The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by krujum16kb, 2021-09-13 02:25:04

ร17-19-64

ร17-19-64

a, b ab

(a,b) x / a  x  b ab
a,b x / a  x  b ab
(a,b x / a  x  b ab
a,b) x / a  x  b ab

1)

(a, ) x / x  a a
a, ) x / x  a
(− , a) x / x  a a
(− , a x / x  a
x / x  R a
(− , )
a

1 1,3) (2,4

(2,4]
[1,3)
01 234

1,3) (2,4 = 1,4

2 (1,4 (2, )

(1,4 (2, )

(1,4 (2,) = (2,4

1. 3214456332511C...1232164535143365224154221163)))))))))C.A)))))))))))))))))A)))))))A=A((BAAAA4−(((AAA=−−=A(((BAAAA(((4−−−−−AA=4−A−−−=,4−−−−−=−'117,x,−(1137−1,1237,0(2x1−1(373,20B,−0(0,,,1−3BBBB,,,130,B,−(0−BB1,,,−13BB,)−1A,−B)−BBB1,−,3)−8A1,−23,)832)8)2,=)3x)))8)2))=)x))C))CCxx8)−8−22BBBB===xx(=21(32320(032..0....,,..(64,4064))123,,)433162215425143461523234516312534544CC,...325416BC))))))))))))))))).....))))))BAA)A))))))A=(((=((B=((AAAABAAAAAAAA4−−=4−−−−−4−=−−A=AAAAB−−==AAAAB−AAAA=,,,−11−−3'17'1113727x(2x(−(x'1,0,−−x,−,00(,x,−−13B,10330BB,0BB−,,,BBBBBB,,)B−−01(−)−B−(1BBB1−,−AA−(BA1BB,−B3,,)831A32B8)8'2,21)82=)))x)=))x))=)x)CCCCxCxxxC8x8−))−8)−2232322B2B....2BB==x=13412=x3521451342652615434CC(.....x(0))))))))))))))))))(AA0(0,0==(((,6(4(BBAAAAAAAA,4−−64−A−−−AAAA=−,−=4)64,,)−1−'11371),2x−x()B(,0,,,0−B−,133B0B0,BBB,(,BBB,)−B=(1−B−1−BA=AB,,33)8=822))=x)=))x)xCCxC−Cx−x1−)88−1)−122BBxx=x=xx(2(002,2

2.
2.

3.

22..

3.



1 3 − 2x  5x −11

3 − 2x  5x −11

− 3 ; − 2x  5x −11 − 3

− 2x  5x −14

− 5x ; − 5x + (− 2x)  −14

− 7x  −14

−1; x2

7

01 234

x / x  2 = (− ,2)

2 − 3  2x −1  5

− 3  2x −1  5

1; − 3+1  2x −1+1  5 +1

− 2  2x  6

−1271; ; − 2 x x2 62
2

−1 x  3

-1 0 1 2 3 4 5

x /−1  x  3 = −1,3



1 x2 − 2x −3  0

x2 − 2x −3  0

(x − 3)(x +1)  0

(x − 3)(x +1) = 0 x=3 x = −1

+ +− − + −

-1 3

x2 − 2x − 3  0 − 1,3
x /−1  x  3 = −1,3

2 2x2 − 9x − 5  0

2x2 − 9x − 5  0

(2x + 1)(x − 5)  0
-1/2 5

(2x + 1)(x − 5) = 0 x=−1 x=5
2

+ +− − + −

-1/2 5  − ,− 1  5, )
2x2 − 9x − 5  0  2 

 x x−1 x  −5  =  − ,− 1   5, )
 2   2 
 

-1/2 5

1. 4z + 7  2(1z. + 1) + 7  2(z + 1)
6x − x2  52.
2. 2x 2 +7 x +33. 4z − x2  5 0
3. 60x 2 + 7x + 3

2x

4. 3x2 + 2  7x


Click to View FlipBook Version