1.
2. x + 5 = 5 + x
3.
4.
5.
57
2+3= 4
3 6,7,8,2,1, 5
23 = 8
x + y = 16
1
ชอ่ื .....................................สกลุ ...........................
ชัน้ ....................................เลขที.่ .........................
(8 + 22)3 (10)2
2 x2 − x = 6
7 1,3,5,7,9
+2
2
pq pq pq
TT T
TF F
FT F
FF F
p
q
pq
p
q
pq
p
q
pq
p
q
pq
3
pq pq pq
TT T
TF T
FT T
FF F
p
q
pq
p
q
pq
p
q
pq
p
q
pq
-
-
4
p q pq pq
pq → p→q
pq
T
TT F
TF T
FT T
FF
2 +3 = 3+ 2 3(2 + 3) = 3(3 + 2)
p 2+3=3+2
q 3(2 + 3) = 3(3 + 2)
p→q 2 +3 = 3+ 2 3(2 + 3) = 3(3 + 2)
3 23 23
p 3
q 23
3
p→q
5
23 3 3
p 23
3
q 23
p→q
p
q
p→q
pq pq pq
TT T
TF F
FT F
FF T
p
q
pq
22 = (− 2)2 2 = −2
p 22 = (− 2)2
6
q 2 = −2
pq 22 = (− 2)2 2 = −2
23 11
23
p 23
pq q 11
23 23
11
23
p
q
pq
p
p ~p
TF
FT
p 5+2=7
~p 5+27
p
~p
7
ช่อื .....................................สกุล...........................
ชั้น....................................เลขท.่ี .........................
20 = 1 22 2k + 1 k = 1,2,3,...
37 73
8
√9 ≠ 3
9
ลำดบั ขั้นการหาค่าความจริงของประพจนท์ ี่มตี วั เชื่อมตง้ั แต่สองตัวข้ึนไป
1. หาคา่ ความจรงิ ของประพจนย์ ่อยในวงเลบ็ ก่อน (ไมม่ ีวงเลบ็ ข้ามไปทขี่ ้อ 2)
2. หาคา่ ความจรงิ ของตัวเชอ่ื ม “~”
3. หาค่าความจริงของตวั เชื่อม “ v ”,“ Λ ”
4. หาคา่ ความจรงิ ของตวั เชอื่ ม “→”
5. หาค่าความจรงิ ของตวั เชอ่ื ม “ ”
8 + 4 =10 34 9
7 + 3 =10 p 8 + 4 =10
q 34 9
r 7 + 3 =10
pq→r
8 + 4 =10 34 9 7 + 3 =10
a,b c (a b) c
a
b
c
(a b) c
10
(~ p q) (p q) p→q
p→q
p
q
(~ p q) (p q)
(~ p q) (p q)
pq
(~ p →~ q) → (p q)
pq
p
q
(~ p →~ q) → (p q)
(~ p →~ q) → (p q)
~ (p → q) s t
(p q) (s t) → t
~ (p → q)
(p → q)
11
p
q
st
s
t
(p q) (s t) → t
(p q) (s t) → t
( p → q) (p r) → (s → r)
p, q, r s
( p → q) (p r) → (s → r)
p
q
r
s
12
(~ q ~ s) ( p → q)
p, q s
(~ q ~ s) ( p → q)
p
q
s
p (~ q → r)→ (~ s → r)
p, q, r s
p (~ q → r) → (~ s → r)
p
q
r
s
13
ช่อื .....................................สกลุ ...........................
ช้นั ....................................เลขที่..........................
p, q, r, s t
~ (p ~ q) t
(s ~ p) (q →~ r)
(p q) (t s) (q → r) → s
14
pq
~ (p → q) → (p ~ q)
pq qr
(p q) (r ~ p)
( p → q) (q p)
pq
15
pq p q
pq
pq p→q
pq ~p
p
p
p
T
F
pq pq
pq
TT
TF
FT
FF
16
pq r p,q r
T pq r
T
TTT
F TTF
TFT
T TFF
F FTT
FTF
F FFT
FFF
n
n 2n
(p q) →~ p pq p
q (p q) →~ p
p q p q ~ p (p q) →~ p
17
( p → q) ~ (q → p) pq
( p → q) ~ (q → p) p
q
p q p → q q → p ~ (q → p) ( p → q) ~ (q → p)
TT T T F F
TF F T F F
FT T F T T
FF T T F F
( p q) (q → r) p,q r
p,q r ( p q) (q → r)
p q r p q q → r ( p q) (q → r)
TTT T T T
TTF T F F
TFT F T F
TFF F T F
FTT F T F
FTF F F T
FFT F T F
FFF F T F
18
ช่อื .....................................สกุล...........................
ชน้ั ....................................เลขที.่ .........................
pq r s
p → (~ p → q)
(q ~ p) r
(p → q) (p s) → (r → s)
19
≡ pq p ~ q ~ (~ p q)
~ (~ p q)
pq p ~ q ~ (~ p q)
~ p ~ q p ~ q ~ p q
p ~ q ~ (~ p q)
p ~ q ~ (~ p q) p ~ q ~ (~ p q)
~ (p → q) ~ p →~ q
~ ( p → q) ~ p →~ q
~ ( p → q) ~ p →~ q
p q ~ p ~ q p → q ~ ( p → q) ~ p →~ q
TTF F T F T
TFF T F T T
FTT F T F F
FFT T T F T
~ (p → q) ~ p →~ q
~ (p → q) ~ p →~ q
20
pq ~ (~ p q) p ~ q
~ (~ p q) ~ (~ p) ~ q ~ (~ p q) p ~ q
~ (~ p q) p ~ q ~ (p ~ q) ~ pq
p ~ q
pq ~ (p ~ q) ~ p q
~ p ~ (~ q)
~ (p ~ q)
~ p q
~ (p ~ q) ~ pq
รปู แบบประพจนท์ ีส่ มมลู กันทีค่ วรทราบ
1. ~ (~ p) p
2. p q q p
3. p q q p
4. p q q p
5. p (q r) ( p q) r
pqr
6. p (q r) ( p q) r
pqr
7. p (q r) ( p q) ( p r)
8. p (q r) ( p q) ( p r)
9. p → q ~ q →~ p
~ p q
10. p q ~p ~q
( p → q) (q → p)
11. ~ ( p q) ~ p ~ q
12. ~ ( p q) ~ p ~ q
13. ~ (p → q) p ~ q
14. ~ (p q) p ~ q
~p q
15. p p p
16. p p p
21
ช่อื .....................................สกลุ ...........................
ชัน้ ....................................เลขที.่ .........................
p →~ (q → p) ~ p (q ~ p)
~ p (~ q p) ~ p (q → r)
pq→r
~ p (q → r)
( p → r) (q → r) ~(p q) r
~ (p q)→ r (~q → ~p) (~q p)
pq
( p → q) (q ~p)
p → (q r) (~ r p) → q
(~p → ~r ) (~p r) r p
p →~ (q r) ~ p (q ~ r)
(p q) → r ( p → r) (q → r)
~ (p ~ q) ~ p q
22
pq (p → q) p ~ q
(p → q) p ~ q
p q ~ q (p → q) p ~ q
(p → q) p ~ q
(p → q) p ~ q pq ~ p ~ q
q
p
pq ~ p ~ q
p q ~ p ~q pq ~ p ~ q
pq ~ p ~ q
~ pq p ~ q
23
ชอื่ .....................................สกุล...........................
ชั้น....................................เลขที.่ .........................
pq ~ p ~ q
p→q ~ p →~ q
pq ( p ~q) (q ~p)
24
p q
( p → q) p → q
( p → q) p → q
p q p → q ( p → q) p ( p → q) p → q
TTT T T
TFF F T
FTT F T
FFT F T
( p → q) p → q
( p → q) p → q
pq
(~p ~q) ~( p → q)
(~p ~q) ~( p → q)
p q ~ p ~ q ~ p ~ q ( p → q) ~ ( p → q) (~ p ~ q) ~ ( p → q)
TT F F F T F F
TF F T F F T T
FT T F F T F F
FF T T T T F T
(~p ~q) ~( p → q)
(~p ~q) ~( p → q)
25
pq
(~ p → q) → ( p ~ q)
(~ p → q) → ( p ~ q)
p q ~ p ~ q ~ p → q p ~ q (~ p → q) → ( p ~ q)
TT F F T T T
TF F T T T T
FT T F T F F
FF T T F T T
(~ p → q) → ( p ~ q)
(~ p → q) → ( p ~ q)
p q
(p q)→ (p → q) (p q)→ (p → q)
(p q)→ (p → q)
ขดั แยง้
q
(p q)→ (p → q)
26
pq
(~ p → q) → ( p ~ q)
(~ p → q) → ( p ~ q)
(~ p → q) → ( p ~ q)
(~ p → q) → ( p ~ q)
(~ p → q) → ( p ~ q)
p q
p (~p q) → q p (~p q) → q
p (~p q) → q
ขัดแยง้ กัน
p
p (~p q) → q
27
ช่อื .....................................สกลุ ...........................
ชนั้ ....................................เลขท.่ี .........................
(~ p q) →~ ( p q)
(p → q) (p → r) p → (q r)
( p q) ~p → q
(~p → ~q) → ( p → q)
28
P1, P2 ,...,Pn
P1, P2 ,...,Pn
C
P1, P2 ,...,Pn C
P1, P2 ,...,Pn
Λ
Λ
→C
(P1 P2 P3 ... Pn ) → C
pq
p→q
p
q
Λ→
( p → q) p → q
29
( p → q) p → q
( p → q) p → q
ขดั แยง้
( p → q) p → q
p, q r
p→q
~q→r
~r
~p
Λ→
( p → q) (~ q → r) (~ r) →~ p
( p → q) (~ q → r) (~ r) →~ p
( p → q) (~ q → r) (~ r) →~ p
( p → q) (~ q → r) (~ r) →~ p
30
p
q
r
p→q
~q→r
~r
~p
( p → q) (~q → r) (~r ) → ~p
( p → q) (~q → r) (~r ) → ~p
( p → q) (~ q → r) (~ r) →~ p
( p → q) (~q → r) (~r ) → ~p
x
P(x) "","","→","" "~"
P(x)
= 0,1,2,3,4,5 P(x) 2x −1 = 5
x=3 x=5
2x −1 = 5
P(x)
x = 3 P(3) 2(3) −1 = 5
31
x = 5 P(5) 2(5) −1 = 5
P(x) x = 3 x = 5
= − 2,−1,0,1,2 P(x) x2 2x
P(− 2) P(2) x2 2x
P(x)
(− 2)2 2(− 2)
P(− 2)
P(2) 22 2(2)
P(− 2) P(2)
32
ช่อื .....................................สกลุ ...........................
ชั้น....................................เลขท.ี่ .........................
• x
•
•
• x + 7 = 6 − 2x
•
•x
= 1,2,5,6,7 P(x) 1 x − x2 6
2
P(2) → P(5)
P(x) x2 − 2x + 2 = 5
P(3) P(2)
33
x x
x x
x x + x = 2x x
x
(x +1)2 = x2 +1
x
x x + 0 = 2x
x
xx + x = 2x
x (x +1)2 = x2 +1
xx + 0 = 2x
xx I → x R
xx N
xy x+ y =0
xy xy = yx
34
x y y
xy 5
y
x y x=y
y yx
x x+ yQ
x xy 0
x0 y0
xyx + y = 0
xyxy = yx
xyxy = y
xyx + y = 5
xy x = y
Q y
x
x Iyx + y Q
x Ry Nxy 0 → x 0 y 0
xx I x 5 5
xx I → x 5 5
yx x2 + y2 = 8 x x2 + y2 = 8
yx x2 + y2 = 8 x x2 + y2 = 8
xy Qx + y R y y2 = x
x Ny y2 = x
x
x
y
y
xy
x
35
ชือ่ .....................................สกุล...........................
ชั้น....................................เลขที่..........................
x x +11
x x2 = 2
x y y x2y = x2
xy x+ y 5
x x− y =0
x x 2 → x2 4
y2 y + 1 = 0
x x Q → x2 = 2
yxx − y = 0
x Ry N x2 + y2 = 9
36
xP(x) x P(x)
xP(x) x P(x)
xP(x) x P(x)
xP(x) x P(x)
= −1,0,1
x(x 0) → (x2 0)
xx 0 → x x2 0
x(x 0) → (x2 0) x2 0
P(x) x 0 Q(x)
x −1
P(− 1) −1 0
Q(− 1) (−1)2 0
P(−1) → Q(−1)
x0
P(0) 0 0
Q(0) 02 0
P(0) → Q(0)
x1
P(1) 1 0
Q(1) 12 0
P(1) → Q(1)
x(x 0) → (x2 0)
xx 0 → x x2 0
P(x) x 0
P(− 1) −1 0
P(0) 0 0
37
P(1) 1 0
xP(x)
Q(x) x2 0
Q(− 1) (−1)2 0
Q(0) 02 0
Q(1) 12 0
xQ(x)
xx 0 → x x2 0
= −1,0,1
x(x 0) (x −1 = 0) x −1= 0
xx 0 xx −1 = 0
x(x 0) (x −1 = 0)
P(x) x 0 Q(x)
x −1
P(− 1) −1 0
Q(− 1) −1−1= 0
P(−1) Q(−1)
x0
P(0) 0 0
Q(0) 0 −1 = 0
P(0) Q(0)
x1
P(1) 1 0
Q(1) 1−1 = 0
P(1) Q(1)
x(x 0) (x −1 = 0)
xx 0 xx −1 = 0
P(x) x 0
P(− 1) −1 0
P(0) 0 0
P(1) 1 0
xP(x)
Q(x) x2 0
38
Q(− 1) −1−1= 0
Q(0) 0 −1 = 0
Q(1) 1−1 = 0
xQ(x)
xx 0 xx −1 = 0
x x Q x 2
x x2 9 → x 3
xP(x)
x xQ x 2
x x Q x 2
xQ x
x 2 x 2
x= 3
3
3 2
xQ x 2
x xQ x 2
x x Q x 2
xP(x)
x x2 9 → x 3
x2 9 x3
x x2 9 → x 3
x = −4
(− 4)2 9
−43
x2 9 → x 3
x xQ x 2
x x2 9 → x 3
39
ช่อื .....................................สกลุ ...........................
ชน้ั ....................................เลขท่.ี .........................
xx + 1 = 4 = 1,2,3,4
xx + x = 2x = − 2,−1,0,1,2
xx + 1 x
x x
x(x −1)(x +1) = x2 −1 = − 2,1,3,7
x 2x2 + 3x +1 = 0 = − 2,1,3,7
40
x x = x =R
xx 0 x x2 5 =R
x x x x = 0,1,2
=R
P(x) x
Q(x) x
xQ(x) → P(x)
xP(x) Q(x)
41
P(x),Q(x) R(x)
pqq p P(x) Q(x) Q(x) P(x)
pqq p P(x) Q(x) Q(x) P(x)
P(x) → Q(x) ~ Q(x) →~ P(x)
p → q ~ q →~ p
~ p q ~ P(x) Q(x)
pqq p P(x) Q(x) Q(x) P(x)
(P(x) → Q(x)) (Q(x) → P(x))
( p → q) (q → p)
~ (p q) ~ p ~ q ~ (P(x) Q(x)) ~ P(x) ~ Q(x)
~ (p q) ~ p ~ q ~ (P(x) Q(x)) ~ P(x) ~ Q(x)
~ (p → q) p ~ q ~ (P(x) Q(x)) ~ P(x) ~ Q(x)
p (q r) ( p q) ( p r) P(x) (Q(x) R(x)) (P(x) Q(x)) (P(x) R(x))
xP(x) Q(x) xQ(x) P(x)
x~ (P(x) Q(x)) x~ P(x) ~ Q(x)
x~ (P(x) → Q(x)) xP(x) ~ Q(x)
x~ (P(x) Q(x)) x~ P(x) ~ Q(x)
x(P(x) → Q(x)) → R(x) x(P(x) ~ Q(x)) R(x)
x~ (P(x) Q(x))
~ (P(x) Q(x)) ~ P(x) ~ Q(x)
x~ (P(x) Q(x)) x~ P(x) ~ Q(x)
x(P(x) → Q(x)) → R(x)
(P(x) → Q(x)) → R(x) ~ (P(x) → Q(x)) R(x)
(P(x) ~ Q(x)) R(x)
x(P(x) → Q(x)) → R(x) x(P(x) ~ Q(x)) R(x)
42
x~ P(x) xQ(x) xQ(x) x~ P(x)
xP(x) → xQ(x) ~ xQ(x) →~ xP(x)
x~ P(x) xQ(x)
pqq p
x~ P(x) xQ(x) xQ(x) x~ P(x)
xP(x) → xQ(x)
p → q ~ q →~ p
xP(x) → xQ(x) ~ xQ(x) →~ xP(x)
43
ชอื่ .....................................สกุล...........................
ชนั้ ....................................เลขท.ี่ .........................
~ xP(x) xQ(x) ~ xP(x) ~ xQ(x)
xP(x) xQ(x) xR(x) xP(x) xQ(x) xP(x) xR(x)
x~ (P(x) → Q(x)) → Q(x) x~ P(x) Q(x)
x x 0 → x2 0 x x 0 x2 0
44
xP(x) xP(x)
x~ P(x)
~ xP(x) xP(x)
xP(x)
~ xP(x) x~ P(x) x~ P(x)
xP(x)
~ xP(x) xP(x)
~ xP(x) x~ P(x)
xP(x)
xP(x)
x~ P(x)
~ xP(x) สมมูลกับ x~ P(x)
x x2 0
x2 0
xx + 5 = 7
x
xx + 5 7
xP(x) xP(x)
~ xP(x) สมมูลกับ x~ P(x) x~ P(x)
45
x x +1 5
x x = 2 2 +1
x x2 + x = 5
x x +1 5
x x 2 2 +1
x x2 + x 5
x(x + 3 = 4) → (x2 = 9) ~ (p → q) x x + 3 = 4 x2 9
~ (p q)
x(x = 5) (x = ) x(x 5) (x )
xP(x) xQ(x) pq
xP(x) xQ(x) ~ p ~ q
~ xP(x) → xQ(x) pq
~ p ~ q
x~ (x + 3 = 4) → (x2 = 9) ~ (p → q)
p→q
x~ (x = 5) (x = )
~ xP(x) ~ xQ(x)
x~ P(x) x~ Q(x)
~ xP(x) ~ xQ(x)
x~ P(x) x~ Q(x)
~ xP(x) → xQ(x)
xP(x) → xQ(x)
46
ช่อื .....................................สกุล...........................
ช้นั ....................................เลขท.่ี .........................
xx + 2 0
xx 0 → xx 0
x x2 0 → x 0
xP(x) ~ Q(x)
47
xyP(x, y) xyP(x, y) xy a
b P(a, b ) xy a
xyP(x, y) P(a, b )
= 0,1,2
b
xyx + y xy
x = 0, y = 1
x+ y =1 xy = 0
x + y xy x + y xy
xy
xyx + y xy
xy (x + y)2 = x2 + 2xy + y2
(x + y)2 = x2 + 2xy + y2 (x + y)2
xy (x + y)2 = x2 + 2xy + y2 xy
xyP(x, y)
xyP(x, y) xy a
b P(a, b )
xyP(x, y) xy a
b P(a, b )
= 2,3 xy x =
y
xy x =
y
x y
P(x, y) x =
y
48
x y x =
y
P(2,2) 2 =
P(2,3) 2 xy x2 + y2 = 9
P(3,2) 2 =
P(3,3) 3
3 =
x 2
3 =
3
y
xy x =
y
xy x2 + y2 = 9
= 0,2,3
x = 0, y = 3 x2 + y2 = 9
02 + 32 = 9
0+9 = 9 x
x
xy
xy x2 + y2 = 9
xyP(x, y) xyP(x, y) a
xyP(x, y) yP(a, y) a
yP(a, y)
49
xyP(x, y) xyP(x, y) xa
xyP(x, y) xa
yP(a, y)
xyx + y = y
yP(a, y)
= 0,1,2,3
x
xy P(x, y)
x=0
y=0 0+0=0
x=0 y =1 0 +1 = 1
y=2 0+2 = 2
y=3 0+3=3
x=0 x+y= y y
xyx + y = y yx y − x2 5
= I−
y x
y 5+ x2
P(x, y)
y − x2 5
y 5+ x2
yI− y
5+ x2
y x
yx y − x2 5
50