The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by krujum16kb, 2021-09-26 03:59:12

2ม3-4-64

2ม3-4-64

เมทริกซ์ (Matrix)

รเ ท รรรรเเ ททรรเเ ทรรทรเรรร2ทรม5มรร ร รรรรมม รรร222ร222ม055ม055334เิ ร433เิ500ร222005ม055 ิเิเ ิเเิ เิ
รเ ท 2205 2255
2250 2200 3355 3355 3
25 2255 3300 3300 3

4400 4400 4

 (())  (( )) (()) ( )


25 3343340500เ50เมมททร222ร222ิก055ิก055เซมซเ์มท์ 334ทร334222050เรกิ050222055มกิ ซ055ทซ์ ร2์22334ิก055334050ซ050222์ 222055334055050334334050050222222055055334334222050052022055055 222334055334050050334050 
22220505 

เมทรกิ2ซ5์
เมทรกิ ซ์

ทิ ม mn (m, n I + ) m (row) n
(colum)
ม กิ ท ij
a11 a12 ... a1n 1 )
a21 a22 ... a2n 2

 m

am1 am2 ... amn
1 2 ... n

aij ม ิก (entry) i j

เมทริกซ์ i 1,2,3,...,m j 1,2,3,...,n

mn mn (

m  n มิ ิ เมทรกิ ซ์ (dimension of matrix)

2102221121200221002020000121312112213113313 3333 222222

−3−−332−302221000111 1…111…3…333..
121122212 −−−−−11111 1…111…11…11..
3…333…11…11.. 22

…………………………………………………………2……2…2....2.

A,B,C,… a,b,c,…

A = a11 a12 
a21 
a21 

a, b

 A = aij mn A mn ij
j 1,2,3,...,n
aaij ij i 1,2,3,...,m

1 (((1(2121)1)())(11A)(((A((()111222aa111aa))))))(((131111(323(21(32(AAA)))112))1(aaaaaa)==1)(==1111333A)A222333A)aa1−1−aa1,3======A1,2133AA123AAAA,a,a111−−−==1==1a=4=,,,Aa4AAA111A2AAA231−,,,3aaa=1−=A,A−111A1,===A−aaaA3444=1603A=2,60a32222,3a3331,====a441,AAA=4a−−−42333,===a66600032,222a333=32−A=−2a−−−1−,,,Aa−13444−=603623=3136630423,,,(13aaa=43(23=,24222−−−,−−−)aaa4−−−111=)=,4a−33366644,333−a1114444(((2−333===−222a2−12a−−−2aa−−1421)))361423===11143624(34443−−−1=2444442(3,=2,)222aaa−−−=)=4444a222−1114111a4−2224444−2−223a−,,,32a−54321,153424,1241aaa24,a−−−222a,33333555333a4444,,,4a,−2,−32aaa3534,a533334,a44433a3,,,3a,3,43aaa4,a333,a33311a4,,,4a,3,33aaa3,a111a,44422a1,,,1a141aaa4,222,111

a
a2

22 2 2A =A a=ij 4aAij4 = 4 a ij 4  4

4 A = aij 4  4

aaaaa==−1−124311111010111aaaaaA−12341111ijaaaaa01111234=22=222 1

2 2a ij =a ij  i >0 ji > j i> j 1 i=j
==A j  i>j
aAij Ai−<1=ji <ajij 4 i4< a ij =  0
4
a1a2a1113 a1a31a214 aaaa41a2aaa344444124343333 a14  =  − 1 i<j
aaa234aaa222iiaa243aa111<>12343333 a 2a32a224 
a 3a33a234 4 a11 a12 a13 a14 
j a 4a3a4a21444 a24  a a22 a 23 
j a 34  a 21 a 32 a 33 a 24 
A 31 a 42 a 43 a 34 

a 44  4 a41 a 

 4 44 4  4

A = aaaa23111211 a=11aa22=22 aaa==aa=21aaaa323111a2212431a333a1==43=3==3=2a=aa1=aa=aa43332122343a234441a=a23=4=4==44=1a=aaa24=a=3a14444313a321=a2=4==4==2a=a1a2a=4a243424a41=a3=4=4==3a=aa31=a42aa4a43411−22211=01======−a0aa1aa3214342313 = a33 = a44 = 1 =
aa4112 aa==122aa1 a34a22=1=331 = a41 = a42 =
== a032 = a23 = a24

== a−141

11000=aaa1122111000==A−=− 1aa2−321 = 1a11110aa143−−332−1110=1100=−−−−−=11a1111aa234−−−444−−11111=11104==4a1a2444−−−2 =111=Aaa34=43 ==100 0 − 1 −1 − 1
0 10a=13 111=0=−− 1 4  4 −1 1 −1 − 1
A =A 0 10 00 0 0 − 1
A = 1 00− 0 1
0 0 1 4  4


1 − 1

3131))23313213)))))33a311331))2311)))))aa2323231))111)A3BBabb1311,)))))))))33311aaa1))22aa123111A1111Bbaaa11,111)))AAA3B1BB44aAbbb1111,,,2a1111,1,12222aaaa111111Aa0B4abA011111,1214444,,1AAA22,2a,2,,,1aa,0,1a,23baaa141000B223,Aab1A4B2a2111,2222,A4,,,222a2222,3,,,2223=a0baaa1,,,B3,a=222A43331bbb221111,BBB,aaa22AAA24444b,2222310a4=,2222b2222202233333,104b21=1==B02a,A4,,,1,2b,22104a,264bbb2302=1110004441a222264,20002222,b2,2,111122,,,,2bb2a,,,6422A10b−42B02aaa32b2666444222,bbb,12A1−21B,2222232,,,,222232222bb112222,1Aa−664B2bbbb332,,,AAA−−−2b11BBB,051,6233332222bbb2,11113111a,05b14,363333A−b2B2,111132a,6366,054b13,1,,b2,2,,0500b553a,32432bbb1336aaa22)4442b,,333332,222205322222,,,33333bb2)242aB2324bbb3BA322222)32=33222=,23243333=B)))2222BA086b224==B232=2222342244ABBBB164)=2=086BABABA=======0==86224164B000868686BA−164==0332=1611466442086−0332−1642240332−−−2030033323322A2222−4033224A2222444AAAA2B4 A B BB B
BB

ก รเท กั เมทรกิ ซ์

1.  b = bij mn mn
ท ิ ม1. 2
ทิ ม  abij=bbiijj mn i 1,2,3,...,m j 1,2,3,...,n
= j 1,2,3,...,n
 2A = aij mn mn
 A = B aij =1b)ij
2) A i B1,2,3,...,m
A = aij mn 1) AB
2)
A =AB= B AB
AB
A=B

1

1 11 ====A22b22a=ba,,1,,12112111=2=AA2==57bbaa7==2211,11,22,,22ba73==22==11221551A,77b77a==b,,a2,,=2111212772332=,,=B=2=2,,bb25aa27=75A2252211,,,11ba,===7132==1BB22252222,=2==b=55b2a55a52,,722,,717322122,2,22==55=B73=2bb32=aa35,225b7733a2222,,222221==12==5=33=B33b2a22=5732252,,=2=2533ba273222==33

a11 = 1
=
b11 2bb2aa,11,111111

ั ั ัั ัั ั ั A AA B BBA B B
ัั A

1 2 −1 1 2 w
=−−54541102,, 541122yy, =ww44zz2y 
2 AA == 102102 22 A − 3 22 B x 4 
−− 33 − 4BB −4
AA == BB −− 44 == xx z 
−− 44
ัั ัั
A=B w = −1, x = −3, y = 0, z=
z =5
ั ั ww == −−11,, wxx===−1−−,33,, x yy= ==−300,,, yzz == 550,

ww == −−11,, xx == −−33,, yy == 00,, zz == 55

((133))3(2(x(((((()3111333y))))))x−333((((0222((23x1xx3))),x))yyy()x3+13yxyxxxx+)x32(2yyx00333)xxxy,,2xxx(((((((xxx33322+++6x111133333=5yyyxxxyxxxy2y+++y))))x))xxxyyy2220yyyyy3x3324((,x(222x23+1xx3y2xy))222x6661+4)yy===55504x21yy2y21yyyyyy22xx5yyyyyyyy00xxyy222444200233xx26=5,,222y21x1x1y4y44x00((4422111yxx3y3y111++222115533000yyxxyyx0x00++))xx2422yyyy21404212212502222066==55yy22yyyyx---xyyyyyy---------2244------------221144---0044221111---22----55---0000---------------------------------------------(((---------231------------------)))------------------------------------------------((((((---231321------))))))------------------------------(((------132------------)))------------------------------------------------

444444 xxxxxx,,,,,,yyyyy zzzzz xxxxxx++++505005005+05yyyyyy −−−−−1111333331322222 −−−−−−−−−−−−3333344444yyyy4y ====== 005550052222052502 yyyy−−−−y−11111−−−−−1−22222zzzzzz xxxx−−−−x−−−−−−3333−344444zzzzzz

(1) y 2 x (5xxxxxxxxxx2yyyyy2222xxxxxx)xy2xzzzzz yyyyzzzzzzzzzzzzzzzyzzz (yyyyy2y222233333231111yyyyy1y1111x1) ---------------- (6)------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------(((((((((((((((((((((2213441355213514441325(((((51243)))))))))))))))))))))))))))))

(((((((((((11113333313))))))))))) ((((((((((22222(444442))))4))))))y) 2 x 1

(1) (1(1) ) y 2y2yxx 22 2xx x 1 -------------------------(--6---)--------(6(6) )

x3

x 3 y 2(6y)yx 22 x(x5) (5(5) )

(1(1)) (1(1()1)) yy 22yyyyxx 2222 xxxx --------------------------(-6(-6-)-)-----(6(6()6))
4 (ตอ่ )

yy 22yyyyxx 2222 x(xx5(x5)) (5(5()5))

22xx 222(x2(2xx2x xx)()((2(22211xxx)x))) 1111

22xx 222x2xx2x xx222211 xxxx 1111

xx x3xx3x 3333

xx x3xx3x (36(3363)) (6(6()6))

yy 22yyyy(( 23223)2) ((((55333)3))) 5555

xx x3xx3x (34(3343)) (4(4()4))

33 zz 3333 1z1zzz 1111

zz 22zzzz 2222

xx x3xx3x,, yy 33335,5,,yyyy 5555zz 22zzzz 2222

1.1. 2 3 4 5 2. 1 2 3
 
7 4 3
61. 22 3 4 5 1 3
25. 01 2 
3
3. 1 4 4. 3 7 87 41.
1 1 91
1. 1.   2.2. 6=38161024 2 5 89705a412213,0..a1248163,3a326241, 4 5 2. 1 2 3
23.. 3. 4.3.  
8 3. 64735 4 43. 73 7 a 25 7 4
1. 3
1. 2 −9 4 2.5−711 −42214 311 1 5 0
2. 337 b
3. A 3 1 4. 3 7 8 a

6 642b2816A ==c 6247010 − 3 61 59  1 1 9
0 4 3 7
a,81ba0c
2a. , b3. 74. 33 7 −81 13−29b.271 8 Aa=12,10a14−7,9a21−,3a3 25− 1 − 2
−2 9 14− 31 a976 9 6
3.1  9  a12 , a14 , a
5  3 43. 3 a,7b  b
3.
c
3.1baA22= −10b26Abaa072=2x−=c7=9b270−10264=−75323y570−=a7−96−62142525−−932aa3−6
3.2 3.2 c a a 3b.1b a 2 = 7 2 a
2b5 0 5 
a, b a a12 , a14 , a 210, a

3.1 a, b0 −1 00++−11932.a25353 a 2 −yy6a75−5−1112=,a24514 ,aa−6212, a25
26bxx
==b05052b

3.13.2 a 2 6a = b2245= 76  2 ax − y 8 = − 4 8
b 2 −70 a0− 2 5  3 22 2x + 3y
ba b 3

2


Click to View FlipBook Version