The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

M.Kiselev Explicit and hidden symmetries in Quantum Dots and Quantum molecules. Outline • Quantum Dot Devices ... Insensibly one begins to twist facts to suit

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-02-21 22:30:03

M.Kiselev Explicit and hidden symmetries in Quantum Dots ...

M.Kiselev Explicit and hidden symmetries in Quantum Dots and Quantum molecules. Outline • Quantum Dot Devices ... Insensibly one begins to twist facts to suit

Institut für Theoretische Physik und Astrophysik
Universität Würzburg

M.Kiselev

Explicit and hidden symmetries in Quantum Dots and
Quantum molecules

Outline

• Quantum Dot Devices
• Kondo effect in Quantum Dots
• Exotic Kondo effect in complex dots
• From quantum dots to quantum chains
• Large quantum dots: level statistics
• Stoner instability in mesoscopic systems
• Perspectives

Quantum Dot devices

Artificial atoms

Kondo Effect in Quantum Dots

Universal Scaling

G / G0 ∝ ln−2 (max[T / TK ])

TK = 1 (ΓU )1/2 exp ⎛ πε 0 ε0 +U ⎞
⎜⎝ ⎟⎠
2 ΓU

Tunneling and co-tunneling

Elastic Electron-like
co-tunneling

Hole-like
Inelastic

Common sense:
• Kondo effect exists if the total number
of electrons in a dot is odd
• Kondo effect is destroyed by external
magnetic field
• Relaxation effects associated with the
non-equilibrium conditions eliminate
the Kondo peak

Parallel and Serial Dots:
from artificial atoms to molecules

R.Lopez, R.Aguado, and G.Platero, PRL 2002 Competition between Kondo and RKKY interactions

Kondo effect in an Artificial
Quantum Dot Molecule

Zero-bias maximum

Exotic symmetries

SU(4) symmetry

J. Von Delft et al (2003)

Quantum Phase Transition in
a two-channel quantum dot

Electrons in large dot provide an
additional channel for Kondo effect

Two-stage Kondo effect

L.Glazman et al (2003)

Singlet-triplet transition in
a magnetic field

L.Glazman et al (2001)

Single-wall carbon nanotubes

Transition is driven by Zeeman splitting

Parallel Double Quantum Dot

T-shape geometry

Symmetric and asymmetric double dots

Spin Rotator (SR) Model

∑Hint = [(JαTαT' S + J ST P) ⋅ sαα' + JαSα ' X SS nαα ' ]
αα '

∑+1
∑0

-1
c c+
kασ σσ ' k 'α 'σ '
triplet τsαα ' = nαα ' = ck+ασ 1 ck 'α 'σ

kk ' kk '

ET = ES + δ S+

singlet

SO(4) P+

Hidden symmetry in a Coulomb problem

Hydrogen atom: H = p2 − e2 En = − µe4 1
2n2
2µ r 2

( )A = 1 p × L − L × p − e2 r Runge-Lenz vector
2µ r

⎣⎡H , L⎤⎦ = 0 ⎡⎣H , A⎤⎦ = 0 ( AiL) = 0

SU (2) ⊗ SU (2) = SO(4)

Non-equilibrium Kondo effect in
Double Quantum Dot

Energy TK /τ d

∝| J ST |2 G / G0 ∝ ln−2 (T / TK )
LR
G(eV ,T )

G0 = 2e2 / h Dimensionless coupling

AC Voltage

DC Voltage ( )Gpeak ∝ G Vac cos (ωt )

( )G / G0 ∝ ln−2 max ⎣⎡(eV − δ ),T ⎦⎤ / TK G peak / G0 ∝ ln −2 ⎛ ⎞
⎜ ⎟
MNK, K.Kikoin and L.W.Molenkamp, PRB 68, 155323 (2003) ⎝ τ TK ⎠

Basic inequalities

{eVdc , eVdot , eVac} < {Ed ,U − Ed } Validity of effective Hamiltonian

TK << eV ≤ δ << D Absence of Kondo effect in equilibrium

| eV − δ |<< TK Condition of Kondo resonance in nonequilibrium

δ ⎛ δ ⎞2 << TK << δ DC decoherence rate effects are irrelevant
⎝⎜ ⎠⎟ AC decoherence rate effects are irrelevant
D

/τ d << TK

Messages

• Kondo effect exists in quantum dots in both
situations when the total number of electrons
is odd (usual) and even (exotic)
• Kondo effect may not be destroyed by an external
magnetic field
• Kondo effect may not be destroyed by the
relaxation effects associated with non-equilibrium
conditions

Reason: explicit and hidden symmetries in complex quantum dots

From complex dots to quantum chains

• Haldane Gap
• Charge Density Waves
• Exciton propagation

K.Kikoin, Y.Avishai and MNK cond-mat/0309606

Random Matrices: Wigner-Dyson statistics

({ }) ∑PEµ∝ ⎛ β ln ⎡| Eµ − Eν |⎤⎞
exp ⎜ ⎢ ⎥⎟
2 ν ≠µ ⎣ δ ⎦⎠

β = 1 Orthogonal (GOE)

β = 2 Unitary (GUE)

GOE GUE β =4 Simplectic (GSE)

Metallic QD: Universal Hamiltonian

Electron-electron interactions in isolated metallic grains

Mean-level spacing δ = Eα +1 − Eα (kinetic energy)

Thouless energy ET ∼ D ⋅ L−2 diffusive regime

Eα +1 g = ET / δ 1 ET ∼ vF L−1 ballistic regime
Eα GUE

e2 H int = Ec (n − N )2 − J (S)2 +
2C
− λBCS T T

Ec = charge spin Superconducting

Coulomb blockade Short-range interaction Ec ∼| J |∼ δ
Scaling:
Coulomb interaction Ec / δ = rs (kF L)d −1
|J|

Zero-bias anomaly in finite-size systems
Hint = Ec (n − N )2

ZBA ∼ e−Ec /(8T )

U (1) gauge

Mesoscopic Stoner Instability

Hint = Ec (n − N )2 − J (S )2DOS

S z Stoner Instability

Transverse spin fluctuations are important

Coupling constant J / δ

SU (2)

Temperature

MNK and Y.Gefen (in preparation)

Y.Alhassid and T.Rupp (2003)




Click to View FlipBook Version