocity per locity locily loss Jocity locity loss Jocity locity loss locity locity loss )>
Ve-1 loss
min ft head ft ft head ft ft head ft ft hear! ft mln ft head ft ft head ft ft head ft ft head ft "C
per ft per per ! t per per ft per per It per - = - = 12..
- = n
-
sec
sec 100 ft sec 100 ft sec 100 ft sec 100 ft = n 100 ft sec 100 ft sec It 100 ft sec n 100 ft iii"
c.
30 .49 .00 _045 .48 .00 .043 .531 .00 .054 .75 .01 -124 50 .57 .01 -047 . .561 .00 .045 .62 .01 .058 .85 .01 -127
a
40 .65 .OJ .076 .64 .01 .073 .71 .01 .092 1.00 .02 -212 60 .68 .01 .066 .67 .01 .063 .74 .01 .081 1.02 .02 -178 "tJ
50 .82 .01 -116 .80 .01 .110 .88 .01 -139 1.24 .02 -320 70 .79 .01 -088 .78 .OJ .084 .Sf, .01 -108 1.19 .02 -2�
60 .98 .01 -161 .96 .01 .154 1.06 .02 -194 1.49 .03 -448 80 .91 .01 .113 .89 .01 .107 .98 .01 -138 1.36 .03 -304 0
-378
.02
.133
1.0U
.02
1.02
-141
I.II
.02
1.53
-171
.04
10 �I-� .214 1.12 .02 .205 1.23 .02 �I� .os -596 90 ·---------- ---------------- CD
C/1
80 1.31 .03 -275 1.28 .03 .262 1.41 .03 -330 1.99 .06 -763 100 1.13 .02 .171 l.ll .02 .162 1.23 .02 -208 1.70 .05 .459 C/1
90 1.47 .03 -341 1.44 .03 -326 1.59 .04 -411 2.24 .08 -948 120 1.36 .03 -239 1.33 .03 .227 1.48 .03 -292 2.04 .06 -643 CJ
CD
100 1.63 .04 -415 1.60 .04 -396 1.76 .05 .499 2.49 .10 1.15 140 1.59 .041 .318 1.56 .04 .302 1.72 .05 -388 2.38 .09 -856 C/1
120 1.96 .06 .581 1.92 .06 .555 2.11 .07 -700 2.98 .14 1-61 160 1.82 .05 .408 l.78 .05 .387 I. 97 .06 -497 2. 72 .12 1.10 (0.
2.04
-618 3.06
.06
.08
.481
2.2'.t.
.15 1-36
.06
2.00
.507
140 2.29 .08 .773 2.24 .08 .739 2.47 .09 -931 3.48 .19 2.15 180 ---- ----- ---- ·-- -- --- ------ :I
160 2.61 .II .990 2.56 .10 .'}46 2.82 12 1-19 3.98 .25 2-75 200 2.27 .08 .616 2.22 .08 .584 2.46 .09 -751 3.4.0 .18 1-65 0
180 2.94 .13 1-23 2.88 .13 1.18 3.17 .16 1-48 4.48 .31 3-41 220 2.50 .10 .735 2.44 .09 .697 2.71 .11 -895 3.74 .22 1-97 .....
200 3.27 .16 1-50 3.20 .16 1-43 3.52 .19 ,.so 4.98 .39 4.15 240 2.72 .12 -863 2.67 .ll .819 2.96 .14 1.03 4.08 .26 2-32 o
220 3.59 .20 1-78 3.52 .20 1.10 3.88 .23 2-15 5.47 .47 4.95 260 2,% .14 1.00 2.89 .13 .950 3.20 .16 1.22 4.42 .30 2.6, ::,-
240 3.92 .24 2.10 3.85 .23 2.00 4.23 .28 2-52 5.97 .55 5-82 280 3.18 .16 1-15 3.11 . 1.5 1-09 3.15 .19 1-40 4. 77 .35 3-08 CD
-- -- -- -- -- -- -- ---- -- -- -- - -- ---- �-- --- -- --- ---- --- -- --- --- ---- 3
---- --
260 4.25 .28 2-43 U7 .27 2-32 4.-58 33 2-92 6.47 65 6-75 300 3.40 IS 1-30 3.33 .17 1.24 3.69 .21 1-69 5.11 .41 3-50 5·
280 458 .33 2-79 4.49 .31 2-66 4.94 .38 3-36 6.97 .76 7-74 320 3.64 .21 1-47 3.-56 .20 1-39 3.94 .24 1-79 5.45 .16 3-% !!!..
300 4.90 .38 3-17 4.81 .36 3.03 5.29 .43 3-81 7.46 .87 8-79 340 3.86 .23 1-64 3.78 .22 1.66 4.19 .27 2-00 5.79 .52 4-42
320 5.23 .43 3-67 5.13 .41 3-41 5.64 .49 4-29 7.96 .98 9-91 360 4.08 .26 1-83 4.00 .2.5 1-73 4.13 .31 2-23 6.1:l .58 4-91 Ill
5.99
.46
3-81
.56
8.46
1.11 11.1
:I
4-80
5.56
340
5.45
.48 3-9'1
-- -- -- -- -- --- --- -- -- --- -·- -- --- 380 4.31 .29 2-02 4.22 .28 1-92 4.&8 .34 2-46 6.47 .65 5.43 c.
- -- --- ---- -- -- -- --- -- --- --- -- ---
360 5.89 .54 4-44 5.77 52 4-24 6.35 .63 6-34 8.96 1.25 12.3 400 4.55 .32 2.22 4.44 .31 2.11 4.93 .38 2-71 6.81 .72 5-97 "tJ
380 6.?.2 .60 4-90 6.09 .iiR 4-68 6.70 .70 6-90 9.45 1.39 13.6 450 5.11 .41 2-76 .5.00 .39 2.62 5.54 .48 3-36 7.66 .91 7-42 �
400 6.54 .66 5-39 6.41 .64 6-16 7.0.5 .77 6-49 9.95 1.54 16-0 600 5.68 .50 3-36 5.56 .48 3.19 (,.J(, .5'! 4-09 8.51 l.13 9-02 a
420 6.87 .73 5-90 6.73 .70 6.£4 7.40 .85 7-10 10.4 1.7 16-4 550 6.25 .61 4-00 6.11 .58 3.80 6.77 .71 4-88 9.37 1.36 10-8
6.81
4-70
.72
12-6
1.6
10.2
7.39
5-73
.85
6.66
.69
4-46
7-74
.81
7.20
10.9
7.05
6-43
.94
440
6-14
7.76
1.8 17-8
.77
-- --------------------------- 600 -- ---- ----- --- -- -- --- --- -- -- -- 0
::,-
48060 7.52 .88 6-98 7.38 .86 6.67 8.11 1.02 8-40 11.4 2.0 19.4 650 7.38 .85 5.45 7.22 RI 6-17 8.00 .99 6.64 JI.I 1.9 14-6 CD
3
4 7.85 .% 7-66 7.70 .92 7-22 8.46 1.11 9-09 11.9 2.2 21.0 700 7.% .98 6.25 7.78 .941 5_93 8.63 1.16 7-62 11.9 2.2 16-8 s
500 8.17 1.04 8-15 8.02 1.00 7.79 8.82 l.21 9-81 12.4 2.4 22-6 760 8.52 1.13 7-10 R.34 1.08 6.74 9.24 1.33 8-66 12.8 2 5 19-1
650 8.99 l.26 9.12 8.82 1.21 9-28 9.70 1.46 11-7 13.7 2.9 27.0 800 9.08 1.28 8-00 8.90 1.2:l 7-60 9.85 1.51 9.75 13.6 2.q 21-6 a
1.49 10.9
600
9.80
1.49 11-7
10.6
9.62
3.5 31-7
14.9
---------------- 1.7 13-7 -------- 850 9.6.5 l.45 8-95 9.45 � � 10.5 ,___::_:_ 10-9 14.5 3.3 24-1 "tJ
650 10.6 1.7 13.2 l0.4 1.7 12-6 11.5 2.1 15-9 16.2 4.1 36.8 900 10.2 1.6 9-96 10.0 1.6 9.44 11.1 1.9 12.1 15.3 3.7 26-7 §
700 11.4 2.0 16-2 ll.2 1.9 14.6 12.3 2.4 18-3 17.4 4.7 42-2 950 10.8 1.8 11.0 10.5 1.7 10.2 11.7 2.1 13.4 16.2 4.1 29-6
750 12.3 2.4 17-2 12.0 2.2 16.6 13.2 2.7 20-8 18.7 5.4 47-9 1000 11.4 2.0 12.1 11.1 1.9 11.5 12.3 2.4 14-7 17.0 4.5 32-5 li1"
800 13.1 2.7 19-4 12.8 2.5 18.6 14.1 3.l 23-4 19.9 6.2 64.0 1100 12 .. � 2.4 14-4 12.2 2.3 13.7 13.5 2.8 17.6 18.7 5.4 38-8
20.4
14.8
3.4 20.7
13.6
2.9 16-9
4.5 45.5
2.7 16-1
13.3
3.0 21-7
13.9
6.9 60.4
15.0
2.9 20.8
850
3.5 26-2
13.6
21.I
------------------ -------- 1200 -- -- -- -- -- -- -- --- ---- -- --
900 14.7 3.4 24-2 14.4 3.2 23.1 15.9 3.9 29-1 22.4 7.8 67.l 1300 14.8 3.4 19-7 14.4 3.2 18.6 16.0 4.0 23.9 22.l 7.6 62-8
960 15.5 3.7 26-7 15.2 3.6 25.5 16.7 �.3 32-2 23.6 8.7 75.9 1400 15.9 3.9 22-5 15.6 3.8 21-4 17.2 4.6 27-6 2.1.8 8.8 60-6
1000 16.3 4.1 29-4 16.0 4.0 28.1 17.6 4.8 35.4 24.9 9.6 81.6 1500 17.0 4.5 26-6 16.7 4.3 24.3 18.5 5.3 31-2 25.5 10.l 68-8
1100 18.0 5.0 35.0 17.6 4.8 33.5 19.4 5.8 42-2 27.4 11. 7 97.3 1600 18.2 5 1 28-9 17.8 4.9 27.4 19.7 6.0 35-2 27.2 11.5 77.5
1200
6.9 49-5
19.2
21.1
29.8 13.8 114
6.0 41-1
19.6
5.7 39.3
------------------ ------- 1700 19.3 5 8 32.3 18.? 5.6 30.6 20.9 6.8 39.4 28.9 13.0 86-8
1300 21.2 7.0 47-7 20.8 6.7 45.6 22.9 8.2 57.4 32.3 16.2 133 1800 120.4 6.5136.9 20.0 6.2 34.0 22.2 7. 7 43.7 30. 6 14.6 96-4
1400 22.9 8.1 54.7 22.4 7.8 52-3 24.7 9.5 66-9 34.8 18.8 152 1900 21.5 7.2 39.7 21.l 6.9 37.6 23.4 8.4 48-3 32.3 16.2 107
1500 24.5 9.3 62-2 24.0 9.0 59.4 26.4 10.8 74-8 37.3 21.6 173 2000 22.7 8.0 43-6 22.2 7.7 41.4 24.6 9.4 53.1 34.0118.0 117
1600 26.l 10.6 70.1 25.6 10.2 66.9 28.2 12.4 84-3 39.8 24.6 195 2200 25.0 9.7 52.0 24.4 9.3 49-4 27.1 11.4 1,3.4 37.4 21.7 140
1700 27.8 12.0 78-4 27.2 11,5 74.9 30.0 14.0 94-4 42.3 27.8 218 2400 27.2 11.5 61.1 26.7 11.l 68.0 29.6 13.6 74.5 40.8 25.9 164
.....
Table 2-22: Cameron Hydraulic Data (cont) .,:,..
00
Friction Losses In Pipe; C= 100 Friction Losses In Pipe; C = 100
5 Inch
6 Inch
=========================================-=�--� Double
Double
Cast Iron Std Wt Steel Extra Stronj; Steel Extra Strong Steel Cast Iron Std Wt Steel Extra Strong Steel Extra Strong Steel
FLOW I
6.065'' iusidc din
6.0 inside dla
us 5.0 inside dia 5.047" inside dia 4.813" inside dia 4.063" inside db us ----------- ----- ------- 5. 761" inside ,Ha , 4.897" inside dia _
�al Ve- • Ve- Head Ve- Ve- Head Ve- Ve.Jlcad Ve- Head 11,al Ve- v�- 1 Head Ve- Ve- Head Ve- Ve- Head Ve- Ve- Head
per locily locity loss locily locity loss Iocity locity loss locity Jocity per locity locily loss Jocity locity loss Jocity locity loss locity locity loss )>
Ve-1 loss
min ft head ft ft head ft ft head ft ft hear! ft mln ft head ft ft head ft ft head ft ft head ft "C
per ft per per ! t per per ft per per It per - = - = 12..
- = n
-
sec
sec 100 ft sec 100 ft sec 100 ft sec 100 ft = n 100 ft sec 100 ft sec It 100 ft sec n 100 ft iii"
c.
30 .49 .00 _045 .48 .00 .043 .531 .00 .054 .75 .01 -124 50 .57 .01 -047 . .561 .00 .045 .62 .01 .058 .85 .01 -127
a
40 .65 .OJ .076 .64 .01 .073 .71 .01 .092 1.00 .02 -212 60 .68 .01 .066 .67 .01 .063 .74 .01 .081 1.02 .02 -178 "tJ
50 .82 .01 -116 .80 .01 .110 .88 .01 -139 1.24 .02 -320 70 .79 .01 -088 .78 .OJ .084 .Sf, .01 -108 1.19 .02 -2�
60 .98 .01 -161 .96 .01 .154 1.06 .02 -194 1.49 .03 -448 80 .91 .01 .113 .89 .01 .107 .98 .01 -138 1.36 .03 -304 0
-378
.02
.133
1.0U
.02
1.02
-141
I.II
.02
1.53
-171
.04
10 �I-� .214 1.12 .02 .205 1.23 .02 �I� .os -596 90 ·---------- ---------------- CD
C/1
80 1.31 .03 -275 1.28 .03 .262 1.41 .03 -330 1.99 .06 -763 100 1.13 .02 .171 l.ll .02 .162 1.23 .02 -208 1.70 .05 .459 C/1
90 1.47 .03 -341 1.44 .03 -326 1.59 .04 -411 2.24 .08 -948 120 1.36 .03 -239 1.33 .03 .227 1.48 .03 -292 2.04 .06 -643 CJ
CD
100 1.63 .04 -415 1.60 .04 -396 1.76 .05 .499 2.49 .10 1.15 140 1.59 .041 .318 1.56 .04 .302 1.72 .05 -388 2.38 .09 -856 C/1
120 1.96 .06 .581 1.92 .06 .555 2.11 .07 -700 2.98 .14 1-61 160 1.82 .05 .408 l.78 .05 .387 I. 97 .06 -497 2. 72 .12 1.10 (0.
2.04
-618 3.06
.06
.08
.481
2.2'.t.
.15 1-36
.06
2.00
.507
140 2.29 .08 .773 2.24 .08 .739 2.47 .09 -931 3.48 .19 2.15 180 ---- ----- ---- ·-- -- --- ------ :I
160 2.61 .II .990 2.56 .10 .'}46 2.82 12 1-19 3.98 .25 2-75 200 2.27 .08 .616 2.22 .08 .584 2.46 .09 -751 3.4.0 .18 1-65 0
180 2.94 .13 1-23 2.88 .13 1.18 3.17 .16 1-48 4.48 .31 3-41 220 2.50 .10 .735 2.44 .09 .697 2.71 .11 -895 3.74 .22 1-97 .....
200 3.27 .16 1-50 3.20 .16 1-43 3.52 .19 ,.so 4.98 .39 4.15 240 2.72 .12 -863 2.67 .ll .819 2.96 .14 1.03 4.08 .26 2-32 o
220 3.59 .20 1-78 3.52 .20 1.10 3.88 .23 2-15 5.47 .47 4.95 260 2,% .14 1.00 2.89 .13 .950 3.20 .16 1.22 4.42 .30 2.6, ::,-
240 3.92 .24 2.10 3.85 .23 2.00 4.23 .28 2-52 5.97 .55 5-82 280 3.18 .16 1-15 3.11 . 1.5 1-09 3.15 .19 1-40 4. 77 .35 3-08 CD
-- -- -- -- -- -- -- ---- -- -- -- - -- ---- �-- --- -- --- ---- --- -- --- --- ---- 3
---- --
260 4.25 .28 2-43 U7 .27 2-32 4.-58 33 2-92 6.47 65 6-75 300 3.40 IS 1-30 3.33 .17 1.24 3.69 .21 1-69 5.11 .41 3-50 5·
280 458 .33 2-79 4.49 .31 2-66 4.94 .38 3-36 6.97 .76 7-74 320 3.64 .21 1-47 3.-56 .20 1-39 3.94 .24 1-79 5.45 .16 3-% !!!..
300 4.90 .38 3-17 4.81 .36 3.03 5.29 .43 3-81 7.46 .87 8-79 340 3.86 .23 1-64 3.78 .22 1.66 4.19 .27 2-00 5.79 .52 4-42
320 5.23 .43 3-67 5.13 .41 3-41 5.64 .49 4-29 7.96 .98 9-91 360 4.08 .26 1-83 4.00 .2.5 1-73 4.13 .31 2-23 6.1:l .58 4-91 Ill
5.99
.46
3-81
.56
8.46
1.11 11.1
:I
4-80
5.56
340
5.45
.48 3-9'1
-- -- -- -- -- --- --- -- -- --- -·- -- --- 380 4.31 .29 2-02 4.22 .28 1-92 4.&8 .34 2-46 6.47 .65 5.43 c.
- -- --- ---- -- -- -- --- -- --- --- -- ---
360 5.89 .54 4-44 5.77 52 4-24 6.35 .63 6-34 8.96 1.25 12.3 400 4.55 .32 2.22 4.44 .31 2.11 4.93 .38 2-71 6.81 .72 5-97 "tJ
380 6.?.2 .60 4-90 6.09 .iiR 4-68 6.70 .70 6-90 9.45 1.39 13.6 450 5.11 .41 2-76 .5.00 .39 2.62 5.54 .48 3-36 7.66 .91 7-42 �
400 6.54 .66 5-39 6.41 .64 6-16 7.0.5 .77 6-49 9.95 1.54 16-0 600 5.68 .50 3-36 5.56 .48 3.19 (,.J(, .5'! 4-09 8.51 l.13 9-02 a
420 6.87 .73 5-90 6.73 .70 6.£4 7.40 .85 7-10 10.4 1.7 16-4 550 6.25 .61 4-00 6.11 .58 3.80 6.77 .71 4-88 9.37 1.36 10-8
6.81
4-70
.72
12-6
1.6
10.2
7.39
5-73
.85
6.66
.69
4-46
7-74
.81
7.20
10.9
7.05
6-43
.94
440
6-14
7.76
1.8 17-8
.77
-- --------------------------- 600 -- ---- ----- --- -- -- --- --- -- -- -- 0
::,-
48060 7.52 .88 6-98 7.38 .86 6.67 8.11 1.02 8-40 11.4 2.0 19.4 650 7.38 .85 5.45 7.22 RI 6-17 8.00 .99 6.64 JI.I 1.9 14-6 CD
3
4 7.85 .% 7-66 7.70 .92 7-22 8.46 1.11 9-09 11.9 2.2 21.0 700 7.% .98 6.25 7.78 .941 5_93 8.63 1.16 7-62 11.9 2.2 16-8 s
500 8.17 1.04 8-15 8.02 1.00 7.79 8.82 l.21 9-81 12.4 2.4 22-6 760 8.52 1.13 7-10 R.34 1.08 6.74 9.24 1.33 8-66 12.8 2 5 19-1
650 8.99 l.26 9.12 8.82 1.21 9-28 9.70 1.46 11-7 13.7 2.9 27.0 800 9.08 1.28 8-00 8.90 1.2:l 7-60 9.85 1.51 9.75 13.6 2.q 21-6 a
1.49 10.9
600
9.80
1.49 11-7
10.6
9.62
3.5 31-7
14.9
---------------- 1.7 13-7 -------- 850 9.6.5 l.45 8-95 9.45 � � 10.5 ,___::_:_ 10-9 14.5 3.3 24-1 "tJ
650 10.6 1.7 13.2 l0.4 1.7 12-6 11.5 2.1 15-9 16.2 4.1 36.8 900 10.2 1.6 9-96 10.0 1.6 9.44 11.1 1.9 12.1 15.3 3.7 26-7 §
700 11.4 2.0 16-2 ll.2 1.9 14.6 12.3 2.4 18-3 17.4 4.7 42-2 950 10.8 1.8 11.0 10.5 1.7 10.2 11.7 2.1 13.4 16.2 4.1 29-6
750 12.3 2.4 17-2 12.0 2.2 16.6 13.2 2.7 20-8 18.7 5.4 47-9 1000 11.4 2.0 12.1 11.1 1.9 11.5 12.3 2.4 14-7 17.0 4.5 32-5 li1"
800 13.1 2.7 19-4 12.8 2.5 18.6 14.1 3.l 23-4 19.9 6.2 64.0 1100 12 .. � 2.4 14-4 12.2 2.3 13.7 13.5 2.8 17.6 18.7 5.4 38-8
20.4
14.8
3.4 20.7
13.6
2.9 16-9
4.5 45.5
2.7 16-1
13.3
3.0 21-7
13.9
6.9 60.4
15.0
2.9 20.8
850
3.5 26-2
13.6
21.I
------------------ -------- 1200 -- -- -- -- -- -- -- --- ---- -- --
900 14.7 3.4 24-2 14.4 3.2 23.1 15.9 3.9 29-1 22.4 7.8 67.l 1300 14.8 3.4 19-7 14.4 3.2 18.6 16.0 4.0 23.9 22.l 7.6 62-8
960 15.5 3.7 26-7 15.2 3.6 25.5 16.7 �.3 32-2 23.6 8.7 75.9 1400 15.9 3.9 22-5 15.6 3.8 21-4 17.2 4.6 27-6 2.1.8 8.8 60-6
1000 16.3 4.1 29-4 16.0 4.0 28.1 17.6 4.8 35.4 24.9 9.6 81.6 1500 17.0 4.5 26-6 16.7 4.3 24.3 18.5 5.3 31-2 25.5 10.l 68-8
1100 18.0 5.0 35.0 17.6 4.8 33.5 19.4 5.8 42-2 27.4 11. 7 97.3 1600 18.2 5 1 28-9 17.8 4.9 27.4 19.7 6.0 35-2 27.2 11.5 77.5
1200
6.9 49-5
19.2
21.1
29.8 13.8 114
6.0 41-1
19.6
5.7 39.3
------------------ ------- 1700 19.3 5 8 32.3 18.? 5.6 30.6 20.9 6.8 39.4 28.9 13.0 86-8
1300 21.2 7.0 47-7 20.8 6.7 45.6 22.9 8.2 57.4 32.3 16.2 133 1800 120.4 6.5136.9 20.0 6.2 34.0 22.2 7. 7 43.7 30. 6 14.6 96-4
1400 22.9 8.1 54.7 22.4 7.8 52-3 24.7 9.5 66-9 34.8 18.8 152 1900 21.5 7.2 39.7 21.l 6.9 37.6 23.4 8.4 48-3 32.3 16.2 107
1500 24.5 9.3 62-2 24.0 9.0 59.4 26.4 10.8 74-8 37.3 21.6 173 2000 22.7 8.0 43-6 22.2 7.7 41.4 24.6 9.4 53.1 34.0118.0 117
1600 26.l 10.6 70.1 25.6 10.2 66.9 28.2 12.4 84-3 39.8 24.6 195 2200 25.0 9.7 52.0 24.4 9.3 49-4 27.1 11.4 1,3.4 37.4 21.7 140
1700 27.8 12.0 78-4 27.2 11,5 74.9 30.0 14.0 94-4 42.3 27.8 218 2400 27.2 11.5 61.1 26.7 11.l 68.0 29.6 13.6 74.5 40.8 25.9 164
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C= 100 Friction Losses In Pipe; C = 100
8 Inch 10 Inch
- -
Double
Cast lron Std Wt Steel Extra Strong Steel Extra Strong Steel. Cast Iron Standard Wt Steel Extra Strong Steel
FLOW -· FLOW 10.0" inside dia 10.02k inside dia 9.750'' inside dia
us 8.0 inside dia 'i . 981• inside dia 7.625" inside dia 6.875" inside dia us
!!,al Ve-· V<� Head Vr,- ve- Head Vr,- Vr,- Head Ve- Ve- Head ll,at - Head Head Head
per locity Jocity Joss locity locity loss Jority Jocity loss locity Iocity Ioss per Velocity Velocity loss Velocity Velocity loss Velocity Velocity loss
min ft head ft ft head ft ft bead ft ft head ft min ft per head ft ft per ft per head ft ft cr ft per head ft fM'er
6
1
10 ft
sec
sec
ft
100 ft
sec
per fl per per ft per per ft ri•r per ft rier -- --- --- --- --- ---· --- --- --- --
-- -- --
-- -- -- -- -- -- -- 1 0 ft sec I Oft 180 . 74 .01 .042 . 73 .01 .042 . 77 .01 .048
100 ft sec
100 ft sec
sec
130 .83 .01 .069 .83 .OJ .Oo9 .91 .01 .087 1.12 .02 ,143 200 .82 ,01 .051 .81 .01 .061 .86 .01 .Of8
HO .90 .01 .079 .90 .01 .07'J .98 .01 .ess 1.21 .02 .164 220 .90 .OJ .061 .89 .01 .061 .95 .OJ .o'
160 .% .01 .Oil') .96 .01 .O'J1 1.05 .02 .116 1.30 .03 -187 240 .98 .01 .012 .98 .01 .071 1.03 .02 .o8l
,083
.083
260
.09
,02
.02
1.06
1.12
.02
1.06
160 1.02 .02 .101 I.OJ .02 .102 1.12 .02 .127 1.38 .03 .210 -- --- --- --- --- --- --- --- --- --
.112
.235
,114
1.09
170 -- -- -- -- -- -- -- -- .142 -- -- --- 280 1.14 .02 .096 1.14 .02 .096 1.20 .02 .101
1.47
,02
.02
1.08
.03
.02
1.19
180 1.15 .02 .125 1.15 .02 .126 1.26 .02 .158 1.56 .04 .261 300 1.22 .oa .109 1.22 .D2 .108 1.29 .03 ·p
190 1.21 .02 .138 1.22 .02 -140 1.33 .03 .176 I. 64 .04 -289 360 1.43 .03 -144 1.42 .03 .143 1.50 ,04 • 63
200 1.28 .03 .152 1.28 .03 .154 1.41 .03 .192 1. 73 ,05 .318 400 1. 63 .04 .185 1.63 .04 -183 I. 72 .05 -209
.05
1.84
.228
.230
450
-260
.06
1.93
1.83
.05
220 1.40 .03 -181 1.41 .03 .183 1.55 .04 .229 I. 90 .06 .37') -- --- --- --- --·- --- --- --- --- ---
.216
.445
.07
240 -- --- -- -- -- -- -- -- .269 -- -- -- 600 2.04 .06 -280 2.04 .06 .tn 2.15 .07 .316
2.07
1.5�
-213
.04
,04
.04
1.63
1.69
260 1.66 .04 -247 1.67 .04 .250 1.83 .05 .312 2.25 .08 ,516 550 2.i4 .08 .333 2.24 .08 .330 Z.36 .09 .sn
280 1.79 .05 .283 1.80 .05 .286 1.97 ,06 .368 2.42 .09 .592 600 2.45 .09 -392 2.44 .09 .388 2.58 .10 :ffl
300 1.91 .06 .322 1. 92 .06 .326 2.11 .07 -406 2.59 .10 -672 650 2.65 .11 .454 I 2. 64 .11 .450 2.79 .12
.521
2.85
350 2.24 .08 .428 2.24 .08 .433 2.46 .09 .640 3.02 .14 -894 700 2.86 .13 ------ .13 -516 3.01 .14 -689
400 -- -- -- -- --- -- -- -- .692 -- -- -- 800 3.26 .17 -667 3.25 .16 .660 3.46 .19 .754
3.46
.JO
2.67
: 19 1-14
.10
.12
.554 2.81
.548
2.66
460 2.87 .13 .681 2.88 .13 .689 3.16 .15 .860 3.89 .24 1.42 900 3. 67 .21 -829 3.66 .21 -821 3.87 .23 -938
600 3.19 .16 .828 3.20 .16 .838 3.51 .19 1.06 4.32 .29 1- � 1000 4.08 ,26 1.01 4.07 .�6 -9;8 4.30 .29 1-li
1100
.31
4.75
550 3.51 .19 -987 3.52 .19 .999 3.86 .23 1,25 5.19 .35 2,0 1200 4.49 .31 1.20 4.48 .37 1.1 4. 73 .35 1,3
1,41
1,60
1-40
,28 1,46
4.90
.37
5.16
4.89
.41
600
.23 1.16
.42 2-42
.23 1.11
3.b6
4.22
3.83
--- --- --- --- --- --
-- -- -- -- -- -- -- -- -- -- -- -- ---- --- ---- -- 6.30 .44 1,62 5.59 .49 1-86
,32 1,70
.49 2-78
5.62
.27 1-34
4.57
.'J:1 1-36
4.17
650
4.15
1.64
.44
1300
5.31
700 4.47 .31 1.54 4.49 .31 1.56 4. 92 .38 1-96 6.05 .57 3,22 1400 5.71 .51 1-88 6. 70 .50 1.86 6.01 .56 2, 12
2.13
1500
7t0 4.79 .36 1,75 4.81 .36 1.11 5.27 .43 2.21 6.49 . 65 f66 1600 6.12 .08 2.40 6.10 .58 2.11 6.44 .64 2-41
2,38
8 0 5.11 .41 1,97 5.13 .41 !-99 5. 62 .49 2,49 6. 91 . 74 ,13 6.53 . 66 6.51 .66 6.88 . 74 2-72
2.69
1700
2.66
6. 94
3,04
. 75
6.92
.74
7.30
.63
850 5.43 .46 2.21 5.45 .46 ,23 5.97 ,55 2-79 7.35 .84 4,62 -- --- --- --- --- ·--- --- ----- --- --
,94 6,13
,oo 5. 75 .51 2,46 5.77 .52 2-48 6.32 .62 3-10 -- -- -- 1800 7 35 .84 2.99 7.32 .83 7.74 . 93 3.38
- -- --- --- --- -- -- -- --
7.78
3. 7
950 6.06 .57 2.71 6.09 .58 2.74 6.67 . 69 3-43 8.21 1. 05 5-67 1900 7. 76 . 94 3,30 7. 73 . 93 2. � 6 8.16 1.03 3,74
1000 6.38 .63 2.98 6.41 .64 3.02 7.03 : 77 s.n 8.64 1.16 6-24 2000 8.16 1.03 3.63 8.14 1.03 3.60 8.60 1.15 4.11
1100 7.03 .77 3.56 7.05 .77 3.60 7.8'3 . 95 4-49 9.50 1,40 7.44 2200 8.98 1.25 4,33 8. 95 1.24 4,29 9.45 1.39 4.90
5,09
5.04
1. 49
10.3
5-76
1.48
2400
9.80
9. 76
1.6
1200 7.66 . 91 4-18 7. 69 .92 4-23 8.43 l.10 6,28 10.4 1. 7 3,74 --- --- --- --- --- --- --- --- --- --
... o 10-4
1.07 4,85
1,30 6.12
11.�
1.08 4,90
8.33
1300 -- -- -- -- -- -- -- -- -- -- -- -- 2600 10.6 1.7 5,90 10.6 I. 7 5,84 11.2 1. 9 6.67
8.30
9.13
1400 8. 95 1.24 5.56 8.97 1.25 6,62 9.83 1.50 1.02 12.1 2.3 11,6 2800 11.4 2.0 6,77 11.4 2.0 6,70 12.0 2.2 7,65
1600 9.58 1. 43 6,32 9.61 1.44 6,39 10.5 1. 7 7-98 13.0 2.6 13,2 3000 12.2 2.3 7,69 12.2 2.3 7,61 12. 9 2, 6 s.70
1600 10.2 1. 6 1.12 10.3 1.'/ 1.20 11.2 2.0 8,99 13.8 3.0 14-9 3200 13.1 2. 7 8.66 13.0 2.7 8.58 13.8 3.0 9,80
-
9,60
9,69
11.0
3400
14.6
3.0
3.3
3.0
13.8
1800 11,5 2.1 8. 5 n.s 2.1 8,95 12. 6 2.5 11.2 15.6 3.8 18,6 -- 13.9 --- -- --- --- -- --- --- ---
2.6 10,8
2.6 10.9
1�.8
4. 7 22.5
3.1 13.6
17.3
2000 -�- --· -- -- -- -- -- -- --- -- -- -- 3600 14.7 3.4 10.3 14. 6 3.3 10.7 15.5 3. 7 12.2
14.1
12.8
3.1 13.0
2200
�ro� 14. l 3.1 12.8 14.1 3.7 15,2 15.5 3. 7 16.6 20. 7 5. 6 26,8 3800 15.5 3. 7 11-9 15.5 3.7 11.8 16.3 4.1 13,5
19.0
13,1
4. l
4.1
4.6
16.3
14-8
17.2
4000
13.0
16.3
6.7 31-5
3. 6 15,1
4.4
15.4
16. 9
16.3
1 � -0
4500
16.3
18,4
16,1
5.8
7. 9 36,5
18.3
18.4
19.3
5.� 2 .1
6.3
5.2
16. 7
4.3 11-b
4.3 17,7
22.5
19,8
5000
22-4
7.2
6.5
20.4
20,3
21.5
19.6
6.4
19. 7
2800 16.6 6.0 20.0 18.0 5.0 20.3 18.3 6.0 26,3 24.2 9.1 41 .9 -- ·---- --- --- --- --- --- --- --- --
17.9
6.9 28,8
10.4 47,6
21.1
3000 --- -- -- -- -- -- -- -- -- -- -- -- 5500 22.4 7.8 23.6 22.4 7.8 23.4 23.6 8.7 26,7
25.9
5.7 23.0
19.2
5. 7 22.8
19.1
3600 22.4 7.8 30.3 22.4 7.8 30.6 24.6 9.4 33,3 30.2 14. 2 63.3 6000 24.5 9.3 21.1 24.4 9.3 27.5 25.8 10.3 :Sl.4
4000 25.6 10.2 38,8 25. 6 10.2 39.2 ?.8.1 12.3 49,0 34.6 18.6 81,0 6500 26.5 10. 9 32, 1 26.4 10.8 31.8 27.9 12.l 36,4
4600 28. 7 ia.s 48.2 128.8 12.9 48.8 31.6 15.5 60-9 38.9 23.5 101 7000 28.6 12. 7 36.9 28.6 12.6 36.5 30.1 H.l 41.7
6000 31. 9 15.8 68.6 32.0 15. 9 59.3 35.1 19.1 74,0 43.2 29.0 122 7500 30.6 14.6 41-9 30.5 I 14.5 41.6 32.2 16.1 47.4
6500 35.l 19. l 69,9 35.3 19.4 10.1 38.6 23.2 88,3 I 47.5 35.l 146
-
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C= 100 Friction Losses In Pipe; C = 100
8 Inch 10 Inch
- -
Double
Cast lron Std Wt Steel Extra Strong Steel Extra Strong Steel. Cast Iron Standard Wt Steel Extra Strong Steel
FLOW -· FLOW 10.0" inside dia 10.02k inside dia 9.750'' inside dia
us 8.0 inside dia 'i . 981• inside dia 7.625" inside dia 6.875" inside dia us
!!,al Ve-· V<� Head Vr,- ve- Head Vr,- Vr,- Head Ve- Ve- Head ll,at - Head Head Head
per locity Jocity Joss locity locity loss Jority Jocity loss locity Iocity Ioss per Velocity Velocity loss Velocity Velocity loss Velocity Velocity loss
min ft head ft ft head ft ft bead ft ft head ft min ft per head ft ft per ft per head ft ft cr ft per head ft fM'er
6
1
10 ft
sec
sec
ft
100 ft
sec
per fl per per ft per per ft ri•r per ft rier -- --- --- --- --- ---· --- --- --- --
-- -- --
-- -- -- -- -- -- -- 1 0 ft sec I Oft 180 . 74 .01 .042 . 73 .01 .042 . 77 .01 .048
100 ft sec
100 ft sec
sec
130 .83 .01 .069 .83 .OJ .Oo9 .91 .01 .087 1.12 .02 ,143 200 .82 ,01 .051 .81 .01 .061 .86 .01 .Of8
HO .90 .01 .079 .90 .01 .07'J .98 .01 .ess 1.21 .02 .164 220 .90 .OJ .061 .89 .01 .061 .95 .OJ .o'
160 .% .01 .Oil') .96 .01 .O'J1 1.05 .02 .116 1.30 .03 -187 240 .98 .01 .012 .98 .01 .071 1.03 .02 .o8l
,083
.083
260
.09
,02
.02
1.06
1.12
.02
1.06
160 1.02 .02 .101 I.OJ .02 .102 1.12 .02 .127 1.38 .03 .210 -- --- --- --- --- --- --- --- --- --
.112
.235
,114
1.09
170 -- -- -- -- -- -- -- -- .142 -- -- --- 280 1.14 .02 .096 1.14 .02 .096 1.20 .02 .101
1.47
,02
.02
1.08
.03
.02
1.19
180 1.15 .02 .125 1.15 .02 .126 1.26 .02 .158 1.56 .04 .261 300 1.22 .oa .109 1.22 .D2 .108 1.29 .03 ·p
190 1.21 .02 .138 1.22 .02 -140 1.33 .03 .176 I. 64 .04 -289 360 1.43 .03 -144 1.42 .03 .143 1.50 ,04 • 63
200 1.28 .03 .152 1.28 .03 .154 1.41 .03 .192 1. 73 ,05 .318 400 1. 63 .04 .185 1.63 .04 -183 I. 72 .05 -209
.05
1.84
.228
.230
450
-260
.06
1.93
1.83
.05
220 1.40 .03 -181 1.41 .03 .183 1.55 .04 .229 I. 90 .06 .37') -- --- --- --- --·- --- --- --- --- ---
.216
.445
.07
240 -- --- -- -- -- -- -- -- .269 -- -- -- 600 2.04 .06 -280 2.04 .06 .tn 2.15 .07 .316
2.07
1.5�
-213
.04
,04
.04
1.63
1.69
260 1.66 .04 -247 1.67 .04 .250 1.83 .05 .312 2.25 .08 ,516 550 2.i4 .08 .333 2.24 .08 .330 Z.36 .09 .sn
280 1.79 .05 .283 1.80 .05 .286 1.97 ,06 .368 2.42 .09 .592 600 2.45 .09 -392 2.44 .09 .388 2.58 .10 :ffl
300 1.91 .06 .322 1. 92 .06 .326 2.11 .07 -406 2.59 .10 -672 650 2.65 .11 .454 I 2. 64 .11 .450 2.79 .12
.521
2.85
350 2.24 .08 .428 2.24 .08 .433 2.46 .09 .640 3.02 .14 -894 700 2.86 .13 ------ .13 -516 3.01 .14 -689
400 -- -- -- -- --- -- -- -- .692 -- -- -- 800 3.26 .17 -667 3.25 .16 .660 3.46 .19 .754
3.46
.JO
2.67
: 19 1-14
.10
.12
.554 2.81
.548
2.66
460 2.87 .13 .681 2.88 .13 .689 3.16 .15 .860 3.89 .24 1.42 900 3. 67 .21 -829 3.66 .21 -821 3.87 .23 -938
600 3.19 .16 .828 3.20 .16 .838 3.51 .19 1.06 4.32 .29 1- � 1000 4.08 ,26 1.01 4.07 .�6 -9;8 4.30 .29 1-li
1100
.31
4.75
550 3.51 .19 -987 3.52 .19 .999 3.86 .23 1,25 5.19 .35 2,0 1200 4.49 .31 1.20 4.48 .37 1.1 4. 73 .35 1,3
1,41
1,60
1-40
,28 1,46
4.90
.37
5.16
4.89
.41
600
.23 1.16
.42 2-42
.23 1.11
3.b6
4.22
3.83
--- --- --- --- --- --
-- -- -- -- -- -- -- -- -- -- -- -- ---- --- ---- -- 6.30 .44 1,62 5.59 .49 1-86
,32 1,70
.49 2-78
5.62
.27 1-34
4.57
.'J:1 1-36
4.17
650
4.15
1.64
.44
1300
5.31
700 4.47 .31 1.54 4.49 .31 1.56 4. 92 .38 1-96 6.05 .57 3,22 1400 5.71 .51 1-88 6. 70 .50 1.86 6.01 .56 2, 12
2.13
1500
7t0 4.79 .36 1,75 4.81 .36 1.11 5.27 .43 2.21 6.49 . 65 f66 1600 6.12 .08 2.40 6.10 .58 2.11 6.44 .64 2-41
2,38
8 0 5.11 .41 1,97 5.13 .41 !-99 5. 62 .49 2,49 6. 91 . 74 ,13 6.53 . 66 6.51 .66 6.88 . 74 2-72
2.69
1700
2.66
6. 94
3,04
. 75
6.92
.74
7.30
.63
850 5.43 .46 2.21 5.45 .46 ,23 5.97 ,55 2-79 7.35 .84 4,62 -- --- --- --- --- ·--- --- ----- --- --
,94 6,13
,oo 5. 75 .51 2,46 5.77 .52 2-48 6.32 .62 3-10 -- -- -- 1800 7 35 .84 2.99 7.32 .83 7.74 . 93 3.38
- -- --- --- --- -- -- -- --
7.78
3. 7
950 6.06 .57 2.71 6.09 .58 2.74 6.67 . 69 3-43 8.21 1. 05 5-67 1900 7. 76 . 94 3,30 7. 73 . 93 2. � 6 8.16 1.03 3,74
1000 6.38 .63 2.98 6.41 .64 3.02 7.03 : 77 s.n 8.64 1.16 6-24 2000 8.16 1.03 3.63 8.14 1.03 3.60 8.60 1.15 4.11
1100 7.03 .77 3.56 7.05 .77 3.60 7.8'3 . 95 4-49 9.50 1,40 7.44 2200 8.98 1.25 4,33 8. 95 1.24 4,29 9.45 1.39 4.90
5,09
5.04
1. 49
10.3
5-76
1.48
2400
9.80
9. 76
1.6
1200 7.66 . 91 4-18 7. 69 .92 4-23 8.43 l.10 6,28 10.4 1. 7 3,74 --- --- --- --- --- --- --- --- --- --
... o 10-4
1.07 4,85
1,30 6.12
11.�
1.08 4,90
8.33
1300 -- -- -- -- -- -- -- -- -- -- -- -- 2600 10.6 1.7 5,90 10.6 I. 7 5,84 11.2 1. 9 6.67
8.30
9.13
1400 8. 95 1.24 5.56 8.97 1.25 6,62 9.83 1.50 1.02 12.1 2.3 11,6 2800 11.4 2.0 6,77 11.4 2.0 6,70 12.0 2.2 7,65
1600 9.58 1. 43 6,32 9.61 1.44 6,39 10.5 1. 7 7-98 13.0 2.6 13,2 3000 12.2 2.3 7,69 12.2 2.3 7,61 12. 9 2, 6 s.70
1600 10.2 1. 6 1.12 10.3 1.'/ 1.20 11.2 2.0 8,99 13.8 3.0 14-9 3200 13.1 2. 7 8.66 13.0 2.7 8.58 13.8 3.0 9,80
-
9,60
9,69
11.0
3400
14.6
3.0
3.3
3.0
13.8
1800 11,5 2.1 8. 5 n.s 2.1 8,95 12. 6 2.5 11.2 15.6 3.8 18,6 -- 13.9 --- -- --- --- -- --- --- ---
2.6 10,8
2.6 10.9
1�.8
4. 7 22.5
3.1 13.6
17.3
2000 -�- --· -- -- -- -- -- -- --- -- -- -- 3600 14.7 3.4 10.3 14. 6 3.3 10.7 15.5 3. 7 12.2
14.1
12.8
3.1 13.0
2200
�ro� 14. l 3.1 12.8 14.1 3.7 15,2 15.5 3. 7 16.6 20. 7 5. 6 26,8 3800 15.5 3. 7 11-9 15.5 3.7 11.8 16.3 4.1 13,5
19.0
13,1
4. l
4.1
4.6
16.3
14-8
17.2
4000
13.0
16.3
6.7 31-5
3. 6 15,1
4.4
15.4
16. 9
16.3
1 � -0
4500
16.3
18,4
16,1
5.8
7. 9 36,5
18.3
18.4
19.3
5.� 2 .1
6.3
5.2
16. 7
4.3 11-b
4.3 17,7
22.5
19,8
5000
22-4
7.2
6.5
20.4
20,3
21.5
19.6
6.4
19. 7
2800 16.6 6.0 20.0 18.0 5.0 20.3 18.3 6.0 26,3 24.2 9.1 41 .9 -- ·---- --- --- --- --- --- --- --- --
17.9
6.9 28,8
10.4 47,6
21.1
3000 --- -- -- -- -- -- -- -- -- -- -- -- 5500 22.4 7.8 23.6 22.4 7.8 23.4 23.6 8.7 26,7
25.9
5.7 23.0
19.2
5. 7 22.8
19.1
3600 22.4 7.8 30.3 22.4 7.8 30.6 24.6 9.4 33,3 30.2 14. 2 63.3 6000 24.5 9.3 21.1 24.4 9.3 27.5 25.8 10.3 :Sl.4
4000 25.6 10.2 38,8 25. 6 10.2 39.2 ?.8.1 12.3 49,0 34.6 18.6 81,0 6500 26.5 10. 9 32, 1 26.4 10.8 31.8 27.9 12.l 36,4
4600 28. 7 ia.s 48.2 128.8 12.9 48.8 31.6 15.5 60-9 38.9 23.5 101 7000 28.6 12. 7 36.9 28.6 12.6 36.5 30.1 H.l 41.7
6000 31. 9 15.8 68.6 32.0 15. 9 59.3 35.1 19.1 74,0 43.2 29.0 122 7500 30.6 14.6 41-9 30.5 I 14.5 41.6 32.2 16.1 47.4
6500 35.l 19. l 69,9 35.3 19.4 10.1 38.6 23.2 88,3 I 47.5 35.l 146
-
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C = 100
Friction Losses In Pipe; C = 100
12 Inch 14 Inch 16 Inch
Cast Iron Standard Wt Steel Extra Stront Steel Cast Iron Steel Cast Iron I Steel
FLOW 1 FLOW 14.0" inside dia 13.26" iusidc dia FLOW 16.0" inside dia 15.25,.. inside dia
us 12.0" inside dia 12.000" inside dia 11.7M inside dia
\tal licad Head Head us VO:-Ve- }lead \le- Ve- Head us Ve- Ve- Head Ve- \te- Head )>
per Velocity Velocity loss Velocity Velocity loss Velocity Velocity Joss 11,al loc- Joe- loss loc- lac- Joss 11,al Joe- lac- loss loc- Ice- loss "C
per
min ft per head ft fier ft per head ft ft per ft per head ft ft per per ily ity ft ily ity ft min ity ity ft ity ity ft "Q.
ft head per
ft head per
ft head per
100 ft
sec
ft
ft head per
I
100 ft
sec
sec
-- --- --- --- --- --- --- --- --- --- min per ft 100 ft per {t 100 ft per ft 100 ft per ft 100 ft 15·
a.
200 .57 .01 -02J .67 .01 .021 .69 .01 -023 sec sec sec see
250 .71 .01 -� . 71 .01 0 032 . 74 .01 0 035 -- -- -- -- -- -- -- -- -- -- --· -- -- -- ""O
300 .SS .01 . s .85 .01 .04li .89 .01 .050 300 .63 .01 .021 . 70 .01 .028 500 .80 .01 .028 .88 .01 .036 a
. 99
350 . 99 .02 .059 1.14 .02 -059 1.03 .02 -066 400 .84 .01 .036 . 93 .01 .047 600 .96 .01 ,040 1.05 ,02 .050 0
.02
.053 1.23
700 1.12
.02
-054 1.16
.02
,067
.02
.084
.02
-071
1.18
500 1.04 .02
.02
-076
-076
1.14
400
-- --- --- -- --- --- --- --- --- --- 600 1.25 .02 -076 1.40 .03 .100 8�0 1.28 .03 ,068 1.41 .03 .086 (1)
C/1
460 1.28 .03 .(J<J5 1.28 .03 -095 1.33 .03 -105 700 1.46 .03 .101 1. 63 .04 -132 900 1.44 .03 -084 1.58 .04 .106 (II
500 1.42 .03 -115 1.42 .03 -116 1.48 .03 -128 -- -- -- --- -- -- -- -- -- -- -- -- -- -- c
550 1.66 .04 ,137 1.66 .04 -J37 I. 63 .04 -152 800 1. 67 .04 -130 1.861 .05 .110 1000 1.60 .04 .102 1, 76 .05 .129 (1)
C/1
600 I. 70 .05 -161 1.70 .05 • 61 1. 77 .05 .179 900 1.88 .05 -161 2.09 .07 .211 1200 1. 92 .06 .143 2.11 .07 .181 co·
-191 2.41,
.08
2.24 .08
.09
.238
.07
2.07
1 � 0
-214
1.99
700
.06
-- --- --- -214 1.99 .06 --- --- --- --- 1000 2.09 .07 -196 2.33 -266 1 0 2.5'1 .10 -260 2.81 .12 :Ul ::::,
-234 �.56 .10
1100 2.30
-306
.OS
800 2.27 .08 ,276 a.21 .08 -275 2.37 .09 .394 1200 2.50 .10 -275 2. 7� .12 .359 1800 2.87 .13 -304 3. 16 .16 .383 o'
900 2.66 .10 .341 2.56 .10 0 341 2.66 .11 .378 -- -- -- -- -- -- -- -- -- -- -- -- -- -- ..,
1000 2.84 .13 .415 2.84 .13 - � 15 2.96 .14 -460 1300 2. 71 11 -318 3.02 .14 -416 2000 3.19 .16 -369 3.51 .19 -466
.17
1100 3.12 .15 .495 3.12 .16 • 95 3.25 .16 -548 1400 2.92 .13 .365 3.26 .19 .4n 2600 3.99 .Z5 -667 4.39 .30 .704 0
:::r
-781 5.27
.43
.36
3000 4.79
.987
-416 3.49
.18
3.41
3.55
.20
1500 3.13
.644
.15
.18
.642
-581
3.41
1200
.581
-- --- --- --- --- --- --- --- --- --- 1600 3.34 .17 -4 � 8 3. 72 .22 -611 3500 5 58 .4� 1-06 6.15 .59 1-31 (1)
1300 3. 69 .21 .674 3. 69 .21 0 674 3.84 .23 .m 1700 3.54 .19 .s 3 3.% .24 .684 4000 6 38 .63 1-33 7.03 .77 1.68 3
1400 3. 98 .25 .m 3. 98 .25 .m 4.14 .27 .857 -- -- -- -- -- -- -- -- -- -- -- -- -- ff
1600 4.26 .28 .878 4.26 .28 -878 4.(4 .31 .973 1800 3.75 . 22 -581 4.19 .27 -760 I 4500 7.18 .80 1-65 7.91 .97 2.09 a
1600 4.55 .32 .990 us .32 -990 4. 73 .36 1.10 � 900 3.% .24 -643 4.42 .30 .840 5000 7.98 .99 2-01 8.79 1.2 2-54 Ill
6000 9.58 1.43 2,82 10.5 1.7
.34
3-66
.924
000 4.17 .27
.44
.41
5.33
-706 4. 65
6.11
.41
1-23
1-36
5. ll
t.23
1800
-- --- --- -- --- --- --- --- --- --- 2600 5.22 .42 1-07 5.81 .52 1-40 7000 11.2 1. 9 3.75 12.3 2.4 4-73 ::::,
a.
2000 5.68 .50 1-50 5.68 .50 1,60 5.92 .54 1-66 3000 6.26 .61 1-60 6.98 . 76 1-96 8000 12.8 2.5 4.79 14.1 3.1 6-06
2200 6.25 .61 1.78 6.26 . 61 1-78 6.61 .66 p8 ""O
2400 6.81 .72 2.10 6.81 .72 2.10 7.10 . 78 -32 3500 7.30 .83 1-99 S.15 1.03 2-60 9000 14.4 3.2 5-96 15.8 3.9 7-63 !a
7-25 17.6 4.8
.92
9-15
2600 7.38 .85 2-43 7.38 .86 2-43 7.69 1.07 2-69 4000 8.34 1.08 2.55 9.31 1.35 3-J2 10000 16.0 4.0 8,64 19.3 5.8 10.9 a
11000 17. 6 4.8
1.37 3-17 10.5 1. 7
4. 3
3.(J<J
8.28
7.95
.98
4500 9. 4
.98
7.95
2-78
2-78
2800
-- --- --- --- --- --- --- --- --- --- 6000 10.4 1. 7 3-86 11. 6 2.1 5.03 12000 19. 2 5. 7 10.2 �1.1 6.9 12-8 0
:::r
3000 8.52 1.13 3-f 8.62 1.13 3.17 8.88 1.23 3-51 6000 12.5 2.4 6-39 14.0 3.0 7-05 13000 20.8 6. 7 11-8 22.8 8.1 14-9 (1)
3600 9. 95 1.54 4. I 9. 96 1.54 4-21 10.3 1.6 4-67 -- --- --· -- -- -- -- -- -- -- -- -- -- -- 3
14000 �2.4 7.8 13-5 24. 6 9.4
11.8
9-38
7.17 16.3 4.1
2.2
�fi& llA 2.0 6.3') 11.4 2.0 5,39 13.3 2.7 7-43 7000 14. 6 3.3 9-18 18.6 5.4 12.0 15000 �4.0 9.0 15-3 26.3 10.7 19. ff
17- �
5.97
8000 16. 7 4.3
a
12.8
2.5
6-70
12.8
2.5
6-70
9000 18. 8 5.5 11-4 20. 9 6. 8 14-9
3 .4
9.03
3.1
14.2
3.1
14.8
8-15
8-16
14.2
-- --- --- --- --- --- --- --- --- -- 10000 20. 9 6 8 13-9 23.3 8.4 18- i 16000 25.6 10.2 17.3 28. l 12.3 21.8 ""O
6000
28. 7 12.8 21-5 31. 6 15.5 21.1
!BODO
·-
5500 15.6 3.8 9.n 15.6 3.8 9.72 16.3 4.1 10,8 11000 23.0 8.2 16-5 25.6 10.2 21. 0000 31.9 15.8 26-1 35.1 19.1 33.0 iii
6000 17.0 4.5 11.4 l7.0 4.5 11.4 17. 7 4.9 12-6 -- --- -- ·-- -- -- --- -- -- --- -- -- -- -
::::,
6500 18.4 5.3 13-2 18.4 5.3 13-2 19.2 5. 7 14-7 12000 25. 0 9. 7 19.4 27. 9 12.1 26-4 22000 35.1 19.1 31-2 38. 7 23.3 39.3 C/1
7000 19. 9 6.2 16.2 19. 9 6.2 15.2 20.7 6.7 16-8 13000 27.1 11.4 22-5 30. 2 14.2 29-6 24000 38.3 ��.8 36-6 42.2 27. 7 46-2
25000 39. 9 24. 7 38-6 13. 9 30.0 49-9
14000 29. 2 13.3 25-9 32. 6 16.5 33-8
7.1
21.3
7.7
21.3
7.1
17.3
22.2
19-1
17.3
7500
-- --- --- --- --- --- --- --- --- -- 15000 31.3 15.2 29.4 34. 9 ts. 9 38-4 26000 41.5 Z6.8 42-4 45. 7 32.6 63-6
8000 22.7 8.0 19.4 22.7 8.0 t4 23. 7 8.7 21-6 16000 33.4 17.3 33,1 37. 2 21.5 43.3 28000 44. 7 31.1 48-7 49.2 37.6 61.6
8500 24.2 9.1 21.7 24.i 9.1 1.7 25.1 9.8 2:-1 ---- --- -- -- -- -- ---- -- -- --- -- -- --·
9000 26.6 10. 2 24.2 25.6 10.2 24.2 26.6 11.0 2 .8 17000 35. 4 19.5 37.0 :19.5 24.2 48-4 30000 47. 9 35. 7 55.3 52. 7 43.2 69.8
78,7
41-2 41. � 27.3 53-8
9500 27.0 11.3 26.7 27.0 11.3 26-7 28.1 12.3 29-6 20000 41.7 �7.0 60-0 46.5 33.6 65-4 32000 51.1 40.5 62-3 56.2 49. l
18000137.5 21.6
69-9 59.8 o5.6 88.3
34000 U.3 46
13.6
29.6
12.5
32.6
12.5
2S.4
28.4
29.4
10000
29-4
-- --- --- -- --- --- --- --- --- --- 22000 45. 9 32. 7 59.7 51.2 40. 7 78-0 36000 57.5 51 77.5 63.3 62.3 97.6
11000 31.2 15.1 35.0 31.2 15.1 35.0 32.5 16.4 38-8 240�0 50.0 38.9 70-1 55.8 48.4 91-6 I 38000 60. 7 57 85.6 66.8 69.3 108
i= 36.9 24.6 47-7 36. 9 21.2 47.7 38.4 22.9 52-9
19.6
18. l
18.1
45-6
34.1
35.5
34.1
41-2
41-2
12000
21.2
13000
60,6
26. 6
54,7
24.6
39.8
41.4
39.8
54.£
44.4
30.6
68,9
62.
28.2
42.6
28.2
42.6
62-2
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses In Pipe; C = 100
Friction Losses In Pipe; C = 100
12 Inch 14 Inch 16 Inch
Cast Iron Standard Wt Steel Extra Stront Steel Cast Iron Steel Cast Iron I Steel
FLOW 1 FLOW 14.0" inside dia 13.26" iusidc dia FLOW 16.0" inside dia 15.25,.. inside dia
us 12.0" inside dia 12.000" inside dia 11.7M inside dia
\tal licad Head Head us VO:-Ve- }lead \le- Ve- Head us Ve- Ve- Head Ve- \te- Head )>
per Velocity Velocity loss Velocity Velocity loss Velocity Velocity Joss 11,al loc- Joe- loss loc- lac- Joss 11,al Joe- lac- loss loc- Ice- loss "C
per
min ft per head ft fier ft per head ft ft per ft per head ft ft per per ily ity ft ily ity ft min ity ity ft ity ity ft "Q.
ft head per
ft head per
ft head per
100 ft
sec
ft
ft head per
I
100 ft
sec
sec
-- --- --- --- --- --- --- --- --- --- min per ft 100 ft per {t 100 ft per ft 100 ft per ft 100 ft 15·
a.
200 .57 .01 -02J .67 .01 .021 .69 .01 -023 sec sec sec see
250 .71 .01 -� . 71 .01 0 032 . 74 .01 0 035 -- -- -- -- -- -- -- -- -- -- --· -- -- -- ""O
300 .SS .01 . s .85 .01 .04li .89 .01 .050 300 .63 .01 .021 . 70 .01 .028 500 .80 .01 .028 .88 .01 .036 a
. 99
350 . 99 .02 .059 1.14 .02 -059 1.03 .02 -066 400 .84 .01 .036 . 93 .01 .047 600 .96 .01 ,040 1.05 ,02 .050 0
.02
.053 1.23
700 1.12
.02
-054 1.16
.02
,067
.02
.084
.02
-071
1.18
500 1.04 .02
.02
-076
-076
1.14
400
-- --- --- -- --- --- --- --- --- --- 600 1.25 .02 -076 1.40 .03 .100 8�0 1.28 .03 ,068 1.41 .03 .086 (1)
C/1
460 1.28 .03 .(J<J5 1.28 .03 -095 1.33 .03 -105 700 1.46 .03 .101 1. 63 .04 -132 900 1.44 .03 -084 1.58 .04 .106 (II
500 1.42 .03 -115 1.42 .03 -116 1.48 .03 -128 -- -- -- --- -- -- -- -- -- -- -- -- -- -- c
550 1.66 .04 ,137 1.66 .04 -J37 I. 63 .04 -152 800 1. 67 .04 -130 1.861 .05 .110 1000 1.60 .04 .102 1, 76 .05 .129 (1)
C/1
600 I. 70 .05 -161 1.70 .05 • 61 1. 77 .05 .179 900 1.88 .05 -161 2.09 .07 .211 1200 1. 92 .06 .143 2.11 .07 .181 co·
-191 2.41,
.08
2.24 .08
.09
.238
.07
2.07
1 � 0
-214
1.99
700
.06
-- --- --- -214 1.99 .06 --- --- --- --- 1000 2.09 .07 -196 2.33 -266 1 0 2.5'1 .10 -260 2.81 .12 :Ul ::::,
-234 �.56 .10
1100 2.30
-306
.OS
800 2.27 .08 ,276 a.21 .08 -275 2.37 .09 .394 1200 2.50 .10 -275 2. 7� .12 .359 1800 2.87 .13 -304 3. 16 .16 .383 o'
900 2.66 .10 .341 2.56 .10 0 341 2.66 .11 .378 -- -- -- -- -- -- -- -- -- -- -- -- -- -- ..,
1000 2.84 .13 .415 2.84 .13 - � 15 2.96 .14 -460 1300 2. 71 11 -318 3.02 .14 -416 2000 3.19 .16 -369 3.51 .19 -466
.17
1100 3.12 .15 .495 3.12 .16 • 95 3.25 .16 -548 1400 2.92 .13 .365 3.26 .19 .4n 2600 3.99 .Z5 -667 4.39 .30 .704 0
:::r
-781 5.27
.43
.36
3000 4.79
.987
-416 3.49
.18
3.41
3.55
.20
1500 3.13
.644
.15
.18
.642
-581
3.41
1200
.581
-- --- --- --- --- --- --- --- --- --- 1600 3.34 .17 -4 � 8 3. 72 .22 -611 3500 5 58 .4� 1-06 6.15 .59 1-31 (1)
1300 3. 69 .21 .674 3. 69 .21 0 674 3.84 .23 .m 1700 3.54 .19 .s 3 3.% .24 .684 4000 6 38 .63 1-33 7.03 .77 1.68 3
1400 3. 98 .25 .m 3. 98 .25 .m 4.14 .27 .857 -- -- -- -- -- -- -- -- -- -- -- -- -- ff
1600 4.26 .28 .878 4.26 .28 -878 4.(4 .31 .973 1800 3.75 . 22 -581 4.19 .27 -760 I 4500 7.18 .80 1-65 7.91 .97 2.09 a
1600 4.55 .32 .990 us .32 -990 4. 73 .36 1.10 � 900 3.% .24 -643 4.42 .30 .840 5000 7.98 .99 2-01 8.79 1.2 2-54 Ill
6000 9.58 1.43 2,82 10.5 1.7
.34
3-66
.924
000 4.17 .27
.44
.41
5.33
-706 4. 65
6.11
.41
1-23
1-36
5. ll
t.23
1800
-- --- --- -- --- --- --- --- --- --- 2600 5.22 .42 1-07 5.81 .52 1-40 7000 11.2 1. 9 3.75 12.3 2.4 4-73 ::::,
a.
2000 5.68 .50 1-50 5.68 .50 1,60 5.92 .54 1-66 3000 6.26 .61 1-60 6.98 . 76 1-96 8000 12.8 2.5 4.79 14.1 3.1 6-06
2200 6.25 .61 1.78 6.26 . 61 1-78 6.61 .66 p8 ""O
2400 6.81 .72 2.10 6.81 .72 2.10 7.10 . 78 -32 3500 7.30 .83 1-99 S.15 1.03 2-60 9000 14.4 3.2 5-96 15.8 3.9 7-63 !a
7-25 17.6 4.8
.92
9-15
2600 7.38 .85 2-43 7.38 .86 2-43 7.69 1.07 2-69 4000 8.34 1.08 2.55 9.31 1.35 3-J2 10000 16.0 4.0 8,64 19.3 5.8 10.9 a
11000 17. 6 4.8
1.37 3-17 10.5 1. 7
4. 3
3.(J<J
8.28
7.95
.98
4500 9. 4
.98
7.95
2-78
2-78
2800
-- --- --- --- --- --- --- --- --- --- 6000 10.4 1. 7 3-86 11. 6 2.1 5.03 12000 19. 2 5. 7 10.2 �1.1 6.9 12-8 0
:::r
3000 8.52 1.13 3-f 8.62 1.13 3.17 8.88 1.23 3-51 6000 12.5 2.4 6-39 14.0 3.0 7-05 13000 20.8 6. 7 11-8 22.8 8.1 14-9 (1)
3600 9. 95 1.54 4. I 9. 96 1.54 4-21 10.3 1.6 4-67 -- --- --· -- -- -- -- -- -- -- -- -- -- -- 3
14000 �2.4 7.8 13-5 24. 6 9.4
11.8
9-38
7.17 16.3 4.1
2.2
�fi& llA 2.0 6.3') 11.4 2.0 5,39 13.3 2.7 7-43 7000 14. 6 3.3 9-18 18.6 5.4 12.0 15000 �4.0 9.0 15-3 26.3 10.7 19. ff
17- �
5.97
8000 16. 7 4.3
a
12.8
2.5
6-70
12.8
2.5
6-70
9000 18. 8 5.5 11-4 20. 9 6. 8 14-9
3 .4
9.03
3.1
14.2
3.1
14.8
8-15
8-16
14.2
-- --- --- --- --- --- --- --- --- -- 10000 20. 9 6 8 13-9 23.3 8.4 18- i 16000 25.6 10.2 17.3 28. l 12.3 21.8 ""O
6000
28. 7 12.8 21-5 31. 6 15.5 21.1
!BODO
·-
5500 15.6 3.8 9.n 15.6 3.8 9.72 16.3 4.1 10,8 11000 23.0 8.2 16-5 25.6 10.2 21. 0000 31.9 15.8 26-1 35.1 19.1 33.0 iii
6000 17.0 4.5 11.4 l7.0 4.5 11.4 17. 7 4.9 12-6 -- --- -- ·-- -- -- --- -- -- --- -- -- -- -
::::,
6500 18.4 5.3 13-2 18.4 5.3 13-2 19.2 5. 7 14-7 12000 25. 0 9. 7 19.4 27. 9 12.1 26-4 22000 35.1 19.1 31-2 38. 7 23.3 39.3 C/1
7000 19. 9 6.2 16.2 19. 9 6.2 15.2 20.7 6.7 16-8 13000 27.1 11.4 22-5 30. 2 14.2 29-6 24000 38.3 ��.8 36-6 42.2 27. 7 46-2
25000 39. 9 24. 7 38-6 13. 9 30.0 49-9
14000 29. 2 13.3 25-9 32. 6 16.5 33-8
7.1
21.3
7.7
21.3
7.1
17.3
22.2
19-1
17.3
7500
-- --- --- --- --- --- --- --- --- -- 15000 31.3 15.2 29.4 34. 9 ts. 9 38-4 26000 41.5 Z6.8 42-4 45. 7 32.6 63-6
8000 22.7 8.0 19.4 22.7 8.0 t4 23. 7 8.7 21-6 16000 33.4 17.3 33,1 37. 2 21.5 43.3 28000 44. 7 31.1 48-7 49.2 37.6 61.6
8500 24.2 9.1 21.7 24.i 9.1 1.7 25.1 9.8 2:-1 ---- --- -- -- -- -- ---- -- -- --- -- -- --·
9000 26.6 10. 2 24.2 25.6 10.2 24.2 26.6 11.0 2 .8 17000 35. 4 19.5 37.0 :19.5 24.2 48-4 30000 47. 9 35. 7 55.3 52. 7 43.2 69.8
78,7
41-2 41. � 27.3 53-8
9500 27.0 11.3 26.7 27.0 11.3 26-7 28.1 12.3 29-6 20000 41.7 �7.0 60-0 46.5 33.6 65-4 32000 51.1 40.5 62-3 56.2 49. l
18000137.5 21.6
69-9 59.8 o5.6 88.3
34000 U.3 46
13.6
29.6
12.5
32.6
12.5
2S.4
28.4
29.4
10000
29-4
-- --- --- -- --- --- --- --- --- --- 22000 45. 9 32. 7 59.7 51.2 40. 7 78-0 36000 57.5 51 77.5 63.3 62.3 97.6
11000 31.2 15.1 35.0 31.2 15.1 35.0 32.5 16.4 38-8 240�0 50.0 38.9 70-1 55.8 48.4 91-6 I 38000 60. 7 57 85.6 66.8 69.3 108
i= 36.9 24.6 47-7 36. 9 21.2 47.7 38.4 22.9 52-9
19.6
18. l
18.1
45-6
34.1
35.5
34.1
41-2
41-2
12000
21.2
13000
60,6
26. 6
54,7
24.6
39.8
41.4
39.8
54.£
44.4
30.6
68,9
62.
28.2
42.6
28.2
42.6
62-2
Table 2-22: Cameron Hydraulic Data (cont)
Friction. Losses In Pipe; C = 100 Friction. Losses in Pipe; C = 100
18 Inch 20 Inch ,,
·-·- - - 24 in. Inside dia 30 In. inside dia
I Cast Iron Steel Cast Iron Steel
I Discharge I Head I Discharge Head
F 'LOW 18.0' inside dia 17.18'' inside dia FLOW 20.0'' inside di.a 19.18" inside dia in U Sgallons vsioc- I loss ir. U Sga!lons Veloc- loss
in
ity
ily
in
us Ve- Ve--1 Head Ve- Ve- H"ad us Ve- ·-v.;::--1-Iead Ve- I Head feet Vcloc- feet feet Veloc- feet
ity
ity
g.al loc- Joe- loss loc- loc- loss �al loc- loc- loss Ve-1 l_oc-1 loss I per head per per I per head
loc-
� er
per
per
per ity ity ft ity ity ft per ity ity ft rty rt.y ft min 24 hr sec in ft 100 ft min per sec in ft 1 0 ft
uihl. ft head per ft head � er min ft bead ricr ft head per --------- ---- ��-
per ft 100 ft per ft 1 0 ft per ft 1 0 ft per ft 100 ft 360 505,000 .252 .00 .002 700 r.oes.coe .322 .00 .002
sec
sec
700
1,440,000
sec
sec
-- --- -- ----- -- --- --- -- --- ---· ---- -- - -- 1000 1,008,000 .495 .00 .001 1000 I 1.872.000 .45 .OD .004
.008
1300
-014
1,440,000
. 712
.01
.59
.DI
500 . 63 .01 -016 . 69 .01 .020 800 .82 .01 .023 89 .01 .028 1400 2,016,000 . 99? .01 -026 1700 2,448,000 . 78 .01 .011
600 . 72 .01 -022 . 83 .01 .028 1000 1.02 .02 .035 I. 11 .02 -042 1700 2,448,000 1.21 .02 -038 2000 2,880,000 . 91 .01 .017
700 1.01 .01 -030 . 97 .Dl .037 1200 1.23 .02 -048 1.33 .03 -05'1 2000 2,880,000 1.42 . 03 -061 2400 3,456,000 1.095 .02 .023
.89
800
-038 1.11
1.43
-064 1.55
-079
.02
-048
1400
.04
.02
.03
900 I I. 13 .02 -048 1.25 .02 -060 1500 1.64 .04 -082 I. 78 .05 .101 2400 3,456,000 I, 70 .045 -Oki 2700 3,888,000 1.23 .os .030
.o 9
I. 92
1000 1.26 .02 -058 1.38 .03 -072 1800 1.83 .05 -102 2.00 06 -126 2700 3,888,000 2.21 .Ob -114 3100 4.464,000 1.43 .03 .039
.08
1.55
3100
3'400
.046
.0-1
4,464,000
4.6'!6,000
1200 1.53 .04 -081 1.66 .04 -101 2000 2.04 .Ub -125 2.22 .08 - � 53 3400 4,896,000 2.41 .09 -136 3800 5,472.000 !. 74 ,05 .067
1400 1.18 .05 -108 I. 94 .0(, -135 2500 2.5.5 .10 -188 2. 78 .12 • 31
1600 2.00 .06 -138 2.21 .08 -173 3000 3.06 .15 -264 3.33 .17 -323 3800 5,472,000 2. 7 . Jl3 -167 4!00 5,904,000 1.87 .06 .065
.on
,215
3500
1800
.08
.20
.171 2.4�
-351 3.89
-430
.24
2.27
;J.57
. LO
-- -- --- -- -- --- ------ -- --- --- -- -- -- -- 4200 6,048,000 2. 99 .13 .20 � 4500 6,480,000 2.05 .Cll .087
.22
4500
4800
6,480,000
.08
3.20
2.19
.16
6,?12,GOO
2000 2.52 .10 -208 2.77 .12 -261 4000 4 .08 .26 -449 4.451 .31 -551 4800 6,912,000 3.41 .18 -255 5200 7,488,000 2.37 .09 .101
2500 3.15 .15 -314 3.4(, .19 -394 5000 5. JO .40 -679 5.55 .48 -832 5200 7,41>8,0IJO 3. 69 .21 -298 5500 7,920,000 2.51 .10 .112
5000 3.78 .22 -440 4.15 .27 -553 6000 6.13 .58 ,951 h.67 .69 1.17
3500 4.41 .30 -686 4.8,J .37 -735 7000 7.15 . 79 1.26 7.78 .94 1.65 5600 7,920,000 3. 91 .24 .329 5900 S,496,000 2.69 .11 -127
4000 5.04 .39 -750 5.54 .48 --- ------- ----· -- ---- --- -- 1.98 5900 8,4%,000 4.19 .27 -377 6200 8,928,000 2.83 .12 -139
-941
8000
1.62
8.89 1.2
8.17 1.0
---·-
6900
-413
.32
9 ,936,000
4500 5.67 .so -932 6.23 .60 1-17 10000 10.2 1.6 2.45 II.I i. 9 3.00 6200 8,928,000 4.41 .33 .450 7600 I0,944,000 3.12 .15 .170
6600
9,360,000
4.62
3.47
.203
. JS
5000 6.30 .62 1-13 6. 92 .74 1042 12000 12. 3 2.4 3.43 13.3 2 7 4-20 6900 9,936,000 4. 90 .37 -502 8300 11,95Z,.OOO 3. 79 .22 .240
6000 7.56 .89 1.59 8.31 I.I 1-99 14000 14 .3 3.2 4-56 15.5 3. 7 5.59
7000 8.83 1.2 2-11 9. 70 1.6 2-66 15000 15.3 3. 6 5.18 16. 7 4.3 6.35 7600 I0,944,000 5.40 .so -603 9000 12,960,000 4.10 .26 .278
9700
8000 10.1 1.6 2-70 II.I 1.9 3-39 16000 16.3 4.1 6.84 17.8 4. 9 7 -16 8300 11,952,000 5. 90 .54 -713 10000 13,966,000 4.42 ,306 .319
--- --- -- --- --- --- -- --- ---� ---- --- --- --
.325 .-m
.82
9000
.64
12,960,000
6.4
4.56
14,400,000
�000 11.3 2.0 3-36 12.G 2.4 4-22 18000 IR.4 5.3 7-26 20.0 6.2 8.90 9700 13,968,000 6. 9 . 74 -96 11000 15,840,000 ,:;, 01 .392 -401
10000 12.6 2.5 4-08 13.8 3.0 6-12 20000 20.4 6.5 8,82 22.2 7. 7 10.8 10000 14,400,000 7.11 . 79 1.00 120�0 17,280,000 5.47 .47 .473
12000 15.3 3.6 6-72 16.6 4.3 7-18 22000 22.5 7 .9 10.6 24.4 9.3 12-9
14000 17.8 4.9 7.61 19.4 5.8 9.55 24000 24.5 9.3 12-4 26.7 11.1 16.1 11000 1.5.840,000 7.82 . 95 1.19 12500 18.000,000 5.70 .01 -51
16000 20.3 6.4 9.74 22.1 7.6 12.2 25000 26.f> 10.1 13-3 27.S 12.0 16.3 1 000 17,280,000 8.55 1.1-1 1-40 13000 18,720,000 5.94 .55 .65
----- --- ---- --- ----- -- -- --- -- -- -- --- --- 12600 18,000,000 8.86 1.22 1.52 14000 20,160,000 6.4 .M .63
18000 22. 7 8.0 12.1 24. 9 ').6 15-2 26000 26. 6 11.0 14.3 28. 9 13.0 17.6 13000 18,720,000 9.25 J.34 1-63 15'100 21,600,000 6.85 .73 .11
20000 25.2 9.9 14-7 27. 7 11. 9 18-6 28000 28. 6 12. 7 16-4 31.1 15.0 20.1 14000 20,160,000 9.95 1.54 1.86 1600� 23,040,000 7.30 .83 .81
22000 27. 7 ll.9 17-6 30.3 14.3 22.0 30000 30. ,. 14. 6 18.7 33 .3 17.2 22.9
24000 30.6 14.6 20-6 33.2 17. I 25-9 32000 32. 6 16.5 21.0 35. 6 19. 7 25.8 15000 21,600,000 10.06 1.58 2.11 18000 25,920,000 8.20 1.05 1.00
26000 32.8 16. 7 23-9 36.0 20, l 30-0 34000 3'1. 7 18. 7 23-6 37 .8 22. 2 28.9 16000 2:l,040,000 11.38 2.02 2-42 20000 27,360,000 S.67 1.17 1.11
19000
--- --- ---- ------ ---- --·- ---- --- -- -- -- ----
2.98
18000
25,920,000
2.57
9.12
I. 89
1.73
13.50
28000 3J.5 l'J.6 27-4 38.8 23.1 34-4 36000 35. 7 19.S 24.8 38. 9 23 .5 30.4 19000 27,360,000 12.80 2.8!i 3.28 24000 28,800,000 10.09 1.30 1-22
31,600,000
30000 37.8 22.2 31-2 41.6 26.8 39.1 36000 36.H 21.0 26.2 40.0 24.9 32.1 20000 28,800,000 14.20 3.16 3-61 II 28000 40,320,000 12. 75 2.46 2.21
]2000 ,JO 6 25.6 36-1 44.3 30.(i 44-1 38000 38.S 2:U 28.9 ·12.2 1 27.7 35.4
34000 42.8 28.5 39-4 147.1 34.5 49-4 40000 40.8 25.9 31.8 44.5 30.8 39.0
36000 45.4 32.0 43-7 49.9 38.7 54-8 45000 45.9 32.7 39.5 50.0 38.9 48.5
---�-----·------- -----------·--- ------- Factor for correctf nn to Factor for correcrtng to
,x
�8000 47.9 35.7 48-3 52.6 43.0 � -6 60000 51.0 40 48.0 ,55.5 J47.9 58.9 ot hcr plpe aizca other pipe sizes
40000 50.4 3?.5 53-1 MA' 47.1 .6 65000 56.1 49 J 57_3 70.3 Head loss Head loss
42000 52.? -13 58-1 58.2 52.6 72-9 60000 61.3 58 167.2 ti.) 69 182.3 Dia Velocity Velocity ft per Dia Vclodty Velocity ft per
66.7
iu
head ft
ft per sec
100 ft
44000 hS.4 48 63.3 61.0 57.8 79-4 65000 b(,.4 68 78-1 i72 2 ISi 95."( --- --- ----- ---- i a ft per sec bead ft 100 ft
%000 58.0 52 68-7 63.7 63 86-3 70000 71.5 79 89-5 77.8194 110 23 1. 089 1.186 1-230 -------·--- ---
1-199
·- ------ -- ----···---··------ --- --- 22 l.190 1.416 1-527 29 1.078 1.161 1-3�9
28
1.318
U48
21 I.306 I. 706 1-916 27 1. 2:j5 l. 524 1. 670
---- __ 2,, 1.331 I. 773 1-961
.....
.....
(JI
Table 2-22: Cameron Hydraulic Data (cont)
Friction. Losses In Pipe; C = 100 Friction. Losses in Pipe; C = 100
18 Inch 20 Inch ,,
·-·- - - 24 in. Inside dia 30 In. inside dia
I Cast Iron Steel Cast Iron Steel
I Discharge I Head I Discharge Head
F 'LOW 18.0' inside dia 17.18'' inside dia FLOW 20.0'' inside di.a 19.18" inside dia in U Sgallons vsioc- I loss ir. U Sga!lons Veloc- loss
in
ity
ily
in
us Ve- Ve--1 Head Ve- Ve- H"ad us Ve- ·-v.;::--1-Iead Ve- I Head feet Vcloc- feet feet Veloc- feet
ity
ity
g.al loc- Joe- loss loc- loc- loss �al loc- loc- loss Ve-1 l_oc-1 loss I per head per per I per head
loc-
� er
per
per
per ity ity ft ity ity ft per ity ity ft rty rt.y ft min 24 hr sec in ft 100 ft min per sec in ft 1 0 ft
uihl. ft head per ft head � er min ft bead ricr ft head per --------- ---- ��-
per ft 100 ft per ft 1 0 ft per ft 1 0 ft per ft 100 ft 360 505,000 .252 .00 .002 700 r.oes.coe .322 .00 .002
sec
sec
700
1,440,000
sec
sec
-- --- -- ----- -- --- --- -- --- ---· ---- -- - -- 1000 1,008,000 .495 .00 .001 1000 I 1.872.000 .45 .OD .004
.008
1300
-014
1,440,000
. 712
.01
.59
.DI
500 . 63 .01 -016 . 69 .01 .020 800 .82 .01 .023 89 .01 .028 1400 2,016,000 . 99? .01 -026 1700 2,448,000 . 78 .01 .011
600 . 72 .01 -022 . 83 .01 .028 1000 1.02 .02 .035 I. 11 .02 -042 1700 2,448,000 1.21 .02 -038 2000 2,880,000 . 91 .01 .017
700 1.01 .01 -030 . 97 .Dl .037 1200 1.23 .02 -048 1.33 .03 -05'1 2000 2,880,000 1.42 . 03 -061 2400 3,456,000 1.095 .02 .023
.89
800
-038 1.11
1.43
-064 1.55
-079
.02
-048
1400
.04
.02
.03
900 I I. 13 .02 -048 1.25 .02 -060 1500 1.64 .04 -082 I. 78 .05 .101 2400 3,456,000 I, 70 .045 -Oki 2700 3,888,000 1.23 .os .030
.o 9
I. 92
1000 1.26 .02 -058 1.38 .03 -072 1800 1.83 .05 -102 2.00 06 -126 2700 3,888,000 2.21 .Ob -114 3100 4.464,000 1.43 .03 .039
.08
1.55
3100
3'400
.046
.0-1
4,464,000
4.6'!6,000
1200 1.53 .04 -081 1.66 .04 -101 2000 2.04 .Ub -125 2.22 .08 - � 53 3400 4,896,000 2.41 .09 -136 3800 5,472.000 !. 74 ,05 .067
1400 1.18 .05 -108 I. 94 .0(, -135 2500 2.5.5 .10 -188 2. 78 .12 • 31
1600 2.00 .06 -138 2.21 .08 -173 3000 3.06 .15 -264 3.33 .17 -323 3800 5,472,000 2. 7 . Jl3 -167 4!00 5,904,000 1.87 .06 .065
.on
,215
3500
1800
.08
.20
.171 2.4�
-351 3.89
-430
.24
2.27
;J.57
. LO
-- -- --- -- -- --- ------ -- --- --- -- -- -- -- 4200 6,048,000 2. 99 .13 .20 � 4500 6,480,000 2.05 .Cll .087
.22
4500
4800
6,480,000
.08
3.20
2.19
.16
6,?12,GOO
2000 2.52 .10 -208 2.77 .12 -261 4000 4 .08 .26 -449 4.451 .31 -551 4800 6,912,000 3.41 .18 -255 5200 7,488,000 2.37 .09 .101
2500 3.15 .15 -314 3.4(, .19 -394 5000 5. JO .40 -679 5.55 .48 -832 5200 7,41>8,0IJO 3. 69 .21 -298 5500 7,920,000 2.51 .10 .112
5000 3.78 .22 -440 4.15 .27 -553 6000 6.13 .58 ,951 h.67 .69 1.17
3500 4.41 .30 -686 4.8,J .37 -735 7000 7.15 . 79 1.26 7.78 .94 1.65 5600 7,920,000 3. 91 .24 .329 5900 S,496,000 2.69 .11 -127
4000 5.04 .39 -750 5.54 .48 --- ------- ----· -- ---- --- -- 1.98 5900 8,4%,000 4.19 .27 -377 6200 8,928,000 2.83 .12 -139
-941
8000
1.62
8.89 1.2
8.17 1.0
---·-
6900
-413
.32
9 ,936,000
4500 5.67 .so -932 6.23 .60 1-17 10000 10.2 1.6 2.45 II.I i. 9 3.00 6200 8,928,000 4.41 .33 .450 7600 I0,944,000 3.12 .15 .170
6600
9,360,000
4.62
3.47
.203
. JS
5000 6.30 .62 1-13 6. 92 .74 1042 12000 12. 3 2.4 3.43 13.3 2 7 4-20 6900 9,936,000 4. 90 .37 -502 8300 11,95Z,.OOO 3. 79 .22 .240
6000 7.56 .89 1.59 8.31 I.I 1-99 14000 14 .3 3.2 4-56 15.5 3. 7 5.59
7000 8.83 1.2 2-11 9. 70 1.6 2-66 15000 15.3 3. 6 5.18 16. 7 4.3 6.35 7600 I0,944,000 5.40 .so -603 9000 12,960,000 4.10 .26 .278
9700
8000 10.1 1.6 2-70 II.I 1.9 3-39 16000 16.3 4.1 6.84 17.8 4. 9 7 -16 8300 11,952,000 5. 90 .54 -713 10000 13,966,000 4.42 ,306 .319
--- --- -- --- --- --- -- --- ---� ---- --- --- --
.325 .-m
.82
9000
.64
12,960,000
6.4
4.56
14,400,000
�000 11.3 2.0 3-36 12.G 2.4 4-22 18000 IR.4 5.3 7-26 20.0 6.2 8.90 9700 13,968,000 6. 9 . 74 -96 11000 15,840,000 ,:;, 01 .392 -401
10000 12.6 2.5 4-08 13.8 3.0 6-12 20000 20.4 6.5 8,82 22.2 7. 7 10.8 10000 14,400,000 7.11 . 79 1.00 120�0 17,280,000 5.47 .47 .473
12000 15.3 3.6 6-72 16.6 4.3 7-18 22000 22.5 7 .9 10.6 24.4 9.3 12-9
14000 17.8 4.9 7.61 19.4 5.8 9.55 24000 24.5 9.3 12-4 26.7 11.1 16.1 11000 1.5.840,000 7.82 . 95 1.19 12500 18.000,000 5.70 .01 -51
16000 20.3 6.4 9.74 22.1 7.6 12.2 25000 26.f> 10.1 13-3 27.S 12.0 16.3 1 000 17,280,000 8.55 1.1-1 1-40 13000 18,720,000 5.94 .55 .65
----- --- ---- --- ----- -- -- --- -- -- -- --- --- 12600 18,000,000 8.86 1.22 1.52 14000 20,160,000 6.4 .M .63
18000 22. 7 8.0 12.1 24. 9 ').6 15-2 26000 26. 6 11.0 14.3 28. 9 13.0 17.6 13000 18,720,000 9.25 J.34 1-63 15'100 21,600,000 6.85 .73 .11
20000 25.2 9.9 14-7 27. 7 11. 9 18-6 28000 28. 6 12. 7 16-4 31.1 15.0 20.1 14000 20,160,000 9.95 1.54 1.86 1600� 23,040,000 7.30 .83 .81
22000 27. 7 ll.9 17-6 30.3 14.3 22.0 30000 30. ,. 14. 6 18.7 33 .3 17.2 22.9
24000 30.6 14.6 20-6 33.2 17. I 25-9 32000 32. 6 16.5 21.0 35. 6 19. 7 25.8 15000 21,600,000 10.06 1.58 2.11 18000 25,920,000 8.20 1.05 1.00
26000 32.8 16. 7 23-9 36.0 20, l 30-0 34000 3'1. 7 18. 7 23-6 37 .8 22. 2 28.9 16000 2:l,040,000 11.38 2.02 2-42 20000 27,360,000 S.67 1.17 1.11
19000
--- --- ---- ------ ---- --·- ---- --- -- -- -- ----
2.98
18000
25,920,000
2.57
9.12
I. 89
1.73
13.50
28000 3J.5 l'J.6 27-4 38.8 23.1 34-4 36000 35. 7 19.S 24.8 38. 9 23 .5 30.4 19000 27,360,000 12.80 2.8!i 3.28 24000 28,800,000 10.09 1.30 1-22
31,600,000
30000 37.8 22.2 31-2 41.6 26.8 39.1 36000 36.H 21.0 26.2 40.0 24.9 32.1 20000 28,800,000 14.20 3.16 3-61 II 28000 40,320,000 12. 75 2.46 2.21
]2000 ,JO 6 25.6 36-1 44.3 30.(i 44-1 38000 38.S 2:U 28.9 ·12.2 1 27.7 35.4
34000 42.8 28.5 39-4 147.1 34.5 49-4 40000 40.8 25.9 31.8 44.5 30.8 39.0
36000 45.4 32.0 43-7 49.9 38.7 54-8 45000 45.9 32.7 39.5 50.0 38.9 48.5
---�-----·------- -----------·--- ------- Factor for correctf nn to Factor for correcrtng to
,x
�8000 47.9 35.7 48-3 52.6 43.0 � -6 60000 51.0 40 48.0 ,55.5 J47.9 58.9 ot hcr plpe aizca other pipe sizes
40000 50.4 3?.5 53-1 MA' 47.1 .6 65000 56.1 49 J 57_3 70.3 Head loss Head loss
42000 52.? -13 58-1 58.2 52.6 72-9 60000 61.3 58 167.2 ti.) 69 182.3 Dia Velocity Velocity ft per Dia Vclodty Velocity ft per
66.7
iu
head ft
ft per sec
100 ft
44000 hS.4 48 63.3 61.0 57.8 79-4 65000 b(,.4 68 78-1 i72 2 ISi 95."( --- --- ----- ---- i a ft per sec bead ft 100 ft
%000 58.0 52 68-7 63.7 63 86-3 70000 71.5 79 89-5 77.8194 110 23 1. 089 1.186 1-230 -------·--- ---
1-199
·- ------ -- ----···---··------ --- --- 22 l.190 1.416 1-527 29 1.078 1.161 1-3�9
28
1.318
U48
21 I.306 I. 706 1-916 27 1. 2:j5 l. 524 1. 670
---- __ 2,, 1.331 I. 773 1-961
.....
.....
(JI
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses in Pipe; C = 100 Friction Losses in Pipe; C= 100
36 in. Inside dla 42 in. inside dla 48 in. Inside dia 64 in. inside dia
I
Discharge Head Discharge Head Discharge Head Discharge Head
in U Sgallons Vcloc- loss in US gallons Veloc- loss in US gallons Veloc- loss in U Sgallons Vcloc- loss
ity Veloc- in ity Veloc- in ity Veloc- In ity Veloc- In
feet ity feet feet ity feet feet ity feet feet ity feet
per per per head per per per per head per per per per head per per per per head per
min 24 hr sec in ft 100 ft min 24 hr sec in ft 100 ft min 24 hr sec in ft 100 ft min 24 hr sec in ft 100 ft
--- --- -- -- --- -- -- -- --- --- --- )>
1400 2,016,000 .44 .00 .004 2000 2,880,000 .46 .003 -003 2000 2,880,000 .35 .002 .003 4000 5,760,000 .55 .005 .005 "O
1700 2,448,000 . .53 .00 .005 2500 3,600,000 .58 .005 -005 = 5,760,000 . 70 .008 -006 8000 ll,li20,000 1.11 .01q .012 "'Q.
2000 2,880,000 . 63 .01 .007 3000 4,320,000 .70 .007 -007 8,640,000 1.05 .017 .012 12000 17,280,000 1.67 .043 -027 ii>"
2400 3,456,000 . 75 .01 .010 3500 5,040,000 .81 .010 .00') 8000 11,520,000 1.40 .030 .022 16000 23,040,000 �.23 .on -046
2800 4,032,000 .88 .01 .015 4000 5,760,000 .92 .013 -012 10000 14,400,000 I. 76 .048 .034 20000 28,800,000 2.80 .122 -069 Q.
a
3400 4,608,000 1.07 .02 .019 4500 6,480,000 1.04 .016 -015 12000 17,280,000 2. 11 .069 -048 22000 31,680,000 3.07 . 146 .083 "'ti
4000 5,040,000 1.26 .02 .026 6000 7,200,000 1.16 .021 -018 1iooo 20,160,000 2.47 .095 -064 24000 34,5o0,000 3.35 .174 -098 0
4800 6,912,000 1.51 .04 .036 6000 8,640,000 1.39 .030 .025 1 000 23,040,000 2.83 .124 -081 26000 37,440,000 3. 63 .205 .113 (!)
5600 8,054,000 1.76 .05 -048 7000 10,080,000 I. 62 .041 .033 18000 25,920,000 3.18 .11\6 .101 28000 40,320,000 3.92 .238 -130 gi
"200 8,610,000 1.95 .06 .067 8000 11,520,000 1.85 .053 .043 20000 28.800,000 3.53 .193 -123 30000 43,200,000 4.20 .274 -148
c,
7000 10,080,000 2.20 .07 .012 9000 12,960,000 2.08 .067 -063 22000 31,680,000 3.89 .2.'l5 -147 iooo 16,080,000 4.48 .311 -167 (I)
UI
7600 10,244,000 2.39 .09 -084 10000 14,400,000 2.31 .083 -065 2iooo 34,560,000 CM .279 .173 000 48,960,000 4. 76 .353 .186 cc·
8300 11,952,000 2.61 . IO .098 12000 17,280,000 2. 78 .120 .092 2 000 37,440,000 4.60 .329 .201 36000 51,840,000 5.05 .395 .206
::::J
9000 12,960,000 2.83 .12 .114 14000 20,160,000 3.24 .163 .122 28000 40,320,000 4.96 .383 .231 38000 54,720,000 5.33 .440 -221 -
9700 13,968,000 3.05 .14 -131 16000 23,040,000 3. 70 .212 .167 30000 43,200,000 5.32 .440 -262 40000 57,600,000 .�.62 .490 -249 .,
0
10000 14,400,000 3.14 .16 .139 18000 21>,920,000 4.16 .269 .194 32000 46,080,000 5.68 .500 -296 42000 60,480,000 5.89 .539 -272 o
11000 15,840,000 3.16 .19 .164 20000 28,800,000 4.62 .331 .233 34000 48,960,000 6.03 .565 -331 44000 63,360,000 6.16 .5'l0 .297
12000 17,280,000 3.78 .22 .193 22000 31,680,oOO 5.10 .404 -282 36000 51,840,000 6.39 .632 -368 46000 66,240,000 6.44 .642 -323 zr
(I)
13000 18.720,000 4.09 .26 .226 24000 34,560,000 5.55 .477 .332 38000 54,720,000 6. 75 . 708 -406 48000 69,020,000 6. 72 . 701 .36\
,r
14000 20,160,000 4.40 .30 .260 26000 37,440,000 6.02 .561 .383 40000 57,600,000 7.10 . 782 .445 50000 72,000,000 7.00 . 760 --380 3
15000 21,600,000 4. 71 .34 .294 28000 40,320,000 6.48 .651 -432 42000 60,480,000 7.44 .859 .487 62000 7-1,880.000 7.2.7 .820 -410 !!!..
16000 {23,040,000 6.03 .39 .330 3 � 000 43,200,000 6. 91 . 748 .501 44000 63,360,000 7.80 .943 -533 64000 77,760,000 7.56 .889 .441
18000 25,920,000 5.66 .50 .412 3000 46,080,000 7.40 .850 -566 46000 66,240,000 8.16 1.04 -580 56000 80,540,000 7.84 .952 .473 Ill
::::J
19000 27,360,000 5. 98 .56 -454 34000 48,960,000 7.86 .9 -632 48000 69,020,000 8.51 1.12 .627 58000 83,520,000 8.12 1.02 .505 Q.
20000 28,800,000 6.30 .61 .504 36000 51,840,000 8.33 1.07 -702 50000 72,000,000 8.87 1.22 -677 60000 86,400,000 8.40 1.10 .638
21000 30,240,000 6.60 .67 .544 38000 54,720,000 8.80 1.20 -778 52000 74,880,000 9.22 1.32 .726 62000 89,280,000 8.68 1.17 .572 l
22000 31,680,000 6. 92 . 74 -590 40 � 00 57,600,000 9.25 1.32 -855 54000 77,760,000 9.58 1.42 .m 64000 92,160,000 8.96 1.25 -606 a
23000 33,120,000 7.21 .81 .640 42 00 60,480,000 9.72 1.46 -936 56000 80,540,000 9.% t.:i4 .833 66000 95,040,000 9.24 1.32 -641 0
2:000 34,560,000 7.55 .88 .695 44000 63,360,000 10.18 1.61 1-013 58000 83,520,000 10. 28 1.64 -890 68000 97.920,000 9.52 1.40 .(,78 �
2 000 37,410,000 8.18 1.04 .806 46000 66,240,000 l0.63 1.76 1-100 60000 86,400,000 10.63 I. 76 .943 70000 100,800,000 9.80 1.4<) .7\4 (I)
5·
28000 10,320,000 8.80 1.20 .935 48000 69,020,000 11.10 I. 92 1.194 62000 89,280,000 10. 99 1.87 1-070 72000 103,680,000 10.07 1.�7 -762 3
30000 43,200,000 9.44 1.38 1.066 50003 72,000,000 11.58 2.08 1-280 64000 92,160,000 11.34 2.00 1-067 74000 106,560,000 10.35 I. 66 .79! !!!..
34000 48,960,000 10. 70 I. 77 1.340 5200 74,880,000 12.01 2.25 1-380 66000 95,040,000 11. 70 2.12 1-130 76000 109,440,000 10.62 I. 7e .83
38000 54,720,000 11. 95 2.20 1.650 54000 77,760,000 12.49 2.41 1-490 68000 97,920,000 12.05 2.2.5 1-193 79000 112,320,000 10.91 1.85 .373 "'ti
42000 60,480,000 13.20 2.70 1-990 66000 80,540,000 12.93 2. 60 1-600 70000 100,800,000 12.41 2.39 1-258 80000 115,200,000 11.19 I. 94 -916 iii
::::J
ii!"
Factor for correctlng to Ii Factor for correcrfng to Factor for correcting to Factor for correcrtng to
other pipe sizes other pipe sizes other pipe sizes other pipe sizes
Head loss Head loss Head loss Headlosa
I
Dia Velocity Velocity ft per Dia Velocity Velocity ft per Dia. Velocity Velocity ft per Dia I VeJocily Velocity ft per
in ft per sec head ft 100 ft I in ft per sec head ft 100 ft in It per sec head ft 100ft in ft per sec head ft 100 ft
--- --- --- --- --- --- ---- �----,---�,�-� ----- ----,---- ---- ----
35 1.058 1.119 1-147 41 1.049 1.161 1-124 47 1.04311.088 1-108 53 1. 038 I. 078 1.095
34 1.121 1.257 1-321 40 1.102 1.216 1-268 46 I. 089 1.186 1-230 52 I. 078 1.163 I .202
33 1.190 1.416 1-527 39 1.160 1.345 1-434 45 1.138 1. 295 1 .369 51 1.121 I. 257 I .321
32 1.266 1.602 1.774 I 38 I 1.222 1.492 1-627 44 1.190 1.416 1-527 50 1.166 1.360 1.452
Table 2-22: Cameron Hydraulic Data (cont)
Friction Losses in Pipe; C = 100 Friction Losses in Pipe; C= 100
36 in. Inside dla 42 in. inside dla 48 in. Inside dia 64 in. inside dia
I
Discharge Head Discharge Head Discharge Head Discharge Head
in U Sgallons Vcloc- loss in US gallons Veloc- loss in US gallons Veloc- loss in U Sgallons Vcloc- loss
ity Veloc- in ity Veloc- in ity Veloc- In ity Veloc- In
feet ity feet feet ity feet feet ity feet feet ity feet
per per per head per per per per head per per per per head per per per per head per
min 24 hr sec in ft 100 ft min 24 hr sec in ft 100 ft min 24 hr sec in ft 100 ft min 24 hr sec in ft 100 ft
--- --- -- -- --- -- -- -- --- --- --- )>
1400 2,016,000 .44 .00 .004 2000 2,880,000 .46 .003 -003 2000 2,880,000 .35 .002 .003 4000 5,760,000 .55 .005 .005 "O
1700 2,448,000 . .53 .00 .005 2500 3,600,000 .58 .005 -005 = 5,760,000 . 70 .008 -006 8000 ll,li20,000 1.11 .01q .012 "'Q.
2000 2,880,000 . 63 .01 .007 3000 4,320,000 .70 .007 -007 8,640,000 1.05 .017 .012 12000 17,280,000 1.67 .043 -027 ii>"
2400 3,456,000 . 75 .01 .010 3500 5,040,000 .81 .010 .00') 8000 11,520,000 1.40 .030 .022 16000 23,040,000 �.23 .on -046
2800 4,032,000 .88 .01 .015 4000 5,760,000 .92 .013 -012 10000 14,400,000 I. 76 .048 .034 20000 28,800,000 2.80 .122 -069 Q.
a
3400 4,608,000 1.07 .02 .019 4500 6,480,000 1.04 .016 -015 12000 17,280,000 2. 11 .069 -048 22000 31,680,000 3.07 . 146 .083 "'ti
4000 5,040,000 1.26 .02 .026 6000 7,200,000 1.16 .021 -018 1iooo 20,160,000 2.47 .095 -064 24000 34,5o0,000 3.35 .174 -098 0
4800 6,912,000 1.51 .04 .036 6000 8,640,000 1.39 .030 .025 1 000 23,040,000 2.83 .124 -081 26000 37,440,000 3. 63 .205 .113 (!)
5600 8,054,000 1.76 .05 -048 7000 10,080,000 I. 62 .041 .033 18000 25,920,000 3.18 .11\6 .101 28000 40,320,000 3.92 .238 -130 gi
"200 8,610,000 1.95 .06 .067 8000 11,520,000 1.85 .053 .043 20000 28.800,000 3.53 .193 -123 30000 43,200,000 4.20 .274 -148
c,
7000 10,080,000 2.20 .07 .012 9000 12,960,000 2.08 .067 -063 22000 31,680,000 3.89 .2.'l5 -147 iooo 16,080,000 4.48 .311 -167 (I)
UI
7600 10,244,000 2.39 .09 -084 10000 14,400,000 2.31 .083 -065 2iooo 34,560,000 CM .279 .173 000 48,960,000 4. 76 .353 .186 cc·
8300 11,952,000 2.61 . IO .098 12000 17,280,000 2. 78 .120 .092 2 000 37,440,000 4.60 .329 .201 36000 51,840,000 5.05 .395 .206
::::J
9000 12,960,000 2.83 .12 .114 14000 20,160,000 3.24 .163 .122 28000 40,320,000 4.96 .383 .231 38000 54,720,000 5.33 .440 -221 -
9700 13,968,000 3.05 .14 -131 16000 23,040,000 3. 70 .212 .167 30000 43,200,000 5.32 .440 -262 40000 57,600,000 .�.62 .490 -249 .,
0
10000 14,400,000 3.14 .16 .139 18000 21>,920,000 4.16 .269 .194 32000 46,080,000 5.68 .500 -296 42000 60,480,000 5.89 .539 -272 o
11000 15,840,000 3.16 .19 .164 20000 28,800,000 4.62 .331 .233 34000 48,960,000 6.03 .565 -331 44000 63,360,000 6.16 .5'l0 .297
12000 17,280,000 3.78 .22 .193 22000 31,680,oOO 5.10 .404 -282 36000 51,840,000 6.39 .632 -368 46000 66,240,000 6.44 .642 -323 zr
(I)
13000 18.720,000 4.09 .26 .226 24000 34,560,000 5.55 .477 .332 38000 54,720,000 6. 75 . 708 -406 48000 69,020,000 6. 72 . 701 .36\
,r
14000 20,160,000 4.40 .30 .260 26000 37,440,000 6.02 .561 .383 40000 57,600,000 7.10 . 782 .445 50000 72,000,000 7.00 . 760 --380 3
15000 21,600,000 4. 71 .34 .294 28000 40,320,000 6.48 .651 -432 42000 60,480,000 7.44 .859 .487 62000 7-1,880.000 7.2.7 .820 -410 !!!..
16000 {23,040,000 6.03 .39 .330 3 � 000 43,200,000 6. 91 . 748 .501 44000 63,360,000 7.80 .943 -533 64000 77,760,000 7.56 .889 .441
18000 25,920,000 5.66 .50 .412 3000 46,080,000 7.40 .850 -566 46000 66,240,000 8.16 1.04 -580 56000 80,540,000 7.84 .952 .473 Ill
::::J
19000 27,360,000 5. 98 .56 -454 34000 48,960,000 7.86 .9 -632 48000 69,020,000 8.51 1.12 .627 58000 83,520,000 8.12 1.02 .505 Q.
20000 28,800,000 6.30 .61 .504 36000 51,840,000 8.33 1.07 -702 50000 72,000,000 8.87 1.22 -677 60000 86,400,000 8.40 1.10 .638
21000 30,240,000 6.60 .67 .544 38000 54,720,000 8.80 1.20 -778 52000 74,880,000 9.22 1.32 .726 62000 89,280,000 8.68 1.17 .572 l
22000 31,680,000 6. 92 . 74 -590 40 � 00 57,600,000 9.25 1.32 -855 54000 77,760,000 9.58 1.42 .m 64000 92,160,000 8.96 1.25 -606 a
23000 33,120,000 7.21 .81 .640 42 00 60,480,000 9.72 1.46 -936 56000 80,540,000 9.% t.:i4 .833 66000 95,040,000 9.24 1.32 -641 0
2:000 34,560,000 7.55 .88 .695 44000 63,360,000 10.18 1.61 1-013 58000 83,520,000 10. 28 1.64 -890 68000 97.920,000 9.52 1.40 .(,78 �
2 000 37,410,000 8.18 1.04 .806 46000 66,240,000 l0.63 1.76 1-100 60000 86,400,000 10.63 I. 76 .943 70000 100,800,000 9.80 1.4<) .7\4 (I)
5·
28000 10,320,000 8.80 1.20 .935 48000 69,020,000 11.10 I. 92 1.194 62000 89,280,000 10. 99 1.87 1-070 72000 103,680,000 10.07 1.�7 -762 3
30000 43,200,000 9.44 1.38 1.066 50003 72,000,000 11.58 2.08 1-280 64000 92,160,000 11.34 2.00 1-067 74000 106,560,000 10.35 I. 66 .79! !!!..
34000 48,960,000 10. 70 I. 77 1.340 5200 74,880,000 12.01 2.25 1-380 66000 95,040,000 11. 70 2.12 1-130 76000 109,440,000 10.62 I. 7e .83
38000 54,720,000 11. 95 2.20 1.650 54000 77,760,000 12.49 2.41 1-490 68000 97,920,000 12.05 2.2.5 1-193 79000 112,320,000 10.91 1.85 .373 "'ti
42000 60,480,000 13.20 2.70 1-990 66000 80,540,000 12.93 2. 60 1-600 70000 100,800,000 12.41 2.39 1-258 80000 115,200,000 11.19 I. 94 -916 iii
::::J
ii!"
Factor for correctlng to Ii Factor for correcrfng to Factor for correcting to Factor for correcrtng to
other pipe sizes other pipe sizes other pipe sizes other pipe sizes
Head loss Head loss Head loss Headlosa
I
Dia Velocity Velocity ft per Dia Velocity Velocity ft per Dia. Velocity Velocity ft per Dia I VeJocily Velocity ft per
in ft per sec head ft 100 ft I in ft per sec head ft 100 ft in It per sec head ft 100ft in ft per sec head ft 100 ft
--- --- --- --- --- --- ---- �----,---�,�-� ----- ----,---- ---- ----
35 1.058 1.119 1-147 41 1.049 1.161 1-124 47 1.04311.088 1-108 53 1. 038 I. 078 1.095
34 1.121 1.257 1-321 40 1.102 1.216 1-268 46 I. 089 1.186 1-230 52 I. 078 1.163 I .202
33 1.190 1.416 1-527 39 1.160 1.345 1-434 45 1.138 1. 295 1 .369 51 1.121 I. 257 I .321
32 1.266 1.602 1.774 I 38 I 1.222 1.492 1-627 44 1.190 1.416 1-527 50 1.166 1.360 1.452
Fluid Flow 153
Table 2-22: Cameron Hydraulic Data (concluded)
Friction Losses in Pipe; C =-100
60 in. Inside d la 72 in. inside dla
Discharge Head Discharge Head
in US gallons Vc!oc- loss in US gallons Veloc- Ioss
ity Veloc- In ity Veloc- in
feet ity feet feet ity feet
I'<;' per per head per per per per head
1&i'lt
mm 24 hr sec -- -- min 24 hr sec -- --
in ft 100 ft
in ft
5000 7,200,000 .56 .005 .003 10000 14,400,000 .78 .009 .005
10000 IH00,000 1.12 .019 .011 20000 28,800,000 1.57 .038 .011
16000 21,600,000 1.70 .045 .024 25000 36,000,000 1. 97 .060 .02,
20000 28,800,000 2.26 .079 .042 30000 43,200,000 2.36 .086 .036
25000 36,000,000 2.83 .124 .062 35000 50,400,000 2. 76 .118 .048
30000 43,200,000 3.40 .179 -088 40000 57,600,000 3.16 .154 .062
32000 46,080,000 3.63 .205 -09' 45000 64,800,000 3.54 .194 .011
34000 48,960,000 3.86 .230 .111 5 � 000 72,000,000 3.94 .240 -094
36000 51,840,000 4.09 .259 -124 5 000 74,880,000 4.09 .259 .100
38000 54,720,000 4.32 .290 .137 54000 77,760,000 4.25 .280 ,107
40000 57,600,000 4.55 .320 -150 56000 80,540,000 4.41 .302 -114
42000 60,480,000 4. 78 .354 -164 58000 83,520,000 4.57 .324 .122
44000 63,360,000 5.00 .387 -180 60000 86,400,000 4.73 .347 .130
46000 66,240,000 5.22 .422 .196 62000 89,280,000 4.88 .370 -138
48000 69,020,000 5.45 .460 .212 64000 92,160,000 5.04 .384 .146
50000 72,000,000 5.68 .500 .229 66000 95,040,000 5.20 .420 .165
52000 74,880,000 5.90 .540 -246 68000 97,920,000 5.36 .447 -164
54000 77,760,000 6.12 .582 .263 70000 100,800,000 5.51 .473 .174
56000 80,540,000 6.35 .626 .281 72000 103,680.000 5.67 .499 -183
.672 .m
68000 83,520,000 6.68 74000 106,560,000 5.83 .528 .193
60000 86,400,000 6.81 . 720 -319 76000 109,440,000 5. 99 .558 .203
62000 89,280,000 7.03 . 768 .339 78000 11%,320,000 6.15 .588 -214
64000 92,160,000 7.25 .819 .360 80000 115,200,000 6.31 .620 .225
66000 95,040,000 7.49 .870 .381 82000 118,080,000 6.46 .650 .235
68000 97,920,000 7. 72 . 925 -403 84000 120,960,000 6. 62 .680 .245
70000 100,800,000 7.95 .980 -425 86000 123,840,000 6. 78 . 712 .256
72000 103,680,000 8.17 1.04 .447 88000 126,720,000 6. 93 . 746 -266
74000 106,560,000 8.40 .10 -470 9b000 129,600,000 7.09 . 780 .277
76000 109,440,000 8.62 1.15 .493 i5000 136,800,000 7. 49 .870 -30f
78000 112,320,000 8.86 1.22 .517 1 0000 144,000,000 7. 88 .965 .33
80000 115,200,000 9.06 1.28 .541 105000 151,200,000 8.28 1.06 .367
85000 122,400,000 9.64 i.44 .607 110000 15R,400,000 8. 67 1.16 -401
,0000 129,600,000 10.20 I. 61 -676 1!5000 165.600,000 9.05 1.27 .,m
95000 136,800,000 10. 78 1.80 .747 1 0000 112,roo,ooo 9. 45 1.38 .473
100000 144,000,000 11.36 2.00 .822 125000 i80, 00,000 I 9.85 1.51 .512
Factor for correcrtng to --Factor for correct ing to
other pipe size• other pipe sizes
Head 1088 Head Ioss
Dia Velocity Velocity ft per Dia Velocity Velocity ft per
ft per sec
iu
ft per sec head ft
100 ft
in
---- --- head ft 100 ft --- --- --- ----
59 1.034 1.070 1-085 70 1.058 1.119 1-147
58 1.070 1.145 1.179 68 1.121 1.257 1-3!8
57 1.108 1.228 1.284 66 1.190 1.416 1-5 7
56 1.148 1.318 I 1.399 64 l.266 1. 602 1-774
(text continued Jro11,. page 141) Step 6: Note the velocity given by this line as 16.5 ft/s,
Step 2: Proceed left horizontally across the chart to the then proceed to the insert on the right, and read upward
intersection, with: from 600 psig to 200 psig to find the velocity correction
Step 3: The 1,000-lb/h flowrate projected diagonally up factor as 0.41.
from the bottom scale.
Step 7: Multiply 0.41 by 16.5 to get a corrected velocity
Step 4: Reading vertically up from this intersection, it of 6.8 ft/s.
can be seen that a Lin. line will produce more than the
allowed pressure drop, so a 1!1,--in. size is chosen. The author has compared this method with Dukler
Step 5: Read left horizontally to a pressure drop of 0.28 [29] and others and reports good agreement for reason-
psi/100 ft on the left-hand scale. ably good cross section of flow regimes.
154 Applied Process Design for Chemical and Petrochemical Plants
Nomenclature F = Factor in Babcock's steam flow equation
F 0 = Friction pressure loss (total) at design basis, for a
A = Internal cross-section area for flow, sq ft; or area of system, psi, for process equipment and piping, but
orifice, nozzle, or pipe, sq ft. excluding the control valve
a = Internal cross-section area for flow in pipe, sq. in. Fe = Elevation factor for two-phase pipe line
a' = Fractional opening of control valve, generally FM= Friction pressure loss (total) at maximum flow basis,
assumed at 60% = 0.60 for a system, psi
a., = Orifice area, sq in. F 1 = Base friction factor, vacuum flow, Figure 2-43
aw = Velocity of propagation of elastic vibration in the F 2 = Base friction factor, vacuum flow, Figure 2-43
discharge pipe ft/sec = 4660/ (1 + Ki, B,.) l/2 f = Friction factor, Moody or "regular" Fanning, see
5
B = Base pressure drop for control valve from manufac- Note Figure 2-3
turer, psi fr = Turbulent friction factor, See Table 2-2
Br = Ratio of pipe diameter (ID) to wall thickness fg = Moody or "regular" Fanning Friction for gas flow
C = Condensate, lbs/hr (Equation 2-133); or for pipe, fTP = Two-phase friction for wave flow
Williams and Hazen constant for pipe roughness, 2
(see Cameron Table 2-22 and Figure 2-24); or flow (1/f) 1/ = Gas transmission factor, or sometimes termed effi-
coefficient for sharp edged orifices ciency factor, see Table 2-15, f = Fanning friction
factor
C' = Flow coefficient. for orifices and nozzles which equal
the discharge coefficient corrected for velocity of G = Mass flow rate of gas phase, pounds per hour per
approach= Cct/(1 - Wt)l/2 square foot of total pipe cross-section area
G' = Mass rate, lbs/ (sec) (sq ft cross section)
C' = C for Figures 2-17 and 2-18
C' = c' = Orifice flow coefficient GPM = Gallons per minute flow
Cct = Discharge coefficient for orifice and nozzles g = Acceleration of gravity, 32.2 ft/(sec) 2
C 01 = Diameter correction factor, vacuum flow, Figure 2-43 H = Total heat, Btu/lb
h = Average height of all vertical rises (or hills) in two-
C02 = Diameter correction factor, vacuum flow, Figure 2-43
phase pipe line, ft
C,. = Standard flow coefficient for valves; flow rate in
gpm for 60°F water with 1.0 psi � ressure drop across 01� h = Static head loss, ft of fluid flowing
the valve, = Q ! (p/62.4) (�P) ) 11 h, = Enthalpy of liquid at higher pressure, Btu/lb
C', = Valve coefficient of flow, full open, from manufac- h 2 = Enthalpy of liquid at lower or flash pressure, Btu/lb
turer's tables hr = hL = Loss of static pressure head due to friction of fluid
Cn = Temperature correction factor, vacuum flow, Figure flow, ft of liquid
2-43
hp = Enthalpy of liquid at supply steam pressure, Btu/lb
Cr2 = Temperature correction factor, vacuum flow, Figure hr = Enthalpy of liquid at return line pressure, Btu/lb
2-43
hL' = Head at orifice, ft of liquid
C1 = Discharge factor from chart in Figure 2-31
h' L = Differential static head or pressure loss across flange
C2 = Size factor from Table 2-11, use with equation on taps when C or C' values come from Figure 2-17 or
Figure 2-31 Figure 2-18, ft of fluid
cpl c, = Ratio of specific heat at constant pressure to that at hwh = Maximum pressure developed by hydraulic shock, ft
constant volume=k of water (water hammer)
D = Inside diameter of pipe, ft K = Resistance coefficient, or velocity head loss in equa-
2
D 1.1 = Hydraulic diameter, ft tion, hL = Kv /2g
d = Inside diameter of pipe, in. = di � = Orifice or nozzle discharge coefficient
d, = Equivalent or reference pipe diameter, in. Ki,, = Ratio of elastic modulus of water to that of the
metal pipe material (water hammer)
dH = Hydraulic diameter, or equivalent diameter, in.
k = Ratio of specific heat, cp/ c,
d., = Orifice diameter, or nozzle opening, in.
L = Pipe, length, ft
d 00 = Diameter of a single line with the same delivery
capacity as that of individual parallel lines d, and d2 Le = Equivalent length of line of one size referenced to
(lines of same length) another size, miles, ( or feet)
di = Inside diameter of pipe, in. Leq = Equivalent length of pipe plus equivalent length of
E = Gas transmission "efficiency" factor, varies with line fittings, valves, etc., ft.
size and surface internal condition of pipe L 01 = Length of pipe, miles
Fluid Flow 155
L,. = Latent heat of evaporation of steam at flash pres- q'm = Free air, cubic feet per minute@ 60°F and 14.7 psia
sure, Biu/Ib
R = Individual gas constant= MR/M = 1544/M
l = Horizontal distance from opening to point where
flow stream has fallen one foot, in. Re = Reynolds number, see Figure 2-3
M = ;\,f\,V = molecular weight R 1.1 = Hydraulic radius, ft
l'v!R = Universal gas constant Re = Ratio of compression at entrance of pipe, Figure 2-
n = Number of vertical rises (or hills) in two-phase pipe 37
line flow re= Critical pressure ratio= P'2/P'1
or, n = Polytropic exponent in polytropic gas P-V relation- Sg = Specific gravity of gas relative to air, ( = ratio of mol-
ship
ecular weight gas/29)
P = Pressure, psig; or, pressure drop, P, pounds per 0
square inch, Babcock Equation 2-82) S = Degrees of superheat in a steam condition, degrees
F above saturated (not the actual temperature)
P, = Absolute pressure, torr
s = Steam quality as percent dryness, fractional
Ll.P, = Pressure drop, torr
SpGr = Specific gravity of fluid relative to water at same
P' = Pressure, psi absolute (psia)
temperature
P = Total pressure at lower end of system, psig
0
T = Absolute Rankin temperature, 460 + t, degrees R
Pb, = Barometric pressure, psi absolute
T, == Standard temperature for gas measurement, R =
0
Ps = Total pressure upstream (higher) of system, psig
460 + t
P, = Standard pressure for gas measurement, lbs/sq in.
absolute, psia T 1 = Average flowing temperature of gas, "R
p" = Pressure, lbs/sq ft absolute; (in speed of sound t = Temperature, °F
equation, Equation 2-86), Nole units. L, = Time interval required for the pressure wave to trav-
p' = Gauge pressure, psig el back and forth in a pipe, sec
or, P1 = Initial pressure, in. of mercury absolute, vacuum sys- V = Free air flow, cu ft/sec at 60°F and 14.7 psia
tem
V = Specific volume of fluid, cu ft/lb
Ll.P = Pressure drop, lbs/ sq in, psi; or static loss for flow-
ing fluid, psi V' = Volume, cu ft
Li.Pc = Pressure drop across a control valve, psi Va= Volume, cu fl
Ll.P,-ac = Pressure drop in vacuum system due to friction, in. v = Flow velocity (mean) or superficial velocity in pipe
water/100 ft pipe lines at flowing conditions for entire pipe cross sec-
6.PTPh = Total two-phase pressure drop for system involving tion, fl/sec; or reduction in velocity, ft/sec: (water
horizontal and vertical pipe, psi per fool of length hammer)
Ll.?100 = Pressure drop, pounds per sq in per 100 ft of pipe vm = Mean velocity in pipe, at conditions ofV, fl/min
or equivalent
v, = Sonic (critical) velocity in compressible fluid, ft/sec;
Q = Flow rate, gallons per minute, gpm or speed of sound, ft/sec
Qb = Flow rate, barrels/day vw = Reduction in velocity, ft/sec (actual flowing velocity,
Q 0 == Design flow rate, gpm, or ACFM fl/sec)
Q�. 1 = Maximum flow rate, gpm, or ACFM W = Flow rate, lbs/hr
q = Flow rate at flowing con di lions, c:u ft/sec: Yl\ 11 = Mass flow rate of liquid phase, pounds per hour per
qd = Gas flow rate standard cubic: feel per day, al 60°F square foot of total pipe cross-section area
and 14. 7 psi a ( or 14.65 if indicated); or flow rate, cu \\\ = Mass flow rate, lbs/hr/tube
ft/ day at base conditions of T, and P,
w = Flow rate, lbs/min
qd, = Gas flow at designated standard conditions, cu
ft/day, cfD w, = Flow rate, lbs/sec; or sometimes, VV,
C(h = Gas flow rate, cu ft/hr, at 60°F and 14.4 psiabs, x = Fraction of initial line paralleled with new line
(psi a)
Y = Net expansion factor for compressible flow through
q' = Gas flow, cu ft/sec, at 14.7 psia and 60°F orifices, nozzles, or pipe
q\ = Flow rate al standard conditions ( 14. 7 psi a, and Z = Compressibility factor for gases at average condi-
60°F) cu ft/hr, SCFI-I
tions, dimensionless. Omit for pressure under 100,
qm = Flow rate cu ft/min psig
156 Applied Process Design for Chemical and Petrochemical Plants
Greek Symbols 6. Colebrook, C. F. and White, C. M., Inst-Civil Eng., Vol. 10,
1937-1938, No. i, pp. 99-118.
� = Ratio of internal diameter of smaller to large pipe 7. Olujic, Z., "Compute Friction Factors Fast for Flow in Pipes,"
sizes, or for orifices or nozzles, contractions or Chem. Eng. 88, No. 25, 1981, p. 91.
enlargements 8. Churchill, S. W., Chem Eng., Nov. 7, 1977, pp. 91-92.
'( = Kinematic viscosity, sq ft/sec 9. Connell, J. R., "Realistic Control-Valve Pressure Drops,"
'Y = Surface tension of liquid, dynes/centimeter Chem. Eng., 94 No. 13, 1987, p. 123.
E = Roughness factor, effective height of pipe wall irreg- 10. Shinskey, F. G., Process Control Systems, 2nd Ed., 1979,
ularities, ft, see Figure 2-11 McGraw-Hill Book Co., p. 47.
0 = Angles of divergence or convergence in enlarge- 11. Catalog 6600, Autoclave Engineers, Erie, Pa., p. 84.
ments or contractions in pipe systems, degrees 12. Saad, M.A., Compressible Fluid Floio, 1985, Prentice-Hall, Inc.,
'A. = Two-phase flow term to determine probable type of p. 26.
flow = [ (pg/0.075) (PL/62.3) ]112, where both liquid 13. Miller, R. W., Flow Measurement Engineering Handbook, 2nd
and gas phases are in turbulent flow (two-phase Ed., 1989, McGraw-Hill Pub. Co., pp. 13-1.
flow)
14. Cheremisinoff, N. P. and R. Gupta, Handbook of Fluids in
µ = Absolute viscosity, centipoise Motion, 1983, Ann Arbor Science, p. 218.
u, = Absolute viscosity, lbs (mass) I (ft) (sec) 15. McKetta, J. J., Encyclopedia of Chemical Processing and Design,
Vol. 22, 1985, M. Dekker, Inc., p. 305.
µg = Viscosity of gas or vapor phase, centipoise
µL = Viscosity of liquid phase, centipoise 16. Uhl, A. E., et al., Project NB-13, 1965, American Gas Associa-
tion New York.
p = Density of fluid, lbs/cu ft; or lb/gal, Eq. 2-113
17. Hein, M., "3P Flow Analyzer," Oil and Gas journal, Aug. 9,
I: = Summation of items 1982, p. 132.
J
\jJ = Two-phase term= (73/"{) [µL (62.3/pd 2 1/3 18. Ryans, J. L. and Roper, D. L., Process Vacuum. Systems, 1986,
4> = Equations for 4>cn for two-phase pipe line flow McGraw-Hill Book Co.
19. Pump Engineering Data, Economy Pumps, Inc., 1951, Philadel-
phia, Pa.
Subscripts
20. King, H. W., Handbook of Hydraulics, 1939, McGraw-Hill Book
Co., p. 197.
o = Base condition for gas measurement
21. Sultan, A. A., "Sizing Pipe for Non-Newtonian Flow," Chem.
1 = Initial or upstream or inlet condition, or ii Eng., Vol. 95, No. 18, Dec. 19, 1988, p. 140.
2 = Second or downstream or outlet condition 22. R. B. Bird, \V. E. Stewart, and E. N. Lightfoot, Transport Ph.e-
nomena, 1960, J. Wiley, New York, p. 12.
a = Initial capacity or first condition
23. Brodkey, R. S. and H. C. Hershey, Transport Phenomena, 1988,
b = New capacity or second condition
McGraw-Hill Book Co., p. 752.
g = Gas
24. Turian, R. M. and T. F. Yuan, "Flow of Slurries in Pipelines,"
L = Liquid AJCHE]ournal, Vol. 23, May 1977, pp. 232-243.
vc = Gradual contraction 25. Derammelaere, R.H. and E.J. Wasp, "Fluid Flow Slurry System
and Pipelines," Encyclopedia of Chemical Processing and Design,
VE = Gradual enlargement
1985,].]. McKetla, Exec. Ed., M. Dekker, Vol. 22, p. 373.
26. Babcock, H. A. and D. A. Carnell, 'Transportation of Larger
References Inert Particles in Pipelines," presented AICHE, 83rd Nation-
al Meeting, Paper No. 40 f, March 23, 1977, Houston, Texas.
1. Moody, L. F. "Friction Factors for Pipe Flow," Trans. ASME, 27. Steindorff, G. N., "Adequate Slurry Pipeline Design Exists,"
Vol. 66, Nov. 1944, pp. 671-678. Oil and Gasfournal; Dec. 22, 1980, p. 75.
2. Engineering Data Book, 2nd Ed., 1979, Hydraulic Institute, 28. Ruskin, R. P., "Calculating Line Sizes for flashing Steam
30200 Detroit Road, Cleveland, Ohio 44145-1967. Condensate," Ch.em. Eng., Aug. 18, 1985, p. 101.
3. Crane Co. Engineering· Div. Technical Paper No. 410, Flmv of 29. Dukler, A. E., Wicks, M. and Cleveland, R. G., AICHE]oumal,
Fluids Through Valves, Fittings and Pipe, 1976. 1964, Vol. 10, p. 44.
4. Shaw, G. V., Editor, and A. W. Loomis, Cameron Hydraulic 30. Soliman, R. H. and Collier, P. B., "Pressure Drop in Slurry
Data, 1942, Ingersoll-Rand Co., 11 Broadway, New York, N .Y., Lines," Hydrocarbon Processing, 1990, Vol. 69, No. 11.
also see [ 54]. 31. Morrison, G. L., DeOtte,Jr., R. E., Panak, D. L., and Nail, G.
5. Perry, R.H. and Don Green, Perry's Chemical Engineer's Hand- H., 'The Flow Field Inside an Orifice Flow Meter," Chem.
book, 6th Ed., 1984, McGraw-Hill, Inc., pp. !'>-24. Engr. Prog., 1990, Vol. 86, No. 7.
Fluid Flow 157
32. Coker, A. K., "Determine Process Pipe Sizes," Chem. Eng. 55. Tube Turns, Division of Chemetron Corporation, Bulletin
Prog., 1991, Vol. 87, No. 3. No.TT 725, Flow of Fluids, Chemetron Corporation, 1952,
and Tube Turn Technologies, Inc.
33. Baker, 0., "Multiphase Flow in Pipe Lines," Oil and Gas joun,
Nov. lO, 1958, p. 155. 56. Walworth Co., Valve Catalog No. 57, Section on Flow of Fluids in
Pipes, 1957, Walworth Co.
34. Beij, K. H., "Pressure Loss of Fluid Flow in 90° Bends," ]our.
P.es. Nat. Bur: Stds., �?I, RP 1110,July 1938. 57. 'Weymouth, T. R., Problems in Natural-Gas Engineering, Trans.
A.S.M.E. 34, 1912, pp. 197-203.
35. Brigham, W. E., E. D. Holstein, R. L. Huntington, "How
Uphill and Downhill Flow Affect Pressure Drop in Two- 58. Chen, H:J, "An Exact. Solution to the Colebrook Equation,"
Phase Pipelines," Oil and Gas [oun, No. 11, 1957, p. 145. Chem. Eng., 1987, Vol. 94, No. 2, p. 196.
35. Brooke, M., Chem. Eng .. 54 (l), 26, 1957. 59. Hook-up Designs for Steam and Fluid Systems, 1968, 7th printing,
1981, Spirax Sarco, Inc. Allentown, Pa.
37. Chenoweth, ]. M. and M. \V. Martin, Turbulent Two-Phase
fww, Pet. Ref., Oct., 1955, p. 151.
Bibliography
38. Church, A. H., editor, and H. Gartman, Del.aoal Handbook,
2nd ed., DeLaval Steam Turbine Co., Trenton, N, J., 1955.
DeGrance, A. E. and R. W. Atherton, Horizontal-Flow Correla-
39. Crane Company, Engineering Division, Technical Paper No. tions, Chern. Eng.,July 13, 1970, p. 95.
409, 1942, Crane Co.
DeGrance, A. E. and R. W. Atherton, "Pressure-Drop Sample
40. Dunning, A. R. Ill, Trans. A.S.M.E., .'l4, No. 17 (32). Calculations," Chem. Eng., no. 2, 1970, p. I 01.
41. Flanigan, 0., "Effect of Uphill Flow on Pressure Drop in Dukler, A. E. et al., "Frictional Pressure Drop in Two-Phase Flow:
Design of Two-Phase Gathering Systems," Oil and Gas [ouc, A Comparison of Existing Correlations for Process Loss and
Mar, 10, 1958, p. 132. Holdup," A.I.Ch.EJ.; 10, 1964, p. 38-43.
42. Hook-up Designs for Steam and Fluid Systems, 3rd ed., 1971 and Dukler, A. E. et al., "Frictional Pressure Drop in Two-Phase Flow:
7th ed. 1981, Spirax Sarco Co. Inc., Allentown, Pa. B-An Approach Through Similarity Analysis," A.I.Ch.Ej.; 10,
43. Johnson, T. W. and W. B. Berwald, Flow of Natural Gas 1964, pp. 44-51.
Through High Pressure Transmission Lines, Monograph No. 6, Dukler, A. E., Gas-Liquid Flow in Pipelines, Am. Petrol. Inst. Proc.,
U.S. Department of the Interior, Bureau of Mines, Washing- Sept. 1967.
ton, D.C.
Eaton, Ben A., el al., 'The Prediction of Flow Patterns, Liquid
44. Kern, Robert, "How to Size Piping and Components as Gas Holdup and Pressure Losses Occurring During Continuous
Expands al Flow Conditions," Chem. Eng., Oct. 13, 1975, p. Two-Phase Flow in Horizontal Pipelines," J. Petrol. Technol.,
125. June 1967, pp. 315-328.
45. Lapple, C. E., Trans. A.l.Ch.E., 39, 1943, pp. 385-432. Gould, T. L., el. al., Engi.neering Methods and Computer Applications
For Design and Operation of Ttoo-Phase Pipeline Systems, The Uni-
46. Lockhart, R. W. and R. C. Martinelli, Proposed Correlation of versity of Michigan, Ann Arbor, Mich., 1973.
Data For Isothermal Two-Phase, Two Component Flow in Pipe
Lines, C. E. P. 45, 1949, 39. Covier, G. \Al. et al., "The Upward Vertical Flow of Air Water Mix-
tures," Canadian journal of Chem. Eng, Pan I, Aug. 1957, pp.
47. Loeb. M. B., "New Graphs for Solving Compressible Flow 58-70; Part II. Oct. 1958, pp. 195-202, and Part Ill, April
Problems," Chem. Eng., May 19, 1969, p. 179. 1960, pp. 62-66.
48. O'Brien and Hickox, Applied Fluids Mechanics, 1937, McGraw- Creskovich, A. L., et. al., "Five Gas Content for Horizontal Gas-
Hill Book Co. Inc., New York, New York, p. 211. Liquid Flow," Ind. Eng. Chem. Fundamentals, Aug. 1969, pp.
49. O'Neill, F. W., editor, Compressed Air Data, 5th ed., 1939, 591-593.
Compressed Air Magazine. Bowling Green Building, New York, Haberstroh, R. E. and P. Griffith, The Slug-Annular Two-Phase
N.Y Flow Regime Transition, Am. Soc. Mech. Engr., Paper 65-HT-52.
50. Pollard, R. S., "Sizing Return Lines," Industry and Power; Feb. 1965.
1954, p. 83. Hughmark, G. A., "Holdup and Heat Transfer in Horizontal
Slug Gas-Liquid Flow," Chem. Eng. ss; 20, 1964, p. 1007.
51. Powell, \,1 .. 'rn., Vctlve Catalog No. 11, Wm. Powell Valve Co.,
Cincinnati, Ohio. Hughmark, G. A., "Holdup in Gas-Liquid Flow," Chem. Eng.
Prog., 58, 1962, pp. 62-65.
52. Schneider, F. N., P. D. White, R. L. Huntington, PijJe Line
Industry, Oci., 1954. Kern, Robert, "How to Size Process Piping for Two-Phase Flow,"
Hsdrocarboa Processing, Oct. 1969, p. i05.
53. Shaw, G. V .. editor, and A. W. Loomis, Cameron Hydraulic
Data, Ingersoll-Rand Co., Eleventh Edition, 1942 and 16th Kern, Robert, "How to Size Piping and Components as Gas
ed, 1979, Ed. C. R. Westaway and A. W. Loomis, Ingersoll- Expands at Flow Conditions," Chern. Eng., Oct. 13, 1975, p. 125.
Rand Co., Woodcliff Lake, NJ. Kern, Robert, "Piping Design For Two-Phase Flow," Chem. Eng.,
54. Standards for Steam Jet Ejectors, 3rd ed., Heat Exchange Insti- June 23, 1975, p. 145.
tute, 1956, and Stnndards for Steam]et Vacuum System�;. 4th ed., Meador, L. and A. Shah, "Steam Lines Designed for Two-Phase,"
1988, Cleveland, Ohio. Hydrocarbon Processing, 48, 1, l 969, p. 143.
158 Applied Process Design for Chemical and Petrochemical Plants
Quandt, E., Analysis of Gas-Liquid flow Patterns, A.I.Ch.E., 6th Wohl, M. H., "Rheology of Non-Newtonian Materials," Chem.
Nat'I Heat Transfer Conference, Boston, Mass., Aug. 1963. Eng., vol. 75, no. 4, I 968, p. 130.
Simpson, Larry L., "Sizing Piping for Process Plants," Chem. Cindric, D. T., Gandhi, S. L., Williams, R. A., "Designing Piping
Eng.,June 17, 1968, pp. 192-214. Systems for Two-Phase Flow," Chem. Eng. Prog., vol. 83, no. 3,
1987, p. 51.
Vohr, J. 1-1., flow Patterns of Ttoo-Phase Fww-A Survey of Literature,
CU-2-20-AEC-187-Ch.E. Columbia University, New York. Dukler, A. E. and Taite!, Y., "Flow Patterns in Horizontal and
Willis, G. B., The Dimensional Two-Phase Flow, McGraw-Hill, New Near Horizontal Pipes," Design Manual FM-3, Dli\-1P/A!Cht�
York, 1969. New York, 1982; also see Design Manual VUFP/ AJChE, same ref-
erence.
Parker, R. F., "Programmable Calculators Speed Gas-Line Calcu-
lations," Oil and Gas journal, May 7, 1979, p. 67. Riggs, J. B., "Simplified Manifold Design," Chem. Eng., vol. 95,
no. 14, l 988, p. 95.
Steele, A., "Scouring Action in Piping," Heating/Piping/Air Con-
ditioning, May 1981, p. 89. Hooper, W. B., "Calculate Head Loss Caused by Change in Pipe
Si,.e," Chem. Eng., vol. 95, no. 16, 1988, p. 89.
"You'll Want to Know; NBS Tests Rate Steel Pipe Smoother,"
Heating/Piping/Air Conditioning, May 1981. Clark,]. K.,Jr. and Helmick, N. E., "How to Optimize the Design
of Steam Systems/ Chem. Eng., vol. 87, no. 5, 1980, P: 116.
Lanfear, K. J. and Coil, J. J., "Modifying Manning's Equation for Carleton, A. J. and Cheng, D. C-H., "Pipeline Design for Indus-
Flow Rate Estimates," Water and Sewage Works, March 1978, p. 68.
trial Slurries," Chem. Eng., vol. 84, no. 9, 1977, p. 95.
Beaty, R. E., "Mass Measurement Best For Ethane-Rich NGL
Streams," Oil and Ga.s]ournal,June 15, 1981, p. 96. Goyal, 0. P., "Guidelines on Fluid Flow Systems," Hydrocarbon
Processing, vol. 69, no. 4, 1990, p. '±7.
Chiu, C. L. and Seman, J. J., "Head Loss in Spiral Solid-Liquid
Flow in Pipes," Advances in Solid-Liquid FlJJw in Pipes and Its Solliman, R., "Two-Phase Pressure Drop Computed," Hydrocar-
Application, Ed. I. Zandi, Pergamon Press, 1971, p. 277. bon Processing, vol. 63, no. 4, 1984, p. 155.
Ludwig, Ernest E., "Flow of Fluids for Process Design," Chem.
Coulter, D. M. and Bardon, M. F., "Revised Equation Improves Eng.,June 13, 1960, p. 162.
Flowing Gas Temperature Prediction," Oil and Gas Journal,
Feb. 26, 1979, p. 107. Tung, P. C. and Mikasinovic, M., "Eliminating Cavitation from
Pressure-Reducing Orifices," Chem. Eng., Dec. 12, 1983, p. 69.
King, G. G., "Here are Key Design Considerations for C0 2
Pipelines," Oil and Gas journal, Sept. 27, 1982, p. 219. Lin, S. H., "Pressure Drop for Slurry Transport," Chern. Eng., May
17, 1982, p. l l5.
"Methods for Determination of Velocity, Volume, Dust and Mist
Content of Gases," Bulletin \,\TP-50, Western Precipitation Div., Hills, P. D., "Designing Piping for Gravity Flow," Chern. Eng.,
Joy Manufacturing Co. Sept. 5, 1983, p. 111.
HPAC Data Sheet, "C = 40 Flow Chart for Black Steel Pipe," Fayed A. S. and Otten, L., "Comparing Measured with Calculat-
Heating/Piping/ Air Conditioning, .July 1981. ed Multiphase flow Pressure Drop," Oil and Gasjour., Aug. 22,
1983, p. 136.
Wile, D. D., "Refrigerant Line Sizing," ASHRAE RP-185,
ASH RAE Technical Committee 8.9, Refrigerant Piping, Amer- Coker, A. K, "Understand Two-Phase Flow in Process Piping,"
ican Society of Heating, Refrigerating and Air Conditioning Chem. Eng. Prog., vol. 86, no. 11, 1990, p. 60.
Engineers, Inc., 1977. Hewitt, G. F., "Handbook in Multiphase Systems," G. Hetsroni,
Chierici, G. L., Sclocchi, and Terzi, L., "Pressure, Temperature ed., Hemisphere Press, 1984, p. 2.1-2.94.
Profiles Are Calculated for Gas Flow," Oil and Gasjournal,Jan. Degance, A. E. and Atherton, Chem. Eng., March 23 and April 20,
7, 1980.
1970.
Kremers, J., "Avoid Water Hammer," Hydrocarbon Processing, vol. Coker, A. K., Program Evaluates Pressure Drop for Single-Phase
62, March 3, 1983, p. 67.
Fluids," Hydrocarbon Processing, vol. 70, no. 2, p. 53.
Rau, J. N. and Hein, M., AGA Gas Fww Equations Can Be Quickly Lednicky, R. and Lindley, N. L., "Reduce Leaks and Corrosion
Done With Program for Hand-HeM Calculators. with Plastic-lined Pipe," Chem. Eng. Prog., vol. 87, no. 3, 1991,
Austin, P. P., "How Lo Simplify Fluid Flow Calculations," Hydro- p. 45.
carbon Processing, vol. 54, no. 9, 1975.
Myerson, E. B., "Calculate Saturated-Gas Loads for Vacuum Sys-
Shah, B. V., "Solving Fluid Flow Problems with Spreadsheets," tems," Chem. Eng. Prog., vol. 87, no. 3, 1991, P: 92.
Hydrocarbon Processing, vol. 68, no. 9, 1989, p. 85.
Heming, A., "Prolong the Service Life of Steam Distribution Sys-
Smith, B. D., "Sizing the Economic Pipe," Chem. Eng., vol. 96, no. tems," Chem. Eng. Prog., vol. 87, no. 4, 1991, P: 65.
9, 1989, p. 201. Mather, J., "Draw Some Help from Hydraulic Grade Lines,"
Meyer.]. M., "Versatile Program for Pressure-Drop Calculations," Chem. Eng. Prog., vol. 86, no. 10, 1990, p. 50.
Chem. Eng., vol. 85, no. 5, 1980, p. 139.
Simko, D. M., "Consider the Effects of Temperature on Tube Fit-
Kohli, I. P., "Steam Tracing of Pipelines," Chem. Eng., vol. 86, no. tings," Chem. Eng. Prog., vol. 87, no. 1, 1991, p. 31.
7, 1979, p. 155.
Carey, L. A. and Hammitt, D., "How to Select Liquid-Flow Con-
Dumbaugh, G. D., "Flow from Bulk-Solid Storage Bins," Chem. trol Valves," Chem. Eng. Deskbook, vol. 85, no. 8, April 3, 1978,
Eng., vol. 86, no. 7, 1979, p. 189. p. 137.
Fluid Flow 159
Simpson, L. L. and Weirick, M. L., "Designing Plant Piping," Yu, F. C., "How to Calculate Optimum Pipe Size for Liquids,"
Chem. Eng. Deskbook, April 3, 1978, p. 33. Hydrocarbon Processing, vol. 72, no. 6,June 1993, p. 67.
Soliman, R. H. and Collier, P. B., "Pressure Drop in Slurry Lipton, S., "Reduce fugitive Emissions Through Improved
Lines," Hydrocarbon Processing, vol. 69, no. 11, 1990, p. 60. Process Equipment," Chemical Engineering Progress, vol. 88, no.
Cheng, X. X. and Turton, R., "How to Calculate Pipe Size With- 10, Oct. 1992, p. 61.
out Iteration," Chem. Eng., vol. 97, no. 11, 1990, p. 187.
Doolin,J., Kawohl, R., McGuire,]. T., Prang, A., and Dodson. ].,
Morrison, G. L., DeOue, R. E., Panak, D. L., and Nail, G. H., "Pumping Difficult Fluids," Chemical Engineering, vol. 98, no .
"The Flow Field Inside an Orifice Flow Meter," Chem. Eng. 12, Dec. 1991, p. 67.
Prog., vol. 86, no. 7, 1990, p. 75.
Tosun. I. and Aksahin, L "Calculate Critical Piping Parameters,"
Hooper, W. B., "The Two-K Method Predicts Head Losses in Chemical Engineering. vol. 100, no. 3, March 1993. p. 165.
Pipe Fittings." Chemical Engineering, Aug. 24, 1981, p. 96.
Hughson, R. V., "Plumb the Power of Piping Programs," Chem.
Landis, R. L., "Solve flashing-fluid critical-flow problems," Chem- Eng. Prag., vol. 88, no. 6,June 1992, p. 95.
ical Engineering, March 8, 1982, p. 79.
Grown, N. P. and Heyood, N. I., "The Right Instrumentation for Mills, D., "Troubleshooting Pneumatic Conveying. Parts I and
Slurries," Chemical Engineering, vol. 99, no. 9, Sept. 1992, p. l 06. 2," Chem. Eng., vol. 97, nos. 6 and 7,June and july 1990.
Beasley, M. E., "Choosing Valves for Slurry Service," Chemical Kroupa, R., "Selecting Valves for Tough Conditions," Chem. Eng.,
Engineering, vol. 99, no. 9, Sept. 1992, p. 112. vol. 100, no. 2, Feb. 1993, p. 74.
Chapter
3
Pumping of Liquids
Pumping of liquids is almost universal in chemical and 5. determine the important available net positive suc-
petrochemical processes. The many different materials tion head (NPSHA) for the pump suction side
being processed require close attention to selection of mechanical system, and compare this to the manu-
materials of construction of the various pump parts, shaft facturer's required net positive suction head
sealing, and the hydraulics of the individual problems. A (NPSHR) by the pump itself. This requires that the
wide variety of types and sizes of pumps have been devel- designer make a tentative actual pump selection of
oped to satisfy the many special conditions found in one or more manufacturers in order to use actual
chemical plant systems; however, since all of these cannot numbers.
be discussed here, the omission of some does not mean 6. make allowable corrections to the pump's required
that they may not be suitable for a service.
NPSH (using charts where applicable) and com-
In general, the final pump selection and performance pare with the available NPSH. The available must
details are recommended by the manufacturers to meet always be several feet greater than the corrected
the conditions specified by the process design engineer. It required.
is important that the designer of the process system be
completely familiar with the action of each pump offered 7. make fluid viscosity corrections to the required per-
for a service in order that such items as control instru- formance if the fluid is more viscous than water.
ments and valves may be properly evaluated in the full 8. examine specific speed index, particularly if it can
knowledge of the system. be anticipated that future changes in the system
This chapter presents information on rating, sizing, may be required.
and specifying process pumps. The emphasis will be on 9. if fluid being pumped is at elevated temperature
centrifugal pumps, which are by far the most widely used (usually above 90°F±), check temperature rise in
in the process industries; however, applications of other pump, and the minimum flow required through
types of pumps will also be discussed (see Table 3-1). the pump.
To properly accomplish a good and thorough rat- 10. make pump brake horsepower corrections for flu-
ing/sizing of a centrifugal pump, the plant system design- ids with a specific gravity different than water.
er should at a minimum:
Select actual driver ( electric motor, usually) horse-
power in order that horsepower losses between the
I. understand the fundamentals of performance of the driver and the pump shaft will still provide suffi-
pump itself. cient power to meet the pump's input shaft require-
2. understand the mechanical details required for a ments.
pump to function properly in a system.
11. if the pump has some unique specialty service or
3. calculate the friction and any other pressure losses requirement, recognize these in the final sizing and
for each "side" of the pump, suction and discharge, selection. Consult a reliable manufacturer that pro-
(see Chapter 2). duces pumps for the type of service and applica-
4. determine the suction side and discharge side heads tions and have them verify the analysis of your sys-
for the mechanical system connecting to the pump. tem's application (s).
160
Pumping of Liquids 161
Table 3-1 The centrifugal pump (Table 3-2) develops its pressure
General Types or Classification of Pwnps by centrifugal force on the liquid passing through the
All types will not be treated in detail, but consideration of pump and is generally applicable to high capacity, low to
their particular features is important in many situations. medium head installations. In order to satisfy pump dis-
charge head (or pressure) requirements the unit may be
Centrifugal Rotary Reciprocating a multistage (multiple impellers) instead of a single stage
1. Centrifugal I. Cam 1. Piston [28]. The conditions of pumping water vs. pumping hot
2. Propeller 2. Screw 2. Plunger light hydrocarbons require considerably different evalua-
3. Mixed Flow 3. Gear 3. Diaphragm tion in pump design features for satisfactory operation,
4. Peripheral 4. Vane safety and maintenance.
5. Turbine 5.Lobe
6. Radial Flow 6. Piston The inline centrifugal process pump, Figure 3-3, is rel-
7. Axial Flow 7. Flexible Rotor atively new to general applications; however, it is finding
many applications where space and installation costs are
important. Each application must be carefully evaluated,
as there are three basic types of pump construction to
consider. Generally, for many applications the dimensions
have been standardized through the American Voluntary
Standard, ANSI, or API-610. The performance curves are
s J m 1 n 14 15 76 2�
typical of single stage centrifugal pumps.
The turbine is a special type of centrifugal pump (Fig-
ure 3-14) and has limited special purpose applications.
Pwnp Design Standardization
Certain pump designs have been standardized to aid
manufacturer's problems, and to allow the owners to take
advantage of standardization of parts and dimensions,
and consequently maintain a more useful inventory. The
standards are sponsored through the American National
Standards Institute; however, many manufacturers also
produce to the American Petroleum Institute and their
own proprietary standards. These are special pumps that
do not conform to all the standards, but are designed to
accomplish specific pumping services.
The primary pump types for the chemical industry for
horizontal and vertical inline applications have been stan-
11 10 ll IOK II 55 75 21 105A dardized in ANSI B-123, Ai"\J"SI Std# B73.1M for horizon-
tal end suction centrifugal pumps, and ANSI B73.2M for
vertical inline centrifugal pumps. The standards are in a
3 Impeller 26 Bearing Housing continuous process of upgrading to suit requirements of
5 Casing 28 Bearing End Cover industry and the manufacturers. The API-610 standard is
7 Back Head Cradle 29 Pump Shaft primarily a heavy duty application, such as is used for the
9 Bearing Housing Foot 55 Oil Disc. (Flinger)
10 Shaft Sleeve 56 Casing Foot refinery and chemical industry requirements. This is the
IOK Shaft Sleeve Key 75 Retaining Ring only true world pump [21] standard, although the Inter-
13 Stuffing Box Gland 76 Oil Seal-Front
14 Stuffing Box Gland Stud 76A Oil Seal-Rear national Organization for Standardization (ISO) is study-
15 Stuffing Box Gland Stud 77 Gasket-Casing ing such an improved design [20].
Nut 77A Gasket-Sleeve
17 Seal Cage 77B Gasket-Drain Plug
18 Splash Collar 80 Oil Vent The standards are important because they allow the
25 Shaft Bearing-Radial 105 Shaft Adjusting Sleeve dimensional interchangeability of pumps and shaft pack-
25A Shaft Bearing-Thrust 105A Sleeve Lock Nut
ing of different manufacturers, but only as long as the
Figure 3-1. General Service Centrifugal Pump. (Courtesy Dean manufacturers conform to the standard.
Brothers Pumps, Inc.) (lrxl continued 011 page J6,JJ
O SECURE LUBRICATION
Liquid from the casing flows between
the rear casing and the magnet lining
which prevents clogging. The fluid is
then forced to flow to the rear bushing
then through the shaft to the front
bushing. This flow guarantees perfect
lubrication for the bushing.
G) LONG LIFE THRUST RING
The thrust ring is connected to the
magnet not to the impeller, which
reduces its rotating velocity. The )>
lower velocity Increases the life "O
"Q.
of the thrust ring. 16"
a.
"ti
9 NO ADHESIVE :...------ a
0
All of the bushings as well as the liner lR
ring and thrust ring are not attached by (/)
adhesives. Thus the parts are easily 0
(D
replaced and the parts are free from co·
(/)
any weakness of the adhesive. ::::,
o'
....
o
:::r
(D
3
s:
!!!..
Ill
::::,
a.
"ti
�
Standard materials: other materials available depei ldent upon application. a
0
No. Part Name Material :::r
(D
3
1 Liner Ring Carbon-filled PTFE er
2 Impeller PVDF (KYNAR) •• !!!..
"ti
3 casing PVDF (KYNAR) -
�
4 Bushing Plate PVDF (KYNAR) (/)
5 Front Bushing Carbon-filled PTFE
6 Thrust Ring CERAMIC
7 RearCasing Carbon-filled PVDF
8 OUter Magnet
9 Inner Magnet
10 Shah CERAMIC
11 Rear Bushing Carbon-filled PTFE
12 ·o· Ring VITON Figure 3-1A. Sealless Magnetic Drive Centrifugal Pump, no seals, no leakage, no coupling. Chemical
''Ky,wlsa,.--ol....._Cc,p. resistance depends on materials of construction. See Table 3-2. (By pennission, LaBour Pump Co.)
O SECURE LUBRICATION
Liquid from the casing flows between
the rear casing and the magnet lining
which prevents clogging. The fluid is
then forced to flow to the rear bushing
then through the shaft to the front
bushing. This flow guarantees perfect
lubrication for the bushing.
G) LONG LIFE THRUST RING
The thrust ring is connected to the
magnet not to the impeller, which
reduces its rotating velocity. The )>
lower velocity Increases the life "O
"Q.
of the thrust ring. 16"
a.
"ti
9 NO ADHESIVE :...------ a
0
All of the bushings as well as the liner lR
ring and thrust ring are not attached by (/)
adhesives. Thus the parts are easily 0
(D
replaced and the parts are free from co·
(/)
any weakness of the adhesive. ::::,
o'
....
o
:::r
(D
3
s:
!!!..
Ill
::::,
a.
"ti
�
Standard materials: other materials available depei ldent upon application. a
0
No. Part Name Material :::r
(D
3
1 Liner Ring Carbon-filled PTFE er
2 Impeller PVDF (KYNAR) •• !!!..
"ti
3 casing PVDF (KYNAR) -
�
4 Bushing Plate PVDF (KYNAR) (/)
5 Front Bushing Carbon-filled PTFE
6 Thrust Ring CERAMIC
7 RearCasing Carbon-filled PVDF
8 OUter Magnet
9 Inner Magnet
10 Shah CERAMIC
11 Rear Bushing Carbon-filled PTFE
12 ·o· Ring VITON Figure 3-1A. Sealless Magnetic Drive Centrifugal Pump, no seals, no leakage, no coupling. Chemical
''Ky,wlsa,.--ol....._Cc,p. resistance depends on materials of construction. See Table 3-2. (By pennission, LaBour Pump Co.)
Fluid at approximately 60% of discharge
pressure Is circulated through the bear-
ings and over the rotor for cooling and Dry St•tor
lubrication and returns through the hol- Eliminates oH pressure relief valve re-
low shaft to suction pressure.
quired for oH filled stators. Integrity of �Fl•nges
secondary leak containment shell Is 150 and 300 pslg rating (raised face).
Terminal Plate----------------,iJj maintained.------� Seit venting centerline discharge. Com-
O-rtng sealing lor positive secondary patible with ANSI 673.1 dimensions.
lluld containment.
Be•rlng Monitor---------,
The standard bearing monitor solves the
most basic problem common to all seal-
less pumps-detecting normal bearing
wear so that routine maintenance can be
accomplished before serious motor
damage occurs. It responds to bearing
wear in both the axial and radial direc-
tions and is over 98% affective on "'CJ
c:
70,000 operational units. 3
In addition, the monitor is useful in de- "C
s·
tecting corrosion of the stator liner and Impeller (C
rotor sleeve since the contact tip is High efficiency design, open and closed
supplied in the same metallurgy but configurations. 2.
r
one-half the thickness of those compo- .. ci"
nents. (Optional flow Inducers avallabte for min- c:
imum NPSH requirements.) a:
Sh•ft Sleeves ....., (/)
Available in a variety of surface treat-
ments to suit the specific fluid applica-
tions. Replaced when bearings are
changed for like new wear surfaces and Bearings Hollow Sh•ft (B•sic, Thermoat•ts Thrust W•shera
clearances. Available in a variety of materials to suit HB and HX Models Only) Embedded In the hot spot of the wind- Absorb thrust loads during upset condi-
the specific fluid application. Oversized Assures complete self-venting and pre- ings for protection against overheating. tions and provide back·up to hydraulic
for minimum loading. vents vapor collection at the bearings. thrust balancing.
Motor8
In the Sundyne Canned Motor design, stator liner to cool the motor, and lubri- application to assure full winding life.
the entire outside of the motor is en- cate the bearings. Thermostats are embedded In the hot
closed in a secondary leakage contain- Motor windings and Insulation systems spots of windings for shutdown In case
ment shell or can. Primary leakage pro- are specially designed, developed and of overheating.
tection is provided by corrosion resistant applied as an Integral part of the pump Motors are suitable for use In general
liners which are seal welded and 100% so that design life is at least as great as purpose areas and In Class I, Division 2,
leak checked to assure that pumped for conventional air cooled motors. Group C and D areas for a wide range of
fluid does not contact the stator windings Winding temperature Is primarily Influ- pump fluid temperatures. For Class I,
or rotor core. There Is no shaft protrusion enced by pumped fluid temperature and Division 1 Group C and D; U.L. fisted,
to seal and thus no seals to leak. secondarily by use of cooling Jacket. explosion proof motors are available.
Pumped fluid Is circulated Inside the Fluid temperature Is considered In pump
Figure 3-1 B. Sealless canned centrifugal pump, primary and secondary leakage containment. See Table 3-2. (Courtesy Sundstrand Fluid Handling Co.)
Fluid at approximately 60% of discharge
pressure Is circulated through the bear-
ings and over the rotor for cooling and Dry St•tor
lubrication and returns through the hol- Eliminates oH pressure relief valve re-
low shaft to suction pressure.
quired for oH filled stators. Integrity of �Fl•nges
secondary leak containment shell Is 150 and 300 pslg rating (raised face).
Terminal Plate----------------,iJj maintained.------� Seit venting centerline discharge. Com-
O-rtng sealing lor positive secondary patible with ANSI 673.1 dimensions.
lluld containment.
Be•rlng Monitor---------,
The standard bearing monitor solves the
most basic problem common to all seal-
less pumps-detecting normal bearing
wear so that routine maintenance can be
accomplished before serious motor
damage occurs. It responds to bearing
wear in both the axial and radial direc-
tions and is over 98% affective on "'CJ
c:
70,000 operational units. 3
In addition, the monitor is useful in de- "C
s·
tecting corrosion of the stator liner and Impeller (C
rotor sleeve since the contact tip is High efficiency design, open and closed
supplied in the same metallurgy but configurations. 2.
r
one-half the thickness of those compo- .. ci"
nents. (Optional flow Inducers avallabte for min- c:
imum NPSH requirements.) a:
Sh•ft Sleeves ....., (/)
Available in a variety of surface treat-
ments to suit the specific fluid applica-
tions. Replaced when bearings are
changed for like new wear surfaces and Bearings Hollow Sh•ft (B•sic, Thermoat•ts Thrust W•shera
clearances. Available in a variety of materials to suit HB and HX Models Only) Embedded In the hot spot of the wind- Absorb thrust loads during upset condi-
the specific fluid application. Oversized Assures complete self-venting and pre- ings for protection against overheating. tions and provide back·up to hydraulic
for minimum loading. vents vapor collection at the bearings. thrust balancing.
Motor8
In the Sundyne Canned Motor design, stator liner to cool the motor, and lubri- application to assure full winding life.
the entire outside of the motor is en- cate the bearings. Thermostats are embedded In the hot
closed in a secondary leakage contain- Motor windings and Insulation systems spots of windings for shutdown In case
ment shell or can. Primary leakage pro- are specially designed, developed and of overheating.
tection is provided by corrosion resistant applied as an Integral part of the pump Motors are suitable for use In general
liners which are seal welded and 100% so that design life is at least as great as purpose areas and In Class I, Division 2,
leak checked to assure that pumped for conventional air cooled motors. Group C and D areas for a wide range of
fluid does not contact the stator windings Winding temperature Is primarily Influ- pump fluid temperatures. For Class I,
or rotor core. There Is no shaft protrusion enced by pumped fluid temperature and Division 1 Group C and D; U.L. fisted,
to seal and thus no seals to leak. secondarily by use of cooling Jacket. explosion proof motors are available.
Pumped fluid Is circulated Inside the Fluid temperature Is considered In pump
Figure 3-1 B. Sealless canned centrifugal pump, primary and secondary leakage containment. See Table 3-2. (Courtesy Sundstrand Fluid Handling Co.)
164 Applied Process Design for Chemical and Petrochemical Plants
Heavy Duly Volule Confined Type Gaskel
(150,300 lb. Slul
and 125 lb. Casi Iron) Quench Type Gland (Opliona I Conslruclionl
Wear Rings (Hardened
Malerials Oplionall
Seal Lanlern
Enclosed Type
Impeller i
Hydraulically
Balanced far
Reduced Thrust
Load Slinger; La byrinlh Type
Ven! and Drain (Optional) Back Plate; Water ·Caoled Type,Extra Deep Stuffing Box
Figure 3-2. Cut-a-way section of single-stage pump. Part 1 (above)
enclosed type impeller, Part 2 (lower left) open type impeller. (Cour-
tesy Peerless Pump Div. FMC Corp.)
(text rm1ti11uedfrompage Jf,I) 2. Semi-enclosed-used for general purpose applica-
Basic Parts of a Centrifugal Pump tions, has open vane tips at entrance to break up sus-
pended particles and prevent clogging.
Table 3-3 is a quick reference as to the function of the 3. Open-used for low heads, suspended solids appli-
basic parts. cations, very small flows.
Small radial vanes are usually provided on back shroud
Impellers or plate of impeller to reduce the pressure on the stuffing
The three common types of impellers that impart the box, and prevent suspended solids from entering the back
main energy to the liquid for process applications are (see side and possibly causing clogging.
Figure 3-15): The working or pumping vanes are backward in form
relative to the impeller rotation.
1. Fully enclosed-used for high head, high pressure These impellers are available in nearly any material of
applications. construction as well as rubber, rubber-lined, glass-lined,
Pumping of Liquids 165
Table 3-2 and plastic. The lined impellers are of the open or semi-
Approximate Capacity-Head Ranges For open type.
Centrifugal Pumps
=-- - ----=---··===-- - ����--=::.._ ::-----.c_ - ===---==---
Max. Casing
Max. Head*
Type GPM* Ft. Figure No. The casing may be constructed of a wide variety of met-
--------------------------
Single Stage (H) 600 225 3-1 and 3-2 als, as well as being lined to correspond to the material of
Canned, Sealless 2000 650 3-lA the impeller. Operating pressures go to about 5000 psi for
Canned, Sealless !000 800 3-IB the forged or cast steel barrel-type designs. However, the
Single Stage (V) >L:jO 250+ 3-3 usual process application is in the 75 psi to 1,000 psi
Double Suction, range, the latter being in light hydrocarbon and similar
Single Stage (H) 15,000 300 34 and 3-5 high vapor pressure systems.
Multistage (H) 3,000 5,000 3-6, -7, and -8
Single and Multistage (V) The removal of the casing parts is necessary for access
a. Mixed Flow CV) 100,000 75 3-11 Lo the impeller and often to the packing or seals. Some
b. Axial Flow (V) 100,000 25 3-10 designs are conveniently arranged to allow dismantling
c. Centrifugal (V) 400± 5,750 3-9, -12, -13 and -14 the casing without removing the piping connections.
There are proposed construction standards being consid-
''Not necessarily at same point.
(I-I) = Horizontal. ered which will allow easy maintenance of many of the
(V) = Vertical. t>ves now being offered in a non-standard fashion.
STATIONARY
FACE
SEAT
GASKET
-
GLAND
ROTATING
FACE���--�----�.-.:��'7':t
GASKET COIL ·-
SPRI �
SHAFT_.--
SLEEVE
DOUBLE
MECHANICAL
SEAL.
IMPELLER
SCREW
Figure 3-3. Cross-sectional view of a vertical in-line pump. (By permission, H. Knoll and S. Tinney, "Hydrocarbon Processing," May 1971, p.
131 and Goulds Pump, Inc. Mechanical seal and seal venting details courtesy Borg-Warner.)
166 Applied Process Design for Chemical and Petrochemical Plants
Table 3-3 ance between these two faces prevents leak·
Basic Parts of a Centrifugal Pump age of liquid out or air in.
Shaft sleeve Protects the shaft where it passes through the
Part Purpose stuffing box. Usually used in pumps with
Impeller Imparts velocity to the liquid, resulting from packing but often eliminated if mechanical
centrifugal force as the impeller is rotated. seals are employed.
Casing Gives direction to the flow from the impeller Wearing rings Keeps internal recirculation down to a mini-
and converts this velocity energy into pres- mum. Having these rings as replaceable wear·
sure energy which is usually measured in feet ing surfaces permits renewal of clearances to
of head. keep pump efficiencies high. On small types
Shaft Transmits power from the driver to the im- only one ring is used in the casing and on
larger sizes, companion rings are used in the
peller. casing and on the impeller.
Stuffing box This is a means of throttling the leakage
which would otherwise occur at the point of Wearing plates With open type impellers or end clearance
entry of the shaft into the casing. Usually not wearing fits, these perform the same purpose
a separate part, but rather made up of a as wearing rings do with radial clearances.
group of small details, as "A" to "D". Bearings Accurately locate shaft and carry radial and
(A) Packing This is the most common means of throttling thrust loads.
the leakage between the inside and outside of
the casing. Frame To mount unit rigidly and support bearings.
(B) Gland To position and adjust the packing pressure. In most single suction pumps this is a sepa-
(C) Seal gage Provides passage to distribute the sealing me- rate piece. In many double suction pumps, the
( also called dium uniformly around the portion of the support is through feet cast as part of the
water-seal shaft that passes through the stuffing box. casing. In some special suction pumps, the
or lantern This is very essential when suction lift con- feet are also part of the casing and the bear-
ring ditions prevail to seal against in-leakage of air. ing assembly is overhung. With close coupled
(D) Mechanical Provides a mechanical sealing arrangement single suction types, this support is provided
by the motor or by special supporting adap-
seal that takes the place of the packing. Basically ters.
it has one surface rotating with the shaft and
one stationary face. The minutely close clear- Coupling Connects the pump to the driver.
MODIFIED STUFFING BOX ... avail- CASING is horizontally split to permit STANDARD DEEP STUff·
t1ble with John Crane Type 1 mechqni- removal of top half without disturbing ING BOX carries g"nerous
<al seals. These mechanical seals are piping. Suction and discharge connec- packing; is easily access-
easy to install in the field and are car- tions are in lower half of casing. ible. Stuffing box contains
' ied in stock. split seal cages and split
glands. Gland bolts are
completely removable.
Bushing at bottom of stuff·
ing box is close fitting and
readily replaceable.
SHAn is heat treated, ex-
tra heavy to take maximum
radial thrust. Shaft sup-
ports impeller between
bearings for longer bear- BALL BEARINGS, grease-
ing, wearing ring and pack- lubricated, held in bearing
ing life. housing of heavy one-piece
construction - are excep-
tionally well >ealed against
moisture. Brackeh holding
WEARING IINGS pro- housing are cast integral
tect casing, are easily re- with the casing. Bearing
placed, assure continuous covers are also of heavy
high efficiency. Impeller IMPELLER, hydraulically one-piece con.truction and
rings and tongue and balanced - double suction are interchangeable end
groove casing rings are enclosed type for better for end ... and contain sta·
available at nominal performance under critical tionary member of laby-
extra cost. suction conditions. rinth seal.
Figure 3-4. Centrifugal Pump, double suction single-stage impeller. (Courtesy Allis-Chalmers Mfg. Co.)
Pumping of Liquids 167
Shaft <!HAHNEL RING
STUFFING BOX
Care should be given in selecting the shaft material. It
must be resistant to the corrosive action of the process flu-
ids, yet possess good strength characteristics for design.
For some designs it is preferable to use a shaft sleeve of
FLUID PASSAGES
Figure 3-6. Cross-section horizontal two-stage horizontal split case
centrifugal pump. (Courtesy Ingersoll-Rand Co.)
Figure 3-5. External view double suction single-stage pump. (Cour- Figure 3-7. Exterior view of horizontal two-stage split case centrifu-
tesy Allis-Chalmers Mfg. Co.) gal pump. (Courtesy Ingersoll-Rand Co.)
Opposed Impellers No distortion
balance axial thru1t streues an ,haft
BJeed off annulus piped
High efficiency, to suction noule puh both
long life labyrinth stuffing boxH
wearing rings
Renewable shaft
inHrted here
Casing support insures
rings are easily coupling alignment
replaceable Positive weening Impeller mounting with any temperature
ring seah eliminate h,okag& onures h,ok-proof ihoft
between case and rin�s sealing between stages
Figure 3-8. Refinery oil and boiler feed high pressure centrifugal pump. Courtesy Delaval Steam Turbine Co., currently Transamerica
Delaval, Inc.)
168 Applied Process Design for Chemical and Petrochemical Plants
PARTS LIST
Cat.
No. Part Name
2-F First Stage Impeller
2-S Second Stage Impeller and Above
34 Nozzle Head Bushing
260 Diffuser Ring
298 Suction Bell Ring
8 Stvfflng Box lushing
9-L Lower Shaft Sleeve
Inlet
9.1 Intermediate Shaft SIHve
9-U Upper Shaft SIHve
910 34 12 Packing
13 Seal Cage
14 Gland
2.57·1 171 14-A Gland Bolt
31 Complete Coupling
61-P Pump Half Coupling Lock Nut
223 7 61-M Motor Half Coupling Loclc Nut
62 Complete Piping
73 Stuffing Box
218 89 Ba lance Disk
140 Motor Support Column
146 Diffuser
2-S 162-F ht. Stg. Impeller Retaining Collar
162-S 2nd Stg. and Above Impeller Retaining
Collar
162·5 171 Nozzle Head
175 Sudion llell
190-L lower Sleeve Bearing
U6 190-U 190-U Upper Sleeve Bearing
218 Tank
223 Spacer Column
237-F 162-f 237-F First Stage Snap Ring
237-S Second Stage Snap Ring and Above
257-L Lower Gasket
190-L 298 257-1 lntennedlate Gasket
257-U Upper Gasket
257-S llllnd Flange Gasket
7 Shaft with Keys
175
910 lllnd flange
Figure 3-9. Vertical multistage centrifugal pump with barrel casing. (Courtesy Allis-Chalmers Mfg. Co.)
the proper corrosion resistant material over the preferred Packing and Seals on Rotating Shaft
structural shaft material. These sleeves may be metal,
ceramic, rubber, etc., as illustrated in Figure 3-16. Conventional soft or metallic packing in a stuffing box
(Figure 3-17) is satisfactory for many low pressure, non-
Bearings corrosive fluid systems. Special packings such as teflon, or
mechanical seals are commonly used for corrosive fluids,
since there can be leakage through the packing along the
The bearings must be adequate to handle the shaft
loads without excessive wear, provided lubrication is main- rotating shaft. However, for these conditions a mechanical
seal is preferred. When the pressure becomes high (above
tained. Usually this is not a point of real question provid- about 50 psig) or the fluid is corrosive, additional means
ed the manufacturer has had experience in the type of of sealing the shaft must be provided. Particular care must
loads imposed by the service conditions, and the respon- be taken in handling and using the mechanical seals, and
sibility for adequate design must be his.
these special instructions should be obtained from the seal
In all cases, the bearings should be of the outboard manufacturer [27]. Generally speaking it is not wise to
type, that is, not in the process fluid, unless special condi- have the mechanical seal installed at the pump factory, as
tions prevail to make this situation acceptable. the slightest amount of grit on the faces can cause perma-
Pumping of Liquids 169
Figure 3-10. Vertical propeller type Figure 3-11. Vertical single-stage mixed flow type pump, liquid inlet
pump. (Courtesy Peerless Pump and impeller. (Courtesy Peerless Pump Div., FMC Corp.)
Div., FMC Corp.)
Plain or Tilting Pad
Gearbox-------· Journal Bearings
Impeller
Case/I
Pump
Figure 3-12. Single-stage, high speed (>5000 ft) centrifugal process pump. Pumps are high speed, gear driven, and especially suited for appli-
cations in light hydrocarbon liquid service. (Courtesy Sundstrand Fluid Handling, Inc.)
170 Applied Process Design for Chemical and Petrochemical Plants
Figure 3-15. Continued.
Enclosed double-suction Impeller with sealing rings on both sides.
(Courtesy The Deming Co.)
Impeller: Since the Sundyne straight, radial-bladed Impeller does not
require close running clearances, It ellmlnates the necessity for over-
sizing to compensate for performance deterioration common to con-
ventional pumps. Clearance of the Sundyne Impeller Is 0.030 to 0.070
Inch.
Inducer: An optional hellcal Inducer Is available to substantially
reduce the pump NPSH requirement.
Figure 3-13. Impeller and inducer (optional) for pumps in Figure 3-
12. (Courtesy Sundstrand Fluid Handling, Inc.)
all Mixed flow semi-enclosed Impeller. (Courtesy The Deming Co.)
'
.
'
Cross-section of
Heads and Impellers
Figure 3-14. Turbine pump. (Courtesy Roth Pump Co.)
Semi-open or semi-enclosed impeller. (Courtesy Goulds Pumps Inc.)
'
Enclosed single-suction Impeller with sealing on suction and back
sides. (Courtesy The Deming Co.)
'�
Figure 3-15. Impeller types. Open impeller for corrosive or abrasive
slurries and solids. (Courtesy Goulds Pumps, Inc.) Front Back
Pumping of Liquids 171
Turn Pump Over by Hand before Starling No. Parr Nome
Molar lo Ht Iha! II Turn1 Freely.
I. Pump Co&ing
3. Impeller
Lubricate Stuffing Box 4. Pump Frome
By Circulating Water or 7. Split Gland
Clear Solution lhru 10. Shoff
Connections •x• a •y•. 12. Lantern Ring
13. Pocking
44. Nipple (2)
Tong of Key 55. Thrower Ring
Must be Located 56. Rubber Ring
Here 59. Re&ilient Sleeve
60. S hafl Sleeve
61. Rubber Ring
62. Retaining Ring
74. Rubber Ring
79. Cop&crew (6)
82. Gland Yoke
88. Key
98. Shafi Sleeve Ext'n.
106. Tie Rod
144. Key
164. Wosher (2)
165. Retainer (2)
167. Rubber Ring (2)
Figure 3-16. Stuffing box details lined pump with porcelain or teflon® shaft sleeve. (Courtesy Dorr-Oliver, Inc.)
nent damage or destruction on only one or two revolu-
tions at pump speed. The seals should be inspected and
cleaned immediately prior to initial start-up.
A mechanical seal system (see Figures 3-l 9A [23] and
3-19B [16]) contains a rotating element attached to the
rotating shaft by set screws ( or a clamp) that turns against
a stationary unit set in the gland housing. The necessary
continuous contact between the seal faces (see Figure 3-
l 9A) is maintained by hydraulic pressure in the pump
from the fluid being pumped and by the mechanical load- Longitudinal section with Lantern Gland.
ing with springs or bellows. To seal the mechanical seal
elements to the rotating shaft to prevent leakage along
the shaft, two basic types of seals are used: (a) pusher type
using springs and seal "O" rings, wedge rings, etc. and (b)
non-pusher type using some form of bellows of elastomer
or metal [24]. Also see Table 3-4. Pocking
The matching contact rubbing faces are made of dis- Throat Bushino
similar materials, precision finished to a mirror-like flat
surface. There is little friction between these, and hence,
they form a seal that is practically fluid tight. The rubbing
materials may be some combination of low friction car-
bon, ceramics (aluminum oxide, silicon carbide), and/or
tungsten. The choice of materials will depend on the ser-
vice, as will the selection of the materials of construction
for the other components, such as springs, "O" rings, Gland
other seal rings, and even the housing. The designer Box Gland
should consult the seal manufacturers for details of appli-
cation not possible to include here. Figure 3-17. Packed stuffing box. (Courtesy Dean Brothers Pumps, Inc.)