The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by krujum16kb, 2021-09-19 03:40:52

พ19-64

พ19-64

xP(x) 1

1

ค่าความจรงิ ของประโยคที่มตี ัวบง่ ปรมิ าณตัวเดยี ว

xP(x) x P(x)
xxPP((xx)) xx PP((xx))
xP(x) x P(x)

1 U = 1,3,5 xx  2
xx  2
ซ x2
P(x) x  2 ซ

P(1) 1  2
U
P(3) 3  2
P(5) 5  2

x

xP(x)

13

2 U = − 3,−2,−1,0 x x2  0

x x2  0 x2  0

P(x) x2  0 ซ 4
P(− 3)
(− 3)2  0

P(− 2) (− 2)2  0 ซ
P(− 1) (−1)2  0 ซ

P(0) 02  0

x U

xP(x)

1

3 U = − 2,−1,0,1,2,

1)  x x2 = 2x  2) x − x + 6 = x

1)  x x2 = 2x

P(x) x2 = 2x ซ

P(− 2) (− 2)2 = 2(− 2) ซ

P(− 1) (−1)2 = 2(−1) ซ
P(0) 02 = 2(0) ซ

P(1) 12 = 2(1) x2 = 2x
P(2) 22 = 2(2)

x U

xP(x)

1 5

3( ) U = − 2,−1,0,1,2,

 2) x − x + 6 = x

P(x) − x+6 = x ซ

P(− 2) − (− 2) + 6 = −2 ซ

P(− 1) − (−1) + 6 = −1
P(0) ซ
P(1) − 0+6 =0
P(2) − x+6 = x
− 1+6 =1
x
− 2+6 =2

U

xP(x)

1 6

แบบฝึกทกั ษะ

2.

• x(x −1)(x +1) = x2 −1 ,U = − 2,1,3,7
 • x 2x2 + 3x +1 = 0 ,U = − 2,1,3,7

• xx = x ,U = R

• x [ x ] ,U = Q

17


Click to View FlipBook Version