Institut für Theoretische Physik und Astrophysik
Universität Würzburg
M.Kiselev
Explicit and hidden symmetries in Quantum Dots and
Quantum molecules
Outline
• Quantum Dot Devices
• Kondo effect in Quantum Dots
• Exotic Kondo effect in complex dots
• From quantum dots to quantum chains
• Large quantum dots: level statistics
• Stoner instability in mesoscopic systems
• Perspectives
Quantum Dot devices
Artificial atoms
Kondo Effect in Quantum Dots
Universal Scaling
G / G0 ∝ ln−2 (max[T / TK ])
TK = 1 (ΓU )1/2 exp ⎛ πε 0 ε0 +U ⎞
⎜⎝ ⎟⎠
2 ΓU
Tunneling and co-tunneling
Elastic Electron-like
co-tunneling
Hole-like
Inelastic
Common sense:
• Kondo effect exists if the total number
of electrons in a dot is odd
• Kondo effect is destroyed by external
magnetic field
• Relaxation effects associated with the
non-equilibrium conditions eliminate
the Kondo peak
Parallel and Serial Dots:
from artificial atoms to molecules
R.Lopez, R.Aguado, and G.Platero, PRL 2002 Competition between Kondo and RKKY interactions
Kondo effect in an Artificial
Quantum Dot Molecule
Zero-bias maximum
Exotic symmetries
SU(4) symmetry
J. Von Delft et al (2003)
Quantum Phase Transition in
a two-channel quantum dot
Electrons in large dot provide an
additional channel for Kondo effect
Two-stage Kondo effect
L.Glazman et al (2003)
Singlet-triplet transition in
a magnetic field
L.Glazman et al (2001)
Single-wall carbon nanotubes
Transition is driven by Zeeman splitting
Parallel Double Quantum Dot
T-shape geometry
Symmetric and asymmetric double dots
Spin Rotator (SR) Model
∑Hint = [(JαTαT' S + J ST P) ⋅ sαα' + JαSα ' X SS nαα ' ]
αα '
∑+1
∑0
-1
c c+
kασ σσ ' k 'α 'σ '
triplet τsαα ' = nαα ' = ck+ασ 1 ck 'α 'σ
kk ' kk '
ET = ES + δ S+
singlet
SO(4) P+
Hidden symmetry in a Coulomb problem
Hydrogen atom: H = p2 − e2 En = − µe4 1
2n2
2µ r 2
( )A = 1 p × L − L × p − e2 r Runge-Lenz vector
2µ r
⎣⎡H , L⎤⎦ = 0 ⎡⎣H , A⎤⎦ = 0 ( AiL) = 0
SU (2) ⊗ SU (2) = SO(4)
Non-equilibrium Kondo effect in
Double Quantum Dot
Energy TK /τ d
∝| J ST |2 G / G0 ∝ ln−2 (T / TK )
LR
G(eV ,T )
G0 = 2e2 / h Dimensionless coupling
AC Voltage
DC Voltage ( )Gpeak ∝ G Vac cos (ωt )
( )G / G0 ∝ ln−2 max ⎣⎡(eV − δ ),T ⎦⎤ / TK G peak / G0 ∝ ln −2 ⎛ ⎞
⎜ ⎟
MNK, K.Kikoin and L.W.Molenkamp, PRB 68, 155323 (2003) ⎝ τ TK ⎠
Basic inequalities
{eVdc , eVdot , eVac} < {Ed ,U − Ed } Validity of effective Hamiltonian
TK << eV ≤ δ << D Absence of Kondo effect in equilibrium
| eV − δ |<< TK Condition of Kondo resonance in nonequilibrium
δ ⎛ δ ⎞2 << TK << δ DC decoherence rate effects are irrelevant
⎝⎜ ⎠⎟ AC decoherence rate effects are irrelevant
D
/τ d << TK
Messages
• Kondo effect exists in quantum dots in both
situations when the total number of electrons
is odd (usual) and even (exotic)
• Kondo effect may not be destroyed by an external
magnetic field
• Kondo effect may not be destroyed by the
relaxation effects associated with non-equilibrium
conditions
Reason: explicit and hidden symmetries in complex quantum dots
From complex dots to quantum chains
• Haldane Gap
• Charge Density Waves
• Exciton propagation
K.Kikoin, Y.Avishai and MNK cond-mat/0309606
Random Matrices: Wigner-Dyson statistics
({ }) ∑PEµ∝ ⎛ β ln ⎡| Eµ − Eν |⎤⎞
exp ⎜ ⎢ ⎥⎟
2 ν ≠µ ⎣ δ ⎦⎠
⎝
β = 1 Orthogonal (GOE)
β = 2 Unitary (GUE)
GOE GUE β =4 Simplectic (GSE)
Metallic QD: Universal Hamiltonian
Electron-electron interactions in isolated metallic grains
Mean-level spacing δ = Eα +1 − Eα (kinetic energy)
Thouless energy ET ∼ D ⋅ L−2 diffusive regime
Eα +1 g = ET / δ 1 ET ∼ vF L−1 ballistic regime
Eα GUE
e2 H int = Ec (n − N )2 − J (S)2 +
2C
− λBCS T T
Ec = charge spin Superconducting
Coulomb blockade Short-range interaction Ec ∼| J |∼ δ
Scaling:
Coulomb interaction Ec / δ = rs (kF L)d −1
|J|
Zero-bias anomaly in finite-size systems
Hint = Ec (n − N )2
ZBA ∼ e−Ec /(8T )
U (1) gauge
Mesoscopic Stoner Instability
Hint = Ec (n − N )2 − J (S )2DOS
S z Stoner Instability
Transverse spin fluctuations are important
Coupling constant J / δ
SU (2)
Temperature
MNK and Y.Gefen (in preparation)
Y.Alhassid and T.Rupp (2003)