The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by khamxayyang, 2020-08-26 06:54:29

ມາດຕະຖານໄຟຟ້າແຮງສູງ

standard of highvoltage

Keywords: standard of highvoltage,ມ,ໄຟຟເາແຮງສູງ

4.4. ກາຌຎະກບຍຘາໄ ຄຂບຄ DEADEND SINGLE CONDUCTOR, DOUBLE
INSULATOR STRING (220-240kV) [25]

ປູຍ຋ີ 3.50 DEADEND SINGLE CONDUCTOR, DOUBLE INSULATOR STRING
ຉາຉະຖາຄ຋ີ 3.65 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DEADEND SINGLE CONDUCTOR, DOUBLE

INSULATOR STRING

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
1 Anchor Shackle 2 Forged Steel
2 AS50 Yoke Plate LBS.
3 YPD40183424 2 Ductile Iron 50,000
4 Socket Clevis 40,000
5 SC30 Clevis Eye 2 Ductile Iron 30,000
CE03415 Strain Clamp 50,000
6 SD155N 1 Ductile Iron 35,000
Insulator, Susp.
S030086S201A w/Ring 1 Aluminum 30,000

2 Polymer
Composite

 Ball & socket dimensions per ANSI Class 52-5.

199

4.5. ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE CONDUCTOR, SINGLE INSULATOR
STRING (330-345kV) [25]

ປູຍ຋ີ 3.51 DOUBLE CONDUCTOR, SINGLE INSULATOR STRING

ຉາຉະຖາຄ຋ີ 3.66 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE CONDUCTOR, SINGLE
INSULATOR STRING

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
1 Anchor Shackle 1 Forged Steel
2 AS50BNK Socket Y-Clevis 1 Ductile Iron LBS.
3 SYC30SN 1 Ductile Iron 30,000
4 YPD30184373 Yoke Plate 2 Ductile Iron 30,000
YCS1690 Y-Clevis Eye 2 30,000
5 Suspension Aluminum 30,000
CFS182N 1
Clamp Polymer 25,000
6 S030107S201B Insulator, Susp. Composite
30,000
w/Ring

 Ball & socket dimensions per ANSI Class 52-5.

200

4.6. ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE CONDUCTOR, V-STRING INSULA
TORS (330-345kV) [25]

ປູຍ຋ີ 3.52 DOUBLE CONDUCTOR, V-STRING INSULATORS
ຉາຉະຖາຄ຋ີ 3.67 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE CONDUCTOR, V-STRING

INSULATORS

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
1 Anchor Shackle 2 Forged Steel
AS50BNK Oval Eye Ext. Link LBS.
2 2 Forged Steel 30,000
HOO3036 ‖)
3 Socket Y-Clevis 2 Ductile Iron 30,000
4 SYC30SN 1 Ductile Iron
5 YPV30172592 Yoke Plate 2 Ductile Iron 30,000
6 Y-Clevis Eye 2 Aluminum 30,000
YCS1690 Suspension Clamp 30,000
7 CFS182N Insulator, Susp. 2 Polymer 25,000
Composite
S030107S201B w/Ring 30,000

 Ball & socket dimensions per ANSI Class 52-5.

201

4.7. ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE VERTICAL CONDUCTOR, V-
STRING INSULATORS (330-345kV) [25]

ປູຍ຋ີ 3.53 DOUBLE VERTICAL CONDUCTOR, V-STRING INSULATORS

ຉາຉະຖາຄ຋ີ 3.68 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE VERTICAL CONDUCTOR, V-
STRING INSULATORS

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
1 Anchor Shackle 2 Forged Steel
AS50BNK Oval Eye Ext. Link LBS.
2 2 Forged Steel 60,000
HOO3036 ‖)
3 Socket Y-Clevis 2 Ductile Iron 30,000
4 SYC30SN 1 Ductile Iron
5 YPD5024685 Yoke Plate 1 Ductile Iron 30,000
6 Y-Clevis Eye 1 Aluminum 50,000
YCS1690 Suspension Clamp 30,000
7 CFS182NWCP Yoke, Vertical 1 Aluminum 25,000

8 YPW3018218 Bundling 1 Aluminum 30,000
9 Suspension Clamp Polymer
CFS182N 2 Composite 25,000
Insulator, Susp.
S030107S201B w/Ring 30,000

 Ball & socket dimensions per ANSI Class 52-5.

202

4.8. ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE CONDUCTOR, SINGLE
INSULATOR STRING (330-345kV) [25]

ປູຍ຋ີ 3.54 DOUBLE CONDUCTOR, SINGLE INSULATOR STRING

ຉາຉະຖາຄ຋ີ 3.69 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE CONDUCTOR, SINGLE
INSULATOR STRING

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH

1 AS50BNK Anchor Shackle 1 Forged Steel LBS.
60,000
2 HOOT5030 Oval Eye Ext. Link 1 Forged Steel
. ‖) 60,000

3 SYC50SN Socket Y-Clevis 1 Ductile Iron 50,000
50,000
4 YPC5026001 Yoke Plate 1 Ductile Iron 30,000
25,000
5 YCS1690 Y-Clevis Eye 2 Ductile Iron
50,000
6 CFS182N Suspension Clamp 2 Aluminum

7 S050107S201B Insulator, Susp. 1 Polymer
w/Ring Composite

 Ball & socket dimensions per ANSI Class 52-8/52-11.

203

4.9. ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE CONDUCTOR, V-STRING
INSULATORS (330-345kV) [25]

ປູຍ຋ີ 3.55 DOUBLE CONDUCTOR, V-STRING INSULATORS

ຉາຉະຖາຄ຋ີ 3.70 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE CONDUCTOR, V-STRING
INSULATORS

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
1 Anchor Shackle 2 Forged Steel
AS50BNK LBS.
2 Oval Eye Ext. Link 1 Forged Steel 60,000
HOO5020 2 ‖)
3 2 Ductile Iron 50,000
4 SYC50SN Socket Y-Clevis 1 Steel
5 945834005 1 30,000
6 YCS1690 Yoke Plate 2 Ductile Iron 50,000
CFS182N Aluminum 30,000
7 Y-Clevis Eye 1 25,000
8 HOO3035 Forged Steel
Suspension Clamp 2 50,000
S030107S201B Polymer
Oval Eye Ext. Link Composite 30,000
‖)

Insulator, Susp.
w/Ring

204

4.10.ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE VERTICAL CONDUCTOR, V-
STRING INSULATORS (330-345kV) [25]

ປູຍ຋ີ 3.56 DOUBLE VERTICAL CONDUCTOR, V-STRING INSULATORS

ຉາຉະຖາຄ຋ີ 3.71 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE VERTICAL CONDUCTOR,

V-STRING INSULATORS

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
1 Anchor Shackle 2 Forged Steel
AS50BNK Oval Eye Ext. Link LBS.
2 2 Forged Steel 60,000
HOO3015 ‖)
3 Socket Y-Clevis 2 Ductile Iron 30,000
4 SYC30SN 1 Steel
5 YPC4011583 Yoke Plate 1 30,000
6 Y-Clevis Eye 2 Ductile Iron 40,000
7 YCS1690 Suspension Clamp 1 Aluminum 30,000
8 CFS182N Suspension Clamp Aluminum 25,000
HOO3025 Insulator, Susp. 2 Polymer 25,000
Composite
S030107S201B w/Ring 30,000

205

4.11. ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE CONDUCTOR, DOUBLE INSULA
TOR STRING (330-345kV) [25]

ປູຍ຋ີ 3.57 DOUBLE CONDUCTOR, DOUBLE INSULATOR STRING

ຉາຉະຖາຄ຋ີ 3.72 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE CONDUCTOR, DOUBLE
INSULATOR STRING

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMAT
TYPE E

1 AS50BNK Anchor Shackle 2 Forged Steel STRENGT
H LBS.
2 LK60 Chain Link 1 Forged Steel 60,000
60,000
3 YPD50185491 Yoke Plate 1 Ductile Iron 50,000
30,000
4 SC30BNKSN Socket Clevis 2 Ductile Iron 30,000

5 YPR30187222 Yoke Plate 1 Ductile Iron 30,000

6 CE03410BNKS Clevis Eye 2 Ductile Iron 35,000
N
30,000
7 SD130NCRF Strain Clamp 2 Aluminum

8 S030112S201B Insulator, Susp. 2 Polymer
w/Ring Composite

 Ball & socket dimensions per ANSI Class 52-5.

206

4.12. ກາຌຎະກບຍຘາໄ ຄຂບຄ DEADEND DOUBLE CONDUCTOR, DOUBLE
INSULATOR STRING (330-345kV) [25]

ປູຍ຋ີ 3.58 DEADEND DOUBLE CONDUCTOR, DOUBLE INSULATOR STRING

ຉາຉະຖາຄ຋ີ 3.73 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DEADEND DOUBLE CONDUCTOR, DOUBLE
INSULATOR STRING

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMAT
TYPE E
Anchor Shackle 2 Forged Steel
1 974153001 Chain Link 1 Forged Steel STRENGT
2 LK150 Yoke Plate 1 H LBS.
3 947604006 Socket Clevis 2 Steel 120,000
4 SC501BNKSN Yoke Plate 1 Ductile Iron 150,000
5 YPR6011706 2 100,000
6 AS50WBNK Anchor Shackle 2 Steel 50,000
Compr. Deadend Forged Steel 60,000
7 A031667 2 Aluminum/St 60,000
w/Terminal
8 S050112S201B Insulator, Susp. eel FULL TEN.
Polymer
w/Ring Composite 50,000

 Ball & socket dimensions per ANSI Class 52-5.

207

4.13. ກາຌຎະກບຍຘາໄ ຄຂບຄ DOUBLE CONDUCTOR, SINGLE INSULA
TOR STRING (330-345kV) [25]

ປູຍ຋ີ 3.59 DOUBLE CONDUCTOR, SINGLE INSULATOR STRING

ຉາຉະຖາຄ຋ີ 3.74 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ DOUBLE CONDUCTOR, SINGLE
INSULATOR STRING

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
1 TYPE 1 STRENGTH
2 Anchor Shackle 1 Forged Steel
3 AS25LBNK Socket/Y- 1 LBS
4 SYC30 Clevis 1 Ductile Iron 30,000
30,000
YPJ21018215200 JumperYoke, Alumimum/Galv
with 200 lb Wt. Iron 10,000
S030107S201B Insulator, Susp.
Polymer 30,000
w/Ring Composite

208

4.14. ຈບກກຌແຒ຾ຍຍ V ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ (TRIPLE CONDUCTOR, V-STRING
INSULATORS) (380-500kV) [25]

ປູຍ຋ີ 3.60 TRIPLE CONDUCTOR, V-STRING INSULATORS

ຉາຉະຖາຄ຋ີ 3.75 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍ TRIPLE CONDUCTOR, V-STRING
INSULATORS

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMAT
TYPE E
1 Anchor Shackle 2 Forged Steel
2 AS50WBNK Oval Eye Ext. Link STRENGT
3 2 Steel H LBS.
4 HOOT5072 2‖) 60,000
5 Socket/Y-Clevis 2 Ductile Iron
6 SYC50SN 1 Ductile Iron 60,000
7 YPT40236673 Yoke Plate 3 Ductile Iron
8 Y-Clevis Eye 3 Aluminum 50,000
YCS2090 Suspension Clamp 40,000
CFS213N Insulator, Susp. 2 Polymer 30,000
Composite 25,000
S050159S201D w/Rings 2 Forged Steel
Anchor Shackle 50,000
AS50WBNK
60,000

209

4.15. ຈບກກຌແຒ຾ຍຍ V ຈບກກຌແຒ຃ໃ ູ ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ ຋ໃແີ ຖງະຆໃ ທຄຽຘາ຺ ແກ
(TRIPLE CONDUCTOR, DOUBLE V-STRING INSULATORS) (380-
500kV) [25]

ປູຍ຋ີ 3.61 ຈບກກຌແຒ຾ຍຍV ຈບກກຌແຒ຃ໃ ູ ຘານົຍຘາງຘໃ ຄ຺ 3 ຘາງ ຋ໃແີ ຖງະຆໃ ທຄຽຘາ຺ ແກໃ

ຉາຉະຖາຄ຋ີ 3.76 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍV ຈບກກຌແຒ຃ໃ ູ ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງແຖງະຆໃ ທຄຽຘາ຺ ແກ

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
Forged Steel
1 AS60BNK Anchor Shackle 4 LBS.
Steel 80,000
2 HOOT8065 Oval Eye Ext. Link 2
‖) Ductile Iron 80,000
Ductile Iron
3 YPD8018475 Yoke Plate 2 80,000
Steel 50,000
4 SYC50SN Socket/Y-Clevis 4 Ductile Iron 40,000
Aluminum 30,000
5 YPTB40114894 Yoke Plate 1 25,000
Polymer
6 YCS2090 Y-Clevis Eye 3 Composite 50,000

7 CFS213N Suspension Clamp 3

8 S050159S201D Insulator, Susp. 4
w/Rings

210

4.16. ຈບກກຌແຒ຾ຍຍ V ຈບກກຌແຒ຃ໃ ູ ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ ຋ໃ ຽີ ຘາ຺ ຓຸຓ (EHV
ANGLE SUSPENSION TRIPLE CONDUCTOR, DOUBLE V-
STRING INSULATORS) [25]

ປູຍ຋ີ 3.62 ຈບກກຌແຒ຾ຍຍV ຈບກກຌແຒ຃ໃ ູ ຘານົຍຘາງຘໃ ຄ຺ 3 ຘາງ ຋ໃ ຽີ ຘາ຺ ຓຸຓ
ຉາຉະຖາຄ຋ີ 3. 77 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍV ຈບກກຌແຒ຃ໃ ູ ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ຋ໃ ຽີ ຘາ຺ ຓຸຓ

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH
1 Anchor Shackle 4 Forged Steel
AS60BNK Oval Eye Ext. Link LBS.
2 1 Steel 80,000
HOOT8015 ‖)
3 Oval Eye Ext. Link 1 Steel 80,000
HOOT8045
4 ‖) 2 Ductile Iron 80,000
5 YPD8018475 Yoke Plate 4 Ductile Iron
6 SYC50SN Socket/Y-Clevis 1 80,000
7 Yoke Assembly 3 Steel 50,000
8 YPCB4011742 Y-Clevis Eye 3 Ductile Iron 40,000
9 YCS2090 Suspension Clamp Aluminum 30,000
CFS213N 4 25,000
Insulator, w/Rings Polymer
S050159S201D Composite 50,000

211

4.17. ຈບກກຌແຒຎາງຘາງ ຈບກກຌແຒ 3 ຈບກຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ (EHV

DEADEND TRIPLE CONDUCTOR, TRIPLE INSULATOR
STRING) [25]

ປູຍ຋ີ 3.63 ຈບກກຌແຒ຾ຍຍV ຈບກກຌແຒ຃ໃ ູ ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ ຋ໃ ຽີ ຘາ຺ ຓຸຓ
ຉາຉະຖາຄ຋ີ 3.78 ບຸຎະກບຌຈບກກຌແຒ຾ຍຍV ຈບກກຌແຒ຃ໃ ູ ຘານົຍຘາງຘໃ ຄ຺ 3 ຘາງ຋ໃ ຽີ ຘາ຺ ຓຸຓ

ITEM CATALOG DESCRIPTION QTY. MATERIAL ULTIMATE
TYPE STRENGTH

1 AS135BNK Anchor Shackle 4 Forged Steel LBS.
150,000
2 ES1506742107 Extension Strap 1 Steel
‖) 150,000

3 LK150 Chain Link 1 Forged Steel 150,000
150,000
4 YPX1509397 Yoke Plate Assy. 1 Steel 60,000
50,000
5 AS50WBNK Anchor Shackle 6 Forged Steel 50,000

6 SC501SN Socket Clevis 3 Ductile Iron 50,000

7 YPX5011744 Yoke Plate Assy. 1 Steel Full Tension

8 YPTAC5012927 Adjustable Yoke 3 Ductile Iron 50,000
Assy. & Steel
50,000
9 SEDA4724SSA Comp Deadend Hi- 3 Aluminum/St
C Temp eel

10 CEEL15506BN Clevis-Eye Ext 1 Ductile Iron
K Link

11 S050159S001D Insulator, w/Rings 3 Polymer
Composite

 Ball & socket dimensions per ANSI Class 52-8/52-11.

212

4.18. ຆຸຈຈບກກຌແຒປຍຌາໄ ໜກ, ຈບກກຌແຒ 1 ຈບກ,ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ (EHV

JUMPER SUPPORT TRIPLE CONDUCTOR, SINGLE INSULATOR
STRING) [25]

ປູຍ຋ີ 3.64 ຆຸຈຈບກກຌແຒປຍຌາໄ ໜກ, ຈບກກຌແຒ 1 ຈບກ,ຘານົຍຘາງຘໃ ຄ຺ 3 ຘາງ

ຉາຉະຖາຄ຋ີ 3.79 ບຸຎະກບຌຆຸຈຈບກກຌແຒປຍຌາໄ ໜກ, ຈບກກຌແຒ 1 ຈບກ,ຘານຍົ ຘາງຘໃ ຄ຺ 3 ຘາງ

ITEM CATALOG TYPE DESCRIPTION QTY. MATERIAL ULTIMATE
STRENGTH
1 AS35BNK Anchor Shackle 1 Forged Steel
LBS
2 SC501BNK Socket/Y- 1 Ductile Iron 35,000
Clevis
Aluminum 50,000
3 YPJ310244142 Yoke Assy. 1 Galv. Iron &
10,000
4 HDWSA30012909 Weights 6 x 50 2 Steel –
lb., w/Hardware Polymer
Composite 50,000
5 S050159S201D Insulator, 1
w/Rings

213

ຍຈ຺ ຋ີ 4

ຑາກກາຌ຃ຈິ ແຖໃ

ຽຎຌຑາກກາຌຌາ຋ຈິ ຘະຈ຋ີ ໃ ກີ ໃ ທາຓາເຌຍຈ຺ ຋ີ 2 ຌາຓາ຃ຈິ ແຖໃ ຾ຖະ ຘາ຋ຈິ ນກົ ກາຌກາຌ຃າຌທຌ.

1. ຉທ຺ ດໃ າຄກໃ ຼທກຍ຃ທາຓໜຼທຌາ

ຉທ຺ ດໃ າຄ 4.1. ຅ໃ ຄ຺ ນາ຃ທາຓໜໃ ຼທຌາຉໃ ໜໃ ທງ຃ທາຓງາທຂບຄຘາງຘໃ ຄ຺ 1 ຽຒຈ, ຈໃ ຄປູຍ຋ີ 4.1 ຉທ຺ ຌາ a,

b ຾ຖະ c ຓຖີ ຈຘະໝີ 0.25 cm ຾ຖະຉທ຺ ຌາ d ຾ຖະ c ຓຖີ ຈຘະໝຽີ ຋ໃ າ຺ ກຍ 0.5cm.

ຈາໄ ຌ x ຈາໄ ຌ y

ປູຍ຋ີ 4.1 ຘາງຘໃ ຄ຺ 1 ຽຒຈ

ທ຋ິ ໃ ຾ີ ກ:ໄ ຅າກ 2-

ນາ຃ໃ າ Dm ຂບຄຉທ຺ ຌາຖະນທໃ າຄຈາໄ ຌ x ຾ຖະ ຈາໄ ຌ y

Dm = 2x107 ln Dm
Dsx

Dad = Dbe = 9m

Dae = Dbd = Dce = 62  92  10.816m

214

Dad = 92 122  15m

ຈໃ ຄຌຌໄ Dm = Lx  2x107 ln 10.743  6.212x107 H /m
0.481

ນາ຃ໃ າ GMR ຂບຄຉທ຺ ຌາຈາໄ ຌ X

Dsx = 9 Daa Dab Dac Dba Dbb Dbc Dca Dcb Dcc
ຽຓໃ ບ Daa  Dbb  Dcc  0.7788r
ຽຆໃ ຄິ ຓ຃ີ ໃ າຽ຋ໃ າ຺ ກຍ 0.25 x 10-2 x 0.7788 (຃ຌູ ຈທໄ ງ 10-2 ຽຑໃ ບ຾ຎຄ຅າກ cm ເນຽໄ ຎຌ m

Dab  Dba  Dbc  Dcb  6m
Dac  Dca 12m

ຈໃ ຄຌຌໄ Dsx = 9 (0.25x102 x0.7788)3 x64 x122  0.481m
ຌຌໄ ຃຃ໃ າ຃ທາຓໜໃ ຼທຌາຈາໄ ຌ x ຽ຋ໃ າ຺ ກຍ:

Lx  2x107 ln 10.743  6.212x107 H / m
0.481

຾ຖະ Ly  2x107 ln Dm
Dsy

ນາ຃ໃ າ GMR ຂບຄຉທ຺ ຌາຈາໄ ຌ y

Dsy = 4 Ddd Dde Dee Ded

= 4 (0.5x102 x0.7788)2 x62

= 0.153 m
ຌຌໄ ຃຃ໃ າ຃ທາຓໜໃ ຼທຌາຈາໄ ຌ y ຽ຋ໃ າ຺ ກຍ:

Ly  2x107 ln 10.743  8.503x107 H / m
0.153

ຈໃ ຄຌຌໄ ຃ໃ າ຃ທາຓໜໃ ຼທຌາຉໃ ໜໃ ທງ຃ທງງາທຂບຄຘາງຘໃ ຄ຺ ຽ຋ໃ າ຺ ກຍ

215

L  Lx  Ly 14.715x107 H / m
ຊາໄ ຉບໄ ຄກາຌຎໃ ຼຌໜໃ ທງເນໜໄ ບໄ ງຖຄ຺ ຽຎຌ mH/mile ຽປຈແຈຈໄ ໃ ຄຌ:ີໄ

1mile=1609 m
ຈໃ ຄຌຌໄ L  14.715x107 x1609x103  2.37mH / mile
ນນົ າ຅າກ Lx ຾ຖະ Ly ຅າກຘູຈຈໃ ຄຌ:ີໄ

Lx  0.7411log Dm
Dsx

= 0.7411log 10.743 1mH / mile
0.481

Ly  0.7411log Dm
Dsy

= 0.7411log 10.743  1.368mH / mile
0.153

ຌຌໄ ຃ L  Lx  Ly  2.368mH / mile

ຉບຍ:຃ທາຓໜໃ ຼທຌາຉໃ ໜໃ ທງ຃ທາຓງາທຂບຄຘາງຘໃ ຄ຺ 1 ຽຒຈ຋ໃ ຉີ ບໄ ຄກາຌນາ຾ຓໃ ຌ: 2.37 mH/mile

ຉທ຺ ດໃ າຄ຋ີ 4.2 ຘາງຘໃ ຄ຺ 3 ຽຒຈ຾ຍຍທຄ຺ ຅ບຌຈໃ ຼທ຅ໃ າງແຒຒາໄ ຋ໃ ຓີ ຃ີ ທາຓຊີ 60 Hz ຈໃ ຄປູຍ຋ີ 4.2

຿ຈງເຆຉໄ ທ຺ ຌາ ― k ‖ ຽຆໃ ຄິ ຓ຃ີ ໃ າ Ds= 0.0373 ຒຸຈ. ຅ໃ ຄ຺ ຃າຌທຌນາ຃ທາຓໜໃ ຼທຌາຕ຾ີ ບກ຾ຉຌ

( inductive reactance ).

ທ຋ິ ໃ ຾ີ ກ:ໄ ປູຍ຋ີ 4.2 ກາຌ຅ຈທາຄຉທ຺ ຌາ 3 ຽຒຈ ຉາຓຉທ຺ ດໃ າຄ຋ີ 4.2
Deq  3 20x20x38  24.8 foot

216

L  2x107 ln 24.8  13x107 (H / m)
0.0373

Xl  2 x60x13x107 x1609  0.788 / mile / phase

ຉທ຺ ດໃ າຄ຋ີ 4.3 ຅າກປູຍ຋ີ 4.3 ຽຎຌກາຌ຅ຈທາຄຘາຍ຾ຍຍ bundle ຂບຄຘາງຉທ຺ ຌາຆະຌຈິ ໜໃ ຄ

ຓ຃ີ ໃ າ GMR ຽ຋ໃ າ຺ ກຍ 0.0466 ft , d = 45 cm ຅ໃ ຄ຺ ນາ຃ໃ າຉໃ າຄໂຈໃ ຄຌີໄ ຋ໃ ຃ີ ທາຓຊີ 60 Hz

a) ຃ໃ າ຃ທາຓໜໃ ຼທຌາຘະຽຖງຉໃ ຽຒຈ
b) ຃ໃ າ຃ທາຓໜໃ ຼທຌາຕ຾ີ ບກ຾ຉຌ

ປູຍ຋ີ 4.3 ແຖງະນໃ າຄຂບຄຘາງຘໃ ຄ຺ ຾ຍຍ bundle
ທ຋ິ ໃ ຾ີ ກ:ໄ ຅າກປູຍຽຎຌກາຌ຅ຈທາຄຉທ຺ ຌາ຾ຍຍ 2 bundle

Dsb  Ds  d
ເຌກຖະຌຌີ ຉີໄ ບໄ ຄຎໃ ຼຌເນໜໄ ໃ ທງຽຎຌ຾ຓຈ຃ກຌ
຅າກ 1 ຌທິໄ = 2.54 cm
ຈໃ ຄຌຌໄ 1 ຒຸຈ =12 ຌທິໄ = 12x2.54 =30.48 cm=0.3048 m

Dsb  90.04660.3048)0.45  0.08m

Deq  3 8816  10.08m

a) La  2107 ln Deq  2107  ln 10.08  0.967H /m
Ds 0.08

b) Xl  2  60107 103  0.364 / km

= 0.3641.609  0.586/ mile

217

ຉທ຺ ດໃ າຄ຋ີ 4.4 ຘາງຘໃ ຄ຺ 3 ຽຒຈ 115 kV ,50Hz ທຄ຺ ຅ບຌຈໃ ຼທ(single circuit) ຅ຈທາຄຉທ຺ ຾ຍຍ 2

bundle ຈໃ ຄປູຍ຋ີ 4.4 ຊາໄ ເຆຘໄ າງ AAC ຅າຌທຌຘາງຉກີ ຼທ 37 ຽຘຌໄ , ຘາງຉທ຺ ຌາ຾ຉໃ ຖະຽຒຈຓຽີ ຘຌໄ ຏໃ າຌຘູຌ
ກາຄ 14.6 mm ຅ໃ ຄ຺ ຃າຌທຌນາ຃ທາຓໜໃ ຼທຌາຕ຾ີ ບກ຾ຉຌ (inductive reactance).

ປູຍ຋ີ 4.4 ຘາງຘໃ ຄ຺ 3 ຽຒຈ ຅ຈທາຄຉທ຺ ຾ຍຍ 2 bundle

ທ຋ິ ໃ ຾ີ ກ:ໄ ຃ໃ າ GMR  Ds  0.768r
຅າກປູຍ
D s 0.68(14.6)  5.60.64mm
2

d = 200 mm

Dsb  Ds  d  5.6064 200  33.48mm

Deq  3 200 200 400  2519.84mm
L  2107 ln 2519.84  8.64107 H / m / phase
33.48

Xl  2 508.64107
= 0.271103/ m/ phase  0.271/ km/ phase

= 0.2711.60  0.436 / mile / phase

218

ຉທ຺ ດໃ າຄ຋ີ 4.5 ຘາງຘໃ ຄ຺ ແຒຒາໄ ທຄ຺ ຅ບຌ຃ໃ ູ double circuit transmission line 230 kV, 50 Hz ເຆຽໄ ຘາ຺

຿຃ຄຽນກົ ຅ຈທາຄຘາງຈໃ ຄປູຍ຋ີ 4.5 ເຆຘໄ າງ ACSR 150/25 (mm)2 ,( r=8.55 mm). ຅ໃ ຄ຺ ຃າຌທຌນາ
຃ທາຓໜໃ ຼທຌາປ຾ີ ບກ຾ຉຌຉໃ ຉທາຓງາທ 1 km ຾ຖະ ຊາໄ ຘາງຘໃ ຄ຺ ຆຸຈຌຓີໄ ແີ ຖງະ຋າຄ 80 km ຅ະຓ຃ີ ທາຓ
ໜໃ ຼທຌາຽ຋ໃ າ຺ ເຈ?

ທ຋ິ ໃ ຾ີ ກ:ໄ ປູຍ຋ີ 4.5 ຘາງຘໃ ຄ຺ 3 ຽຒຈ ທຄ຺ ຅ບຌ຃ໃ ູ
຃າຌທຌແຖງະ A1B2 ຈໃ ຄຌ:ີໄ

A1B2  62 182  18.97m

A1A2  122 182  21.63m
 ຂຌໄ ຉບຌ຋ີ 1 ຃າຌທຌນາ຃ໃ າ Deq

DAB  4 (618.97)(18.976) 10.66m

DBC  4 (618.97)(18.976) 10.66m

ຈໃ ຄຌຌໄ DCA  4 (1218)(1812) 14.70m
Deq  3 10.6610.6614.70  11.865m

ຂຌໄ ຉບຌ຋ີ 2 ຃າຌທຌນາ຃ໃ າ Ds

Ds  3 r ' f r 'h
Ds  3 (0.77888.55103) 21.63 (0.77888.55103)18  0.368m

219

 ຂຌໄ ຉບຌ຋ີ 3 ຃າຌທຌນາ຃ໃ າ ຃ທາຓໜໃ ຼທຌາ

L  2107 ln 11.865  6.9465107 H / m
0.368

ຈໃ ຄຌຌໄ ຋ໃແີ ຖງະ຋າຄ 80 km ຃ໃ າ຃ທາຓໜໃ ຼທຌາ຅ະຓ຃ີ ໃ າຽ຋ໃ າ຺ ກຍ

L  6.9465107 80103  0.05557H

= 55.57 mH

 ຂຌໄ ຉບຌ຋ີ 4 ຃າຌທຌນາ຃ໃ າ ຃ທາຓໜໃ ຼທຌາປ຾ີ ບກ຾ຉຌ
XL ຉໃ ຾ຓຈໄ  2  50 6.9465107  0.2182103 / m

ຊາໄ ແຖງະ຋າຄ 1 km(1000) ຃ໃ າ຃ທາຓໜໃ ຼທຌາຕ຾ີ ບກ຾ຉຌຽ຋ໃ າ຺ ກຍ:

X L  0.2182103 103  0.2182 / km

ຉທ຺ ດໃ າຄ຋ີ 4.6 ຅ໃ ຄ຺ ນາ຃ໃ າ຃ທາຓໜໃ ຼທຌາຕ຾ີ ບກ຾ຉຌຂບຄຖະຍຍ຺ ຘາງຘໃ ຄ຺ 3 ຽຒຈ ຾ຍຍທຄ຺ ຅ບຌ຃ໃ ູ

ນກ຺ ນໃ ົຼຓຈາໄ ຌຍໃ ຽ຋ໃ າ຺ ກຌຈໃ ຄປູຍ຋ີ 4.6 ເຆຘໄ າງ ACSR ຂະໜາຈ 336.4 MCM,Al/st ຽ຋ໃ າ຺ ກຍ 26/7 ຓ຃ີ ໃ າ
GMR ຽ຋ໃ າ຺ ກຍ 0.0234 ຒຸຈ, ຃ທາຓຊີ 50 Hz. ກາຌຈ຺ ແຖງະຈໃ ຄຌ:ີໄ h=18 foot,i=21 foot ຾ຖະ d=10
foot.

ທ຋ິ ໃ ຾ີ ກ:ໄ ປູຍ຋ີ 4.6 ຘາງຘໃ ຄ຺ 3 ຽຒຈ ທຄ຺ ຅ບຌ຃ໃ ູ຾ຍຍນກ຺ ນໃ ຼົ ຓຈາໄ ຌຍໃ ຽ຋ໃ າ຺ ກຌ
຅າກປູຍ຃າຌທຌນາແຖງະ g,f ຾ຖະ y ຈໃ ຄຌ:ີໄ

220

g  (h  (i  h))2  d 2
2

g  (18  (218))2 102  21.9 ft
2

f  h2  (2d)2

f  182  (20)2  26.9 ft

ຈໃ ຄຌຌໄ y  ((i  h))2  d 2
2

y  ((218))2 102 10.11 ft
2

Deq  3 y.g 2d.h

Deq  3 (10.11)(21.9) 21018 16.13 ft

຾ຖະ Ds  3 r 'f r 'i

Ds  3 0.023426.9 0.0234 21  0.7613ft

ຈໃ ຄຌຌໄ L  0.7411log 16.13  0.9827(mH / mile)
0.7613

XL  250103  0.9827  0.3087( / mile)

2. ຉທ຺ ດໃ າຄກໃ ຼທກຍ຃ທາຓ຅ແຸ ຒຒາໄ ຂບຄຘາງຘໃ ຄ຺

ຉທ຺ ດໃ າຄ຋ີ 4.7 ຅ໃ ຄ຺ ນາ຃ໃ າ ຃າຑາຆຉີ ຍິ ຕ຾ີ ບກ຾ຉຌ ເຌຖະຍຍ຺ ຽຒຈຈໃ ຼທ຋ໃ ຃ີ ທາຓຊີ 60 Hz ເຆຉໄ ທ຺ ຌາ

຋ໃ ຓີ ຽີ ຘຌໄ ຏໃ າຌຘູຌກາຄ຾ຓໃ ຌ d = 0.642 ຌທິໄ . ຿ຈງທາຄຉທ຺ ຌານໃ າຄກຌ 20 ຒຸຈ .

ທ຋ິ ໃ ຾ີ ກ:ໄ d = 0.642 ຌທິໄ = 0.642/12= 0.0535 ft

r  d  0.0535  0.02675ft
22

221

XC  4.0955 106 log 1  4.0955 106 log D (Ω/mile to neutral)
f r f

XC  4.0955 106 log 1  4.0955 106 log 20
60 0.068 60

= 0.1073 + 0.0888 = 0.1961x 106 Ω/mile to neutral

= 0.1961x 106 MΩ/mile to neutral

຃ໃ າ ຃າຑາຆຉີ ຍິ ຕ຾ີ ບກ຾ຉຌຖະນທໃ າຄ line ກຍ line ຓ຃ີ ໃ າຈໃ ຄຌ:ີໄ

XC (line line)  20.1963  0.3926M / mile

ຉທ຺ ດໃ າຄ຋ີ 4.8 ຅ໃ ຄ຺ ນາ຃ໃ າ ຃າຑາຆ຾ີ ຉຌ,຃າຑາຆຉີ ຍິ ຕ຾ີ ບກ຾ຉຌ,ກະ຾ຘໃ ບຈຎະ຅ຸ ຾ຖະ ກາຖຄຕີ

຾ບກຉຍິ ( reactive power ) ຂບຄຘາງຘໃ ຄ຺ 3 ຽຒຈທຄ຺ ຅ບຌຈໃ ຼທ ( single curruit ) ຈໃ ຄປູຍ຋ີ 4.7 ຃ທາຓ

ງາທຘາງຘໃ ຄ຺ 175 mile ຑກິ ຈ຾ປຄຈຌ 230 kV,60 Hz ເຆຘໄ າງ ― k ‖. ຋ໃ ຓີ ຽີ ຘຌໄ ຏໃ າຌຘູຌກາຄ

ຽ຋ໃ າ຺ ກຍ 1.108 ຌທິໄ

ທ຋ິ ໃ ຾ີ ກ:ໄ ປູຍ຋ີ 4.7 ກາຌ຅ຈທາຄຉທ຺ ຌາ຋ໃ ຍີ ໃ ຘະຽໝກີ ຌ
ຖຈຘະໝີ r ຽ຋ໃ າ຺ ກຍ:

r  1.108  0.0462 ft
2 12

Deq = 3 20´ 20´ 38 = 24.8ft

(1) Cn = 2p ´ k (F/m to neutral)
ln D
r

222

Cn = 2p ´ 8.85´ 10- 12 = 8.8466´ 10- 12 (F/m to neutral)
ln 24.8
0.0462

(2) Xc = 1 = 2p ´ 60´ 1 10- 12 ´ = 0.1864 Ω/mile to neutral
2pfCn 8.8466´ 1.609

ຘານຍົ ຃ໃ າ຃າຑາຆຉີ ຍີ ຕ຾ີ ບກ຾ຉຌຉະນົບຈ຃ທາຓງາທ 175 mile

XC = 0.1865´ 106 = 1.065 Ω to neutral
175

(3) ກະ຾ຘໃ ບຈຎະ຅ຸ

Ichg = wCnVan

Ichg = 2p ´ 60´ 8.8466´ 10- 12 ´ 1,609´ 23, 000
3

= 0.712 A/mile
ນົ = 0.712´ 175 = 124.6 A/ 175 mile

(4) ກາຖຄຕ຾ີ ບກຉຍີ

Q = 3´ 230, 000´ 124.6 = 49.63M var

ຉທ຺ ດໃ າຄ຋ີ 4.9 ຅າກປູຍ຋ີ 4.3 ຅ໃ ຄ຺ ນາ຃ໃ າ຃າຑາຆຉີ ຍິ ຕ຾ີ ບກ຾ຉຌ ເຌໜໃ ທງ Ω km/phase to

neutral ຾ຖະ ເຌໜໃ ທງ Ω mile/ phase to neutral ກາຌຈ຺ ເນເໄ ຆຘໄ າງ ACSR ,ortolan 1,113,000
cmil, d= 1.213 ຌທິໄ .
ທ຋ິ ໃ ຾ີ ກ:ໄ ຖຈຘະໝີ r ຽ຋ໃ າ຺ ກຍ:

r  1.213 0.3048  0.0154m
2 12

Dsbc = 0.0154´ 0.45 = 0.08326m

Deq = 3 8´ 8´ 16 = 10.08m

223

Cn = 2p ´ k (F/m to neutral)
ln D
r

Cn = 2p ´ 8.85´ 10- 12 = 11.5934´ 10- 12 (F/m to neutral)
ln( 10.08 )
0.08326

Xc = 1 = 2p ´ 60´ 1 10- 12 = 0.2283´ 106 Ωkm/phase to neutral
2pfCn 11.5934´

Xc = 0.2283´ 106 = 0.1422´ 106Ωmile / phase to neutral
1.609

ຉທ຺ ດໃ າຄ຋ີ 4.10 ຅ໃ ຄ຺ ນາ຃ໃ າ຃າຑາຆຉີ ຍິ ຕ຾ີ ບກ຾ຉຌຂບຄຖະຍຍ຺ ຘາງຘໃ ຄ຺ 3 ຽຒຈ ຾ຍຍທຄ຺ ຅ບຌ຃ໃ ູ

ນກ຺ ນໃ ົຼຓຈາໄ ຌຍໃ ຽ຋ໃ າ຺ ກຌຈໃ ຄປູຍ຋ີ 4.8 ເຆຘໄ າງ ACSR ຂະໜາຈ 336.4 MCM,Al/st ຽ຋ໃ າ຺ ກຍ 26/7 ຓ຃ີ ໃ າ
GMR ຽ຋ໃ າ຺ ກຍ 0.0234 ຒຸຈ, ຃ທາຓຊີ 50 Hz. ກາຌຈ຺ ແຖງະຈໃ ຄຌ:ີໄ h=18 foot,i=21 foot ຾ຖະ d=10
foot.

ປູຍ຋ີ 4.8 ຘາງຘໃ ຄ຺ 3 ຽຒຈ ທຄ຺ ຅ບຌ຃ໃ ູ຾ຍຍນກ຺ ນໃ ຼົ ຓຈາໄ ຌຍໃ ຽ຋ໃ າ຺ ກຌ

ທ຋ິ ໃ ຾ີ ກ:ໄ ຅າກປູຍ຃າຌທຌນາແຖງະ g,f ຾ຖະ y ຈໃ ຄຌ:ີໄ
g  (h  (i  h))2  d 2

2

224

g  (18  (218))2 102  21.9 ft
2

f  h2  (2d)2

f  182  (20)2  26.9 ft

ຈໃ ຄຌຌໄ y  ((i  h))2  d 2
2

y  ((218))2 102 10.11 ft
2

Deq  3 y.g 2d.h

Deq  3 (10.11)(21.9) 21018 16.13 ft

຾ຖະ Ds  3 r ' f r 'i

Ds  3 0.023426.9 0.0234 21  0.7613ft
 ຃ໃ າ຃ທາຓ຅ຉຸ ໃ ຽຒຈ

຅າກ Cn  0.03886  F/mile to neutral
log Deq
Ds

Cn  0.03886  0.0293  F/mile to neutral
log 16.13
0.7613

 ຃ໃ າ຃າຑາຆຉີ ຍິ ຕ຾ີ ບກ຾ຉຌຽ຋ໃ າ຺ ກຍ

Xcn = 1 Wmile to neutral
2pfCn

Xcn = 2p ´ 50´ 1 10- 6 = 108,638.18Wmile to neutral
0.0293´

225

ຉາຉະຖາຄ຋ີ 4.1 Capacitive-reactance spacing fa

226 feet 0 1 2 3 4 separa
1 0.0000 0.0024 0.0046 0.0066 0.0085 I
2 0.0206 0.0218 0.0229 0.0241 0.0251
3 0.0326 0.0334 0.0342 0.0350 0.0357 5
4 0.0411 0.0417 0.0423 0.0429 0.0435 0.0103
5 0.0477 0.0482 0.0487 0.0492 0.0497 0.0262
6 0.0532 0.0536 0.0540 0.0544 0.0548 0.0365
7 0.0577 0.0581 0.0584 0.0588 0.0591 0.0441
8 0.0617 0.0620 0.0623 0.0626 0.0629 0.0501
9 0.0652 0.0655 0.0657 0.0660 0.0663 0.0551
10 0.0683 0.0686 0.0688 0.0690 0.0693 0.0594
11 0.0711 0.0714 0.0716 0.0718 0.0720 0.0632
12 0.0737 0.0739 0.0741 0.0743 0.0745 0.0665
13 0.0761 0.0763 0.0765 0.0767 0.0768 0.0695
14 0.0783 0.0785 0.0786 0.0788 0.0790 0.0722
15 0.0803 0.0805 0.0807 0.0808 0.0810 0.0747
16 0.0823 0.0824 0.0826 0.0827 0.0829 0.0770
17 0.0841 0.0842 0.0843 0.0845 0.0846 0.0792
18 0.0857 0.0859 0.0860 0.0862 0.0863 0.0812
19 0.0874 0.0875 0.0876 0.0877 0.0879 0.0830
20 0.0889 0.0890 0.0891 0.0892 0.0894 0.0848
21 0.0903 0.0904 0.0906 0.0907 0.0908 0.0864
22 0.0917 0.0918 0.0919 0.0920 0.0921 0.0880
23 0.0930 0.0931 0.0932 0.0933 0.0934 0.0895
0.0909
0.0923
0.0936

22

actor X'd at 60 Hz ( M  mile per conductor)

atiog 7 8 9 10 11
Inches 0.0136 0.0152 0.0166 0.0180 0.0193
0.0282 0.0291 0.0300 0.0309 0.0318
6 0.0379 0.0385 0.0392 0.0399 0.0405
3 0.0120 0.0452 0.0457 0.0462 0.0467 0.0472
2 0.0272 0.0510 0.0515 0.0519 0.0523 0.0527
5 0.0372 0.0559 0.0563 0.0566 0.0570 0.0574
1 0.0446 0.0601 0.0604 0.0607 0.0611 0.0614
1 0.0506 0.0638 0.0641 0.0643 0.0646 0.0649
1 0.0555 0.0670 0.0673 0.0676 0.0678 0.0681
4 0.0598 0.0700 0.0702 0.0705 0.0707 0.0709
2 0.0635 0.0727 0.0729 0.0731 0.0733 0.0735
5 0.0668 0.0751 0.0753 0.0755 0.0757 0.0759
5 0.0698 0.0774 0.0776 0.0778 0.0779 0.0781
2 0.0725 0.0795 0.0797 0.0798 0.0800 0.0802
7 0.0749 0.0815 0.0816 0.0818 0.0819 0.0821
0 0.0772 0.0833 0.0835 0.0836 0.0838 0.0839
2 0.0793 0.0851 0.0852 0.0853 0.0855 0.0856
2 0.0813 0.0867 0.0868 0.0870 0.0871 0.0872
0 0.0832 0.0882 0.0884 0.0885 0.0886 0.0887
8 0.0849 0.0897 0.0898 0.0900 0.0901 0.0902
4 0.0866 0.0911 0.0912 0.0914 0.0915 0.0916
0 0.0881 0.0925 0.0926 0.0927 0.0928 0.0929
5 0.0896 0.0938 0.0939 0.0940 0.0941 0.0942
9 0.0910
3 0.0924
6 0.0937

26

ຉາຉະຖາຄ຋ີ 4.1 Capacitive-reactance spacing fact

227 24 0.0943 0.0944 0.0945 0.0946 0.0947 0.0948
25 0.0955 0.0956 0.0957 0.0958 0.0959 0.0960
26 0.0967 0.0968 0.0968 0.0969 0.0970 0.0971
27 0.0978 0.0979 0.0980 0.0980 0.0981 0.0982
28 0.0989 0.0989 0.0990 0.0991 0.0992 0.0993
29 0.0999 0.1000 0.1001 0.1002 0.1002 0.1003
30 0.1009 0.1010 0.1011 0.1011 0.1012 0.1013
31 0.1019 0.1020 0.1020 0.1021 0.1022 0.1023
32 0.1028 0.1029 0.1030 0.1030 0.1031 0.1032
33 0.1037 0.1038 0.1039 0.1040 0.1040 0.1041
34 0.1046 0.1047 0.1048 0.1048 0.1049 0.1050
35 0.1055 0.1055 0.1056 0.1057 0.1058 0.1058
36 0.1063 0.1064 0.1064 0.1065 0.1066 0.1067
37 0.1071 0.1072 0.1073 0.1073 0.1074 0.1075
38 0.1079 0.1080 0.1080 0.1081 0.1082 0.1082
39 0.1087 0.1087 0.1088 0.1089 0.1089 0.1090
40 0.1094 0.1095 0.1096 0.1096 0.1097 0.1097
41 0.1102 0.1102 0.1103 0.1103 0.1104 0.1105
42 0.1109 0.1109 0.1110 0.1111 0.1111 0.1112
43 0.1116 0.1116 0.1117 0.1118 0.1118 0.1119
44 0.1123 0.1123 0.1124 0.1124 0.1125 0.1125
45 0.1129 0.1130 0.1130 0.1131 0.1131 0.1132
46 0.1136 0.1136 0.1137 0.1137 0.1138 0.1139
47 0.1142 0.1143 0.1143 0.1144 0.1144 0.1145
48 0.1148 0.1149 0.1149 0.1150 0.1151 0.1151
49 0.1155 0.1155 0.1156 0.1156 0.1157 0.1157

22

tor X'd at 60 Hz ( M  mile per conductor) (ຉໃ )

8 0.0949 0.0950 0.0951 0.0952 0.0953 0.0954
0 0.0961 0.0962 0.0963 0.0964 0.0965 0.0966
1 0.0972 0.0973 0.0974 0.0975 0.0976 0.0977
2 0.0983 0.0984 0.0985 0.0986 0.0987 0.0988
3 0.0994 0.0995 0.0996 0.0996 0.0997 0.0998
3 0.1004 0.1005 0.1006 0.1007 0.1007 0.1008
3 0.1014 0.1015 0.1016 0.1016 0.1017 0.1018
3 0.1023 0.1024 0.1025 0.1026 0.1027 0.1027
2 0.1033 0.1034 0.1034 0.1035 0.1036 0.1037
1 0.1042 0.1042 0.1043 0.1044 0.1045 0.1045
0 0.1050 0.1051 0.1052 0.1053 0.1053 0.1054
8 0.1059 0.1060 0.1060 0.1061 0.1062 0.1062
7 0.1067 0.1068 0.1069 0.1069 0.1070 0.1071
5 0.1075 0.1076 0.1077 0.1077 0.1078 0.1078
2 0.1083 0.1084 0.1084 0.1085 0.1086 0.1086
0 0.1091 0.1091 0.1092 0.1093 0.1093 0.1094
7 0.1098 0.1099 0.1099 0.1100 0.1100 0.1101
5 0.1105 0.1106 0.1106 0.1107 0.1108 0.1108
2 0.1112 0.1113 0.1114 0.1114 0.1115 0.1115
9 0.1119 0.1120 0.1120 0.1121 0.1122 0.1122
5 0.1126 0.1127 0.1127 0.1128 0.1128 0.1129
2 0.1133 0.1133 0.1134 0.1134 0.1135 0.1135
9 0.1139 0.1140 0.1140 0.1141 0.1141 0.1142
5 0.1145 0.1146 0.1146 0.1147 0.1147 0.1148
1 0.1152 0.1152 0.1153 0.1153 0.1154 0.1154
7 0.1158 0.1158 0.1159 0.1159 0.1160 0.1160

27

ຉາຉະຖາຄ຋ີ 4.2 Inducitive reactance spacing fac

228 feet 0 1 2 3 separatiog 0
1 0.0000 0.00971 0.0187 0.0271 inches 0
2 0.0841 0.08906 0.0938 0.0984 4 0
3 0.1333 0.13663 0.1399 0.1430 0.0349 0
4 0.1682 0.17072 0.1732 0.1756 0.1028 0
5 0.1953 0.19730 0.1993 0.2012 0.1461 0
6 0.2174 0.21909 0.2207 0.2224 0.1779 0
7 0.2361 0.23756 0.2390 0.2404 0.2031 0
8 0.2523 0.25358 0.2548 0.2561 0.2240 0
9 0.2666 0.26773 0.2688 0.2699 0.2418 0
10 0.2794 0.28041 0.2814 0.2824 0.2573 0
11 0.2910 0.29188 0.2928 0.2937 0.2710 0
12 0.3015 0.30236 0.3032 0.3040 0.2834 0
13 0.3112 0.31201 0.3128 0.3135 0.2946 0
14 0.3202 0.32095 0.3217 0.3224 0.3048 0
15 0.3286 0.32927 0.3299 0.3306 0.3143 0
16 0.3364 0.33706 0.3377 0.3383 0.3231 0
17 0.3438 0.34438 0.3450 0.3456 0.3313 0
18 0.3507 0.35128 0.3518 0.3524 0.3389 0
19 0.3573 0.35781 0.3583 0.3589 0.3461 0
20 0.3635 0.36401 0.3645 0.3650 0.3529 0
21 0.3694 0.36991 0.3704 0.3709 0.3594 0
22 0.3751 0.37553 0.3760 0.3764 0.3655 0
23 0.3805 0.38091 0.3813 0.3818 0.3713
0.3769
0.3822

22

ctor Xd at 60 Hz (  per mile per conductor)

5 6 7 8 9 10 11
0.0423 0.0492 0.0558 0.0620 0.0679 0.0735 0.0789
0.1071 0.1112 0.1152 0.1190 0.1227 0.1264 0.1299
0.1491 0.1520 0.1549 0.1577 0.1604 0.1631 0.1657
0.1802 0.1825 0.1847 0.1869 0.1891 0.1912 0.1933
0.2050 0.2069 0.2087 0.2105 0.2123 0.2140 0.2157
0.2256 0.2271 0.2287 0.2302 0.2317 0.2332 0.2347
0.2431 0.2445 0.2458 0.2472 0.2485 0.2498 0.2511
0.2585 0.2597 0.2609 0.2620 0.2632 0.2643 0.2655
0.2721 0.2732 0.2742 0.2753 0.2763 0.2774 0.2784
0.2844 0.2853 0.2863 0.2872 0.2882 0.2891 0.2900
0.2955 0.2964 0.2972 0.2981 0.2990 0.2998 0.3007
0.3057 0.3065 0.3073 0.3081 0.3089 0.3097 0.3105
0.3151 0.3158 0.3166 0.3173 0.3180 0.3188 0.3195
0.3238 0.3245 0.3252 0.3259 0.3266 0.3272 0.3279
0.3319 0.3326 0.3332 0.3339 0.3345 0.3352 0.3358
0.3396 0.3402 0.3408 0.3414 0.3420 0.3426 0.3432
0.3467 0.3473 0.3479 0.3485 0.3490 0.3496 0.3502
0.3535 0.3540 0.3546 0.3551 0.3557 0.3562 0.3568
0.3599 0.3604 0.3610 0.3615 0.3620 0.3625 0.3630
0.3660 0.3665 0.3670 0.3675 0.3680 0.3685 0.3689
0.3718 0.3723 0.3728 0.3732 0.3737 0.3741 0.3746
0.3773 0.3778 0.3782 0.3787 0.3791 0.3796 0.3800
0.3826 0.3831 0.3835 0.3839 0.3844 0.3848 0.3852

28

229 ຉາຉະຖາຄ຋ີ 4.2Inducitive reactance spacing facto

24 0.3856 0.38605 0.3865 0.3869 0.3873 0
25 0.3906 0.39099 0.3914 0.3918 0.3922 0
26 0.3953 0.39573 0.3961 0.3965 0.3969 0
27 0.3999 0.40030 0.4007 0.4010 0.4014 0
28 0.4043 0.40470 0.4051 0.4054 0.4058 0
29 0.4086 0.40894 0.4093 0.4096 0.4100 0
30 0.4127 0.41304 0.4134 0.4137 0.4140 0
31 0.4167 0.41701 0.4173 0.4177 0.4180 0
32 0.4205 0.42085 0.4212 0.4215 0.4218 0
33 0.4243 0.42458 0.4249 0.4252 0.4255 0
34 0.4279 0.42819 0.4285 0.4288 0.4291 0
35 0.4314 0.43170 0.4320 0.4323 0.4326 0
36 0.4348 0.43511 0.4354 0.4357 0.4359 0
37 0.4382 0.43843 0.4387 0.4390 0.4392 0
38 0.4414 0.44166 0.4419 0.4422 0.4425 0
39 0.4445 0.44480 0.4451 0.4453 0.4456 0
40 0.4476 0.44787 0.4481 0.4484 0.4486 0
41 0.4506 0.45086 0.4511 0.4513 0.4516 0
42 0.4535 0.45378 0.4540 0.4543 0.4545 0
43 0.4564 0.45663 0.4569 0.4571 0.4573 0
44 0.4592 0.45941 0.4596 0.4599 0.4601 0
45 0.4619 0.46213 0.4624 0.4626 0.4628 0
46 0.4646 0.46479 0.4650 0.4652 0.4655 0
47 0.4672 0.46740 0.4676 0.4678 0.4680 0
48 0.4697 0.46995 0.4702 0.4704 0.4706 0
49 0.4722 0.47245 0.4727 0.4729 0.4731 0

22

or Xd at 60 Hz (  per mile per conductor) (ຉໃ )

0.3877 0.3881 0.3885 0.3890 0.3894 0.3898 0.3902
0.3926 0.3930 0.3934 0.3938 0.3942 0.3946 0.3950
0.3973 0.3977 0.3980 0.3984 0.3988 0.3992 0.3995
0.4018 0.4021 0.4025 0.4029 0.4032 0.4036 0.4040
0.4061 0.4065 0.4068 0.4072 0.4075 0.4079 0.4082
0.4103 0.4107 0.4110 0.4114 0.4117 0.4120 0.4124
0.4144 0.4147 0.4150 0.4154 0.4157 0.4160 0.4164
0.4183 0.4186 0.4189 0.4193 0.4196 0.4199 0.4202
0.4221 0.4224 0.4227 0.4230 0.4233 0.4237 0.4240
0.4258 0.4261 0.4264 0.4267 0.4270 0.4273 0.4276
0.4294 0.4297 0.4300 0.4303 0.4305 0.4308 0.4311
0.4328 0.4331 0.4334 0.4337 0.4340 0.4343 0.4345
0.4362 0.4365 0.4368 0.4371 0.4373 0.4376 0.4379
0.4395 0.4398 0.4401 0.4403 0.4406 0.4409 0.4411
0.4427 0.4430 0.4432 0.4435 0.4438 0.4440 0.4443
0.4458 0.4461 0.4463 0.4466 0.4469 0.4471 0.4474
0.4489 0.4491 0.4494 0.4496 0.4499 0.4501 0.4504
0.4518 0.4521 0.4523 0.4526 0.4528 0.4531 0.4533
0.4547 0.4550 0.4552 0.4554 0.4557 0.4559 0.4562
0.4576 0.4578 0.4580 0.4583 0.4585 0.4587 0.4590
0.4603 0.4606 0.4608 0.4610 0.4612 0.4615 0.4617
0.4630 0.4632 0.4635 0.4637 0.4639 0.4641 0.4644
0.4657 0.4659 0.4661 0.4663 0.4665 0.4668 0.4670
0.4683 0.4685 0.4687 0.4689 0.4691 0.4693 0.4695
0.4708 0.4710 0.4712 0.4714 0.4716 0.4718 0.4720
0.4733 0.4735 0.4737 0.4739 0.4741 0.4743 0.4745

29

3. ຉທ຺ ດໃ າຄກໃ ຼທກຍກະ຾ຘໃ ຾ຖະ ຾ປຄຈຌເຌຘາງຘໃ ຄ຺

ຉທ຺ ດໃ າຄ຋ີ 4.11 ຘາງຘໃ ຄ຺ 3 ຽຒຈ ຓຖີ ະຈຍ຾ປຄຈຌ 115 kV ຉໃ ຽຂາ຺ໄ ກຍ຿ນົຈ 40 MW, 50 Hz ຋ໃ ີ

ຑາທຽທຽີ ຒກຽຉີ 0.85 lagging, ຘາງຘໃ ຄ຺ ງາທ 90 km, ຓບີ ຓິ ຑ຾ິ ຈຌຖຼຌ Z  9578 ຾ຖະ ຾ບຈຓຈິ
຾ຉຌຂະໜາຌ Y  0.00290s . ຅ໃ ຄ຺ ເຆທໄ ຄ຺ ຅ບຌຘຓ຺ ຓຸຈ T &  ຃າຌທຌ຃ໃ າຉໃ າຄໂຈໃ ຄຌ:ີໄ

1) ຑາຖາຓຽີ ຉີ ABCD
2) ຾ປຄຈຌ຋າຄຈາໄ ຌຘໃ ຄ຺ ( Vs)
3) ກະ຾ຘາ຋າຄຈາໄ ຌຘໃ ຄ຺ (Is)
4) Power factor ຋າຄຈາໄ ຌຘໃ ຄ຺ (cos s )
5) ຽຎຽີ ຆຌກາຌ຃ທຍ຃ໃ ຸຓ຾ປຄຈຌ
6) ຎະຘຈິ ຋ໃ ຑີ າຍຂບຄຘາງຘໃ ຄ຺

ທ຋ິ ໃ ຾ີ ກ:ໄ ຾ກ຾ໄ ຍຍເຆທໄ ຄ຺ ຅ບຌຘຓ຺ ຓຸຈ T

ຽຓໃ ບເຆ຾ໄ ປຄຈຌຎາງ຋າຄ(ຈາໄ ຌປຍ) ຽຎຌ຾ປຄຈຌບາໄ ຄບໃ ຄີ ຈໃ ຄຌຌໄ

VR ( L N )  VLL kV
3

VR ( L N )  115  66, 395.28V
3

VR(LN)  66,395.280V

 ກະ຾ຘໃ ຎາງ຋າຄ (ຈາໄ ຌປຍ) ຃

IR  S
A

3  VLL  COS

IR  40 106  236.25A

3 115103 0.85

IR  236.2531.78A

1) ຑາຖາຓຽີ ຉີ ABCD ທຄ຺ ຅ບຌຘຓ຺ ຓຸຈ T ຓ຃ີ ໃ າຈໃ ຄຌ:ີໄ
 A  D  1 ZY

2

230

A  D  1 (0.00290)(9578)
2

A  D  1 0.19168
2

A  D  0.9071 j0.01975

A  D  0.90731.24 Ω
 B  Z  Z2Y

4
B  9578  (0.00290)(9578)2

4

B  19.75  j92.92 1.835  j4.122
B  90.58  j88.798

B  90.5878.59 Ω
 C  Y  0.00290S

2) ຾ປຄຈຌ຋າຄຈາໄ ຌຘໃ ຄ຺ ( Vs)
VS  AVR  BIR
VS  (0.90731.24)(66,395.280)  (90.5878.59)(236.2531.78)
VS  60, 240.431.24  j21,399.546.81
VS  74,872.52 16,399.74
VS(LN)  76, 757.412.72V
VS(LL)  3  VS(LN)  3  76, 757.412.72  132,947.71V

3) ກະ຾ຘາ຋າຄຈາໄ ຌຘໃ ຄ຺ (Is)
຅າກຘຓ຺ ຏຌ຺ IS  CVR  DIR

IS  (0.00290)(66,395.280)  (0.90731.24)(236.2531.78)
IS 132.7990  214.3530.54

231

IS 184.6  j23.87
IS 186.137.36A
4) Power factor ຋າຄຈາໄ ຌຘໃ ຄ຺ (cos s )
  VS(LN)  IS
 12.72  7.36  20.08
COSs  COS(20.08)  0.9392
5) ຽຎຽີ ຆຌກາຌ຃ທຍ຃ໃ ຸຓ຾ປຄຈຌ
 VS  A  VR,FL 100

VR,FL
 (76,757.4 / 0.9073)  66,395.28 100  27.41%

66, 395.28
6) ຎະຘຈິ ຋ໃ ຑີ າຍຂບຄຘາງຘໃ ຄ຺

  Power output 100
Power input

  3VRIRCOS 100
3VSISCOSS

  3115103  236.250.85 100  99.36%
3132, 947 186.13 0.9392

 ຾ກ຾ໄ ຍຍເຆທໄ ຄ຺ ຅ບຌຘຓ຺ ຓຸຈ 
1) ຑາຖາຓຽີ ຉີ ABCD ທຄ຺ ຅ບຌຘຓ຺ ຓຸຈ  ຓ຃ີ ໃ າຈໃ ຄຌ:ີໄ
A  D  1 ZY
2
A  D  0.90731.24 Ω
B  Z  9578
C  Y  ZY2
4

232

C  0.00290  (9578)(0.00290)2
4

C  1.975105  j1.9103
C 0.00290.59S
2) ຾ປຄຈຌ຋າຄຈາໄ ຌຘໃ ຄ຺ ( Vs)
VS  AVR  BIR
VS  (0.90731.24)(66,395.280)  (9578)(236.2531.78)
VS  60, 240.431.24  j22, 443.7546.22
VS  75,754.85 17,508
VS(LN)  77, 751.713.01V
VS(LL)  3  VS(LN)  3  77, 751.713.01  134, 669.90V
3) ກະ຾ຘາ຋າຄຈາໄ ຌຘໃ ຄ຺ (Is)
຅າກຘຓ຺ ຏຌ຺ IS  CVR  DIR
IS  (0.00290.59)(66,395.280)  (0.90731.24)(236.2531.78)
IS 132.7990.59  214.35 30.54
IS 183.24  j23.86
IS 184.787.41A
4) Power factor ຋າຄຈາໄ ຌຘໃ ຄ຺ (cos s )
  VS(LN)  IS
 13.01  7.41  20.42
COSs  COS(20.42)  0.9371
5) ຽຎຽີ ຆຌກາຌ຃ທຍ຃ໃ ຸຓ຾ປຄຈຌ

233

 VS  A  VR,FL 100
VR,FL

 (77,751.7 / 0.9073)  66,395.28 100  29.06%
66, 395.28

6) ຎະຘຈິ ຋ໃ ຑີ າຍຂບຄຘາງຘໃ ຄ຺

  Power output 100
Power input

  3VRIRCOS 100
3VSISCOSS

  3115103  236.250.85 100  99.06%
3 134,669.9184.780.9371

຅າກກາຌ຃າຌທຌນາຑາຖາຓຽີ ຉ຋ີ ຄໄ ຘບຄທຄ຺ ຅ບຌຘຓ຺ ຓຸຈ T &  ຅ະເນ຃ໄ ໃ າ຃ທາຓຊກຶ ຉບໄ ຄເກ຃ໄ ໃ ຼຄ
ກຌ. ຎຼຍ຋ຼຍຏຌ຺ ກາຌ຃າຌທຌຈໃ ຄຉາຉະຖາຄ຋ີ 4.3 ຖໃ ຸຓຌ:ີໄ

ຉາຉະຖາຄ຋ີ 4.3 ຎຼຍ຋ຼຍຏຌ຺ ກາຌ຃າຌທຌທຄ຺ ຅ບຌຘຓ຺ ຓຸຈ T & 

ທຄ຺ ຅ບຌຘຓ຺ ຓຸຈ຋ໃ ີ VS(L-L) IS COSs Voltage 
຃າຌທຌ (kV) (A) (lagging) regulation(%) (%)
ທຄ຺ ຅ບຌ T
132.94 186.13 0.9392 27.41 99.36
ທຄ຺ ຅ບຌ  134.66 184.78 0.9371 29.06 99.03

ຉທ຺ ດໃ າຄ຋ີ 4.12 ຘາງຘໃ ຄ຺ 3 ຽຒຈ ຓຖີ ະຈຍ຾ປຄຈຌ 138 kV ຉໃ ຽຂາ຺ໄ ກຍ຿ນຈົ 50 MW, 60 Hz ຋ໃ ຑີ າທ

ຽທຽີ ຒກຽຉີ 0.85 lagging, ຘາງຘໃ ຄ຺ ງາທ 150 mile, ຓ຃ີ ໃ າ R= 0.1858 Ω/mile ຾ຖະ L=2.6 mH/mile
຾ຖະ C=0.012 F / mile ຅ໃ ຄ຺ ຃ໃ າຉໃ າຄໂຈໃ ຄຌ:ີໄ

1) ຃ໃ າ຃ຄ຺ ຋ໃ ີ A,B,C,D ຂບຄຘາຍຘໃ ຄ຺
2) ຾ປຄຈຌແຒຒາໄ ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ ( sending End)
3) ກະ຾ຘາແຒຒາໄ ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ
4) Power factor ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ
5) ກາຖຄແຒຒາໄ ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ
6) ກາຖຄແຒຒາໄ ຘູຌຽຘງຂບຄຘາງຘໃ ຄ຺
7) ຎະຘຈິ ຋ໃ ຑີ າຍຂບຄຘາງຘໃ ຄ຺

234

8) ຽຎຽີ ຆຌກາຌ຃ທຍ຃ໃ ຸຓ຾ປຄຈຌ

ທ຋ິ ໃ ຾ີ ກ:ໄ

຅າກ Z  R  jXL  R  j2fL

Z  0.1858 j260 2.6103  0.1858 j0.9802

Z  0.997779.27 Ω/mile
Y  1  1  j2fC

ZC 1
j2fC

Y  j2600.012106  4.523910690 s/mile

  YZ

  (4.523910690)(0.997779.27)

  (4.5135106  1 (90  79.27)
2

  0.00214484.63
  0.0002006  j0.0021346

຅າກ     j  (  j)

  (0.0002006  j0.0021346)150
  0.0301 j0.3202

  0.321684.81
຃ຸຌຖກຘະຌະບຓີ ຑ຾ິ ຈຌຂບຄຘາງຘໃ ຄ຺ ຓ຃ີ ໃ າຈໃ ຄຌ:ີໄ

ZC  Z 0.997779.27
Y 4.5239 106 90

ZC  (0.9977106  1 (79.27  90)
4.5239 2

ZC  469.625.32

235

຾ປຄຈຌແຒຒາໄ ຋ໃ ຽີ ຒຈຈາໄ ຌຎາງ຋າຄ

VR  VLL kV
3

VR  138kV  79, 674.34V
3

ກາຌຈ຺ ເນເໄ ຆ຾ໄ ປຄຈຌຈາໄ ຌຎາງ຋າຄຽຎຌ຾ປຄຈຌບາໄ ຄບໃ ຄີ

VR  79,674.340V
ກະ຾ຘໃ ຈາໄ ຌຎາງ຋າຄ

IR  S
A

3  VLL  COS

IR  50 106  246.1A

3 138103 0.85

IR  246.1 31.78A
1) ຃ໃ າ຃ຄ຺ ຋ໃ ີ A,B,C,D ຂບຄຘາຍຘໃ ຄ຺ ຈໃ ຄຌີໄ

A  cosh   cosh(  j )

A  1 (e ej  e e j )
2

A  1 (e   e    )
2

A  1 (e0.03010.3202rad  e0.0301  0.3202rad)
2

຿ຈງ຋ໃ ີ   0.3202rad  180 0.3202  18.35
3.14

A  1 (e0.030118.35  e0.0301 18.35)
2

A  1 (1.030618.35  0.9703 18.35)
2

A  0.9496  j0.0095  0.94960.57

236

B  ZC sinh   ZC sinh   j 

B  ZC[ 1 (e e j  e e j )]
2

B  1 ZC (e   e   )
2

B  1 (469.62  5.32)[(e0.03010.3202rad  e0.0301  0.3202rad)
2

຿ຈງ຋ໃ ີ   0.3202rad  180 0.3202  18.35
3.14

B  (234.81  5.32)[(1.030618.35  0.9703 18.35)]

B  (234.81  5.32)(0.0572  j0.6300)

B  (234.81  5.32)(0.632684.81)

B 148.5479.4

C  YC sinh   1 sinh 
ZC

C  ( 1 )(0.632684.81)
469.62  5.32 2

C  0.0006790.18 s

D  A  cosh   0.94960.57

2) ຾ປຄຈຌແຒຒາໄ ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ ຅າກຓາຉຕຈິ

VS   A B VR 
  C D  IR 
 IS 

VS    0.94960.57 148.5479.4  79,674.340 
  0.0006790.18 0.94960.57 246.1  31.78
 IS 

VS  (0.94960.57)(79,674.340)  (148.5479.4)(246.131.78)

VS  99, 470.0513.79V

VS(LL)  3  VS(LN)  3 99, 470.0513.79  172, 287.18V

237

3) ກະ຾ຘາແຒຒາໄ ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ
຅າກຘຓ຺ ຏຌ຺

IS  CVR  DIR
IS  (0.0006790.18)(79,674.340)  (0.94960.57)(246.131.78)
IS 176.808416.3A
4) Power factor ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ
  VS(LN)  IS
  13.79  (16.3)  30.09
COSs  COS(30.09)  0.8652
5) ກາຖຄແຒຒາໄ ຋າຄຈາໄ ຌຉຌ຺ໄ ຋າຄ
PS  3VS(LL)IS cos s
PS  3 172, 287.18176.80840.8652
PS  45.64918MW
6) ກາຖຄແຒຒາໄ ຘູຌຽຘງຂບຄຘາງຘໃ ຄ຺
PR  3VRIR cos 
PR  3 138103  246.10.85  42.499MW
ຈໃ ຄຌຌໄ ກາຖຄຘູຌຽຘງເຌຘາງຘໃ ຄ຺ ຾ຓໃ ຌ:
PL  PS  PR  45.64918MW  42.499MW  3.15018MW
7) ຎະຘຈິ ຋ໃ ຑີ າຍຂບຄຘາງຘໃ ຄ຺
  PR 100

PS
  42.499 100  93.1%

45.64918

238

8) ຽຎຽີ ຆຌກາຌ຃ທຍ຃ໃ ຸຓ຾ປຄຈຌ

%VDROP  VS  VR
VR

= 99, 470.05 79,674.34 100  24.9%
79, 674.34

4. ຉທ຺ ດໃ າຄກໃ ຼທກຍ຃ທາຓ຿ຉໃ ຄ ຾ຖະ ຾ປຄຈຄຶ ຂບຄຘາງຘໃ ຄ຺

ຉທ຺ ດໃ າຄ:13 ຅ໃ ຄ຺ ຃າຌທຌນາ຾ປຄຈຄຽ຃ໃ ຄຘາງຂຌໄ ຉຌ຺ໄ ຋ໃ ບີ ໃ ຸຌນະຑຸຓຘະຽຖງຍໃ ຓຖີ ຓ຺ ຾ປຄຈຄຶ ຘູຄຘຸຈນຄົ

ຽ຃ໃ ຄຘາງ 10 ຎີ ຾ຖະ ແຖງະງບຌງໃ າຌຂບຄຘາງບາຖູຓຌີ ຼຓຽຎບງຂະໜາຈ 400 mm2 ຋ໃ ບີ ໃ ຸຌນະຑຸຓຘະຽຖງຍໃ
ຓຖີ ຓ຺ ເຌຖະຍຍ຺ ຘາງຘໃ ຄ຺ 115 kV .຿ຈງຂຓໄ ູຌ຃ຸຌຘຓ຺ ຍຈຘາງ ຾ຖະ ຂຓໄ ຌູ ບໃ ຌໂຓຈີ ໃ ຄຌ:ີໄ

ຆະຌຈິ ຂບຄຘາງ ຽຎຌຘາງບາຖູຓຌີ ຼຓຽຎບງ(AAC) ຂະໜາຈ 400 mm2

ຽຌບໄ ຋ໃ ໜີ າໄ ຉຈ A 389.14 mm2

ຽຘຌໄ ຏໃ າຘູຌກາຄຂບຄຘາງ d 25.65 mm

຾ປຄຈໃ ຄຶ ຘູຄຘຸຈ UTS 6,025 kg

ກາຌນຈ຺ ດຈຶ ຂບຄຘາງ E 5,500 kg/mm2

ຌາໄ ໜກຂບຄຘາງ W 1.075 kg/m

ຘາຎະຘຈິ ກາຌຂະນງາງຉທ຺ ຂບຄຘາງ  0.000023 / C

຃ທາຓຖາໄ ຂບຄຘາງ C 0.04 %

ແຖງະຆໃ ທຄຽຘາ຺ L 80 m
຾ປຄຖຓ຺ ຎະ຋ະ p 40 kg/mm2
Aerodynamic factor Adf 1.0
ບໃ ຸຌນະຑຸຓຉໃ າຘຸຈ t0 6 C

ບໃ ຸຌນະຑຸຓຘະຽຖງ t1 27 C

239

ທ຋ິ ຾ີ ກ:ໄ

T13  [(C1W0L)2  T0  C2 (T1  T0  C0 )]T12  (C1W1L)2  0
T0 100

 ນາ຃ໃ າ C1  (EA / 24)  5500389.14 / 24  298.62
 ນາ຃ໃ າ C2  EA  0.0000235500389.14  49.22
 ນາ຃ໃ າ WW  P D Adf  40 25.65103 1.0  1.026kg / m

 ນາ຃ໃ າ WR  W2  WW2  (1.075)2  (1.026)2 1.486kg / m

຅າກຘະຑາທະ຋ີ 1 ຅ະນາ຃ໃ າ຾ປຄຈໃ ຄຶ ຂະຌະຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌນະຑຸຓຘະຽຖງຍໃ ຓຖີ ຓ຺

T0  50%  UTS  50  6, 025  3, 012.5kg
100

W0  WR 1.486kg / m
W1  W 1.075kg / m
t0  6c
t1  27c
C0  0.0% (ຽຑາະຽຎຌຘະຑາທະ຋ໃ ຽີ ກຈິ ຂຘໄ ເຌຎຈ຅ຍຸ ຌຂະຌະຽຖໃ ຓີ ຽ຃ໃ ຄຘາງ)

ຈໃ ຄ຅ະ຾຋ໃ ຌ຃ໃ າຖຄ຺ ເຌຘຓ຺ ຏຌ຺ (2.115) ຅ະແຈທໄ ໃ າ:

T13 [( 298.621.48680)2  3, 012.5  49.22(27  6  0.0 )]T12  (298.621.07580)2  0
3, 012.5 100  23106

T13 1,840.01T12  659,530,196.9  0
T1  2,004.09kg
ຈໃ ຄຌຌໄ T1 ຅າຘະຑາທະ຋ໃ ີ 1 ຓ຃ີ ໃ າຽ຋ໃ າ຺ ກຍ 2,004.09 kg ຽຓໃ ບຍໃ ຓຖີ ຓ຺

 ຅າກຘະຑາທະ຋ີ 2 ຅ະນາ຃ໃ າ຾ປຄຈໃ ຄຶ ຂະຌະຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌນະຑຸຓຘະຽຖງຍໃ ຓຖີ ຓ຺

T0  33.33%  UTS  33.33  6, 025  2, 008.13kg
100

ຈໃ ຄຌຌໄ T1 ຅າຘະຑາທະ຋ໃ ີ 2 ຓ຃ີ ໃ າຽ຋ໃ າ຺ ກຍ 2,008.13 kg ຽຓໃ ບຍໃ ຓຖີ ຓ຺

240

 ຅າກຘະຑາທະ຋ີ 3 ຅ະນາ຃ໃ າ຾ປຄຈໃ ຄຶ ຂະຌະຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌນະຑຸຓຘະຽຖງຍໃ ຓຖີ ຓ຺

T0  40%  UTS  40  6,025  2, 410kg
100

W0  WR 1.486kg / m
W1  W 1.075kg / m
t0  6c
t1  27c
C0  0.04% (ຽຑາະຽຎຌຘະຑາທະ຋ໃ ຽີ ກຈິ ຂຌໄ ເຌຎຈ຅ຍຸ ຌຂະຌະຽຖໃ ຓີ ຽ຃ໃ ຄຘາງ)

ຈໃ ຄ຅ະ຾຋ໃ ຌ຃ໃ າຖຄ຺ ເຌຘຓ຺ ຏຌ຺ (2.115) ຅ະແຈທໄ ໃ າ:

T13 [( 298.621.48680)2  2, 410  49.22(27  6  0.04 )]T12  (298.621.07580)2  0
2, 410 100  23106

T13  2,015.39T12  659,530,196.9  0
T1  2,157.1kg
ຈໃ ຄຌຌໄ T1 ຅າຘະຑາທະ຋ໃ ີ 3 ຓ຃ີ ໃ າຽ຋ໃ າ຺ ກຍ 2,157.1 kg ຽຓໃ ບຍໃ ຓຖີ ຓ຺

 ຅າກຘະຑາທະ຋ີ 4 ຅ະນາ຃ໃ າ຾ປຄຈໃ ຄຶ ຂະຌະຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌນະຑຸຓຘະຽຖງຍໃ ຓຖີ ຓ຺

T0  20%  UTS  20  6,025  1, 205kg
100

W0  W 1.075kg / m
W1  W 1.075kg / m
t0  27c
t1  27c
C0  0.04% (ຽຑາະຽຎຌຘະຑາທະ຋ໃ ຽີ ກຈິ ຂຘໄ ເຌຎຈ຅ຍຸ ຌຂະຌະຽຖໃ ຓີ ຽ຃ໃ ຄຘາງ)

ຈໃ ຄ຅ະ຾຋ໃ ຌ຃ໃ າຖຄ຺ ເຌຘຓ຺ ຏຌ຺ (2.115) ຅ະແຈທໄ ໃ າ:

T13 [( 298.621.48680)2 1, 205  49.22(27  27  0.04 )]T12  (298.621.07580)2  0
1, 205 100  23106

241

T13 1,606.78T12  659,530,196.9  0

T1 1,808.53kg

ຈໃ ຄຌຌໄ T1 ຅າຘະຑາທະ຋ໃ ີ 4 ຓ຃ີ ໃ າຽ຋ໃ າ຺ ກຍ 1,808.53 kg ຽຓໃ ບຍໃ ຓຖີ ຓ຺

຅າກ຃ໃ າ T1 ຋ໃ ຃ີ າຌທຌແ້ໄ຅າກຘະຑາທຑ຋ຄ 4 ຘະຑາະທະ ຅ະຽຎຌ຾ປຄຈໃ ຄຶ ຂະຌະຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌນະ
ຑຸຓຘະຽຖງຍໃ ຓຖີ ຓ຺ (ນົ ຽຎຌ຾ປຄຽ຃ໃ ຄ຋ໃ ເີ ຆຘໄ ານຍົ ຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌນະຑຸຓ 27c ) ຿ຈງ຋ໃ ຘີ ະຑາທະ຋ີ 4 ຅ະແຈໄ
T1 ຓ຃ີ ໃ າຌບໄ ງ຋ໃ ຘີ ຸຈ ຅ໃ ຄຌາ຃ໃ າ T1 ຅າກຘະຑາຘະ຋ີ 4 ຌແີໄ ຎເຆຄໄ າຌ຋າຄເຌກາຌຽ຃ໃ ຄຘາງ ຾ຖະ ກາຌ຃າຌທຌ
ດບໄ ຌກຍຽຑໃ ບຶ ນາ຾ປຄຈໃ ຄຶ ຋ໃ ຘີ ະຑາທະທກິ ຈິ ເຌບກີ 10 ຎຂີ າໄ ຄໜາໄ (຋ໃ ບີ ໃ ຸຌນະຑຸຓຉໃ າຘຸຈ 6c ຽຓໃ ບຶ ຓຖີ ຓ຺ ), ຆໃ ຄິ ເຌ
ກາຌນາ຾ປຄຈໃ ຄຶ ຋ໃ ຘີ ະຑາທະທກິ ຈິ ຅ະເຆຘໄ ຓ຺ ຏຌ຺ (2.116) ເຌກາຌນາ຃ໃ າ. ຋ຄຌຽີໄ ນຈຏຌ຺ ຋ໃ ເີ ຆ຃ໄ ໃ າ T1 ຋ໃ ຌີ ບໄ ງ຋ໃ ີ
ຘຸຈເຌຘະຑາທະ຋ໃ ີ 4 ຅າກ຋ຄ 4 ຘະຑາທະຽຎຌຽຑາະທໃ າຽຓໃ ບຶ ຌາ຃ໃ າ T1 ຌແີໄ ຎ຾຋ໃ ຌດບໄ ຌກຍ຋ຄ 4 ຘະຑາທະ ຃ໃ າ
T0 ຋ໃ ຃ີ າຌທຌແຈ຅ໄ ໃ ຄຶ ຍໃ ຽກຌີ ຂກໄ າຌຈ຺ ຋ໃແີ ຈຉໄ ຄໄ ຽຖໃ ຓີ ຉຌ຺ໄ ແທຽໄ ຆໃ ຌ: ຅ະຍໃ ຽກຌີ 50% ເຌຘະຑາທະ຋ີ 1 ນົ ຅ະຍໃ ຽກຌີ
33.33% ເຌຘະຑາທະ຋ີ 2, ຾ຉໃ ນາກຌາ຃ໃ າ T1 ຽຆໃ ຌເຌຘະຑາທະ຋ີ 3 (ຓ຃ີ ໃ າຘູຄກທໃ າ) ແຎ຾຋ໃ ຌດບໄ ຌກຍ຋ຄ 4
ຘະຑາທະ ຃ໃ າ T0 ຋ໃ ຃ີ າຌທຌແຈ຅ໄ ະຓ຃ີ ໃ າຽກຌີ ຍາຄຘະຑາທະ຋ໃ ຉີ ຄໄ ຽຖໃ ຓີ ຉຌ຺ໄ ແທໄ ຽຆໃ ຄິ ຍໃ ຊກຶ ຉບໄ ຄ.

ຈໃ ຄຌຌໄ ຉາຓນກົ ກາຌຽຓໃ ບຶ ຃າຌທຌແຈໄ T1 ຅າກ຋ຄ 4 ຘະຑາທະ຾ຖທໄ ເນຎໄ ຼຍ຋ຼຍທໃ າ຋ໃ ຘີ ະຑາທະເຈ
ຓ຃ີ ໃ າ T1 ຌບໄ ງ຋ໃ ຘີ ຸຈ ຾ຖທໄ ເນຌໄ າ຃ໃ າ຋ໃ ຌີ ບໄ ງ຋ໃ ຘີ ຸຈຌຌໄ ແຎເຆນໄ າ຾ປຄຈໃ ຄຶ ຋ໃ ຘີ ະຑາທະທກິ ຈີ ຿ຈງເຆຘໄ ຓ຺ ຏຌ຺ ຋ີ
(2.115) ຆໃ ຄິ ຓຖີ າງຖະບຼຈຈໃ ຄຌ:ີໄ

຅າກຘຓ຺ ຏຌ຺ ຋ີ (2.115)

T03  [(C1W1L)2  T1  C2 (T1  T0  C0 )]T02  (C1W0L)2  0
T1 100

ກາຌຈ຺ ເນໄ

T1 1,808.5kg
W0  WR 1.486kg / m
W1  W 1.075kg / m
t0  6c
t1  27c
C0  0.0% (ຽຑາະຽຎຌຘະຑາທະ຋ໃ ຽີ ກຈິ ຂຘໄ ເຌຎຈ຅ຍຸ ຌຂະຌະຽຖໃ ຓີ ຽ຃ໃ ຄຘາງ)

ຈໃ ຄ຅ະ຾຋ໃ ຌ຃ໃ າຖຄ຺ ເຌຘຓ຺ ຏຌ຺ (2.115) ຅ະແຈທໄ ໃ າ:

242

T03  [( 298.62 1.075  80 )2 1, 808.5  49.22(27 6  100  0.0 )]T02  (298.621.48680)2  0
1,808.5 23106

T03  2,640.47T02 1, 260, 246,138  0
T0  2,801.24kg
຾ຖະຽຓໃ ບຶ ຾຋ໃ ຌ C  0.04% ຽຎຌຘະຑາທະ຋ໃ ຽີ ກກິ ຂຌໄ ເຌ 10 ຎຂີ າໄ ຄໜາໄ ຅ະແຈທໄ ໃ າ:

T03  [( 298.62 1.075  80 )2 1, 808.5  49.22(27 6  100 0.04 )]T02  (298.621.48680)2  0
1,808.5  23106

T03 1,784.47T02 1, 260, 246,138  0

T0  2,076.75kg

຅າກຏຌ຺ ຂບຄກາຌ຃າຌທຌ T1 ຋ໃແີ ຈ຃ໄ 1,808.5 kg ຆໃ ຄິ ຽຎຌ຾ປຄຈໃ ຄຶ ຘູຄຘຸຈຂະຌະຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌ ນະ
ຑູຓຘະຽຖງ ຆໃ ຄຶ ເຌກາຌບບກ຾ຍຍ຾ປຄຈໃ ຄຶ ເຌຘາງ຅ະຉບໄ ຄກາຌຈ຺ ຍໃ ເນຽໄ ກຌີ ຃ໃ າຌ.ີໄ ຿ຈງ຅ະຽນຌແຈທໄ ໃ າເຌ
ຎຈ຅ຍຸ ຌນາກຽ຃ໃ ຄຘາງຈທໄ ງ຾ປຄຈໃ ຄຶ ຃ໃ າຈຈໃ ຄກໃ າທ຋ໃ ບີ ໃ ຸຌນະຑຸ ຓ 27c ຽຓໃ ບຶ ຓຖີ ຓ຺ ຎະ຋ະ຋ໃ ີ 40 kg/mm2 ນົ
຃ທາຓແທຖຓ຺ ຎະຓາຌ 96km / h ຖທຓ຋ຄບໃ ຸຌນະຑູຓນຖຸຈຖຄ຺ ຽຎຌ 6c ຈທໄ ງ,ຏຌ຺ ຅ະຽປຈເນຽໄ ກຈິ ເຌຘາງ
ຽຑໃ ຓີ ຘູຄຂຌໄ ຽຎຌ 2,801.75 kg ຘໃ ທຌເຌບກີ 10 ຎຂີ າໄ ຄໜາໄ ຘາງ຋ໃ ຽີ ກຈິ ຃ທາຓຖາໄ ຂຌໄ ຽປຈເນ຾ໄ ປຄຈໃ ຄຶ ເຌຘາງ
ນຖຸຈຖຄ຺ ຽຎຌ 2,076.75 kg. ຋ໃ ຘີ ະຑາທະຓຖີ ຓ຺ ຎະ຋ະຘາງ 40 kg/mm2 ຾ຖະ ບໃ ຸຌນະຑູຓ 6c ຽຆຌຈໃ ຼທ
ກຌ. ຈໃ ຄຌຌໄ ເຌກາຌບບກ຾ຍຍ຃ທາຓໝຌໄ ຃ຄ຺ ຾ຂຄ຾ປຄຂບຄ຿຃ຄຘາໄ ຄ຅ະຉບໄ ຄຑ຅ິ າຖະຌາຽຊຄີ ຾ປຄຈໃ ຄຶ ເຌຘາງ຋ໃ ີ
ຘະຑາທະທກິ ຈິ ເຌຎຈ຅ຍຸ ຌ(຋ໃ ງີ ຄຍໃແຈເໄ ຘໃ ຃ໃ າ຃ທາຓກາໄ ຽຂາ຺ໄ ເຌຘຓ຺ ຏຌ຺ ) ຍໃ ຽຆໃ ຌຌຌໄ ຾ຖທໄ ຿຃ຄຘາໄ ຄບາຈຽກຈິ ຃ທາຓ
ຽຘງນາງແຈນໄ າກຘະຑາທະຈໃ ຄກໃ າທຽກຈິ ຂຌໄ .

຾ຉໃ ຉາຓຉາຉະຖາຄຏຌ຺ ກາຌຘກຶ ຘາຂບຄ CIRGRE ແຈ຾ໄ ຌະຌາ຃ໃ າ຾ປຄຈໃ ຄຶ ຘູຄຘຸຈຂບຄຘາງ຋ໃ ບີ ໃ ຸຌນະ
ຑູຓຘະຽຖງຍໃ ຓຖີ ຓ຺ ກຖະຌ຋ີ ໃ ຍີ ໃ ຓກີ າຌຎບໄ ຄກຌກາຌຘຌແກທໃ ຂບຄຘາງຍໃ ຽກຌີ 17 % UTS ຾ຖະ ຍໃແຈຖໄ ະຍຸແທໄ
ກຖະຌຓີ ກີ າຌຉຈິ ຉຄໄ ບາຓາຕບຈ(armorrod) ຎບໄ ຄກຌກາຌຘຌຂບຄຘາງ. ຈໃ ຄຌຌໄ ຅ະຉບໄ ຄເຆ຾ໄ ປຄຈໃ ຄຶ ຂະຌະ
ຽ຃ໃ ຄຘາງ຋ໃ ບີ ໃ ຸຌນະຑູຓເໝໃ ຿ຈງຓ຃ີ ໃ າຎະຓາຌ 1,024 kg (0.17x6,025), ຾ຉໃ ຏຌ຺ ກໃ ຃ຘາງແຒຒາໄ ຅ະຓ຃ີ ທາຓ
ຎບຈແຑເຌກາຌເຆຄໄ າຌ຿ຈງຓ຾ີ ປຄຈໃ ຄຶ ເຌຘາງຌ໅ບງກທໃ າ 1,808.5 kg.

ຉໃແຎ຅ະນາ຃ໃ າແຖງະງໃ ບຌງາຌຂບຄຘາງ ຆໃ ຄີ ນາແຈ຅ໄ າກຘຓ຺ ຏຌ຺ (2.64) ຃:ຶ

Y  WL2
8T0

ຈໃ ຄຌຌໄ ຅ະແຈທໄ ໃ າແຖງະຍໃ ບຌງາຌຂບຄຘາງ຋ໃ ບີ ໃ ຸຌນະຑູຓຘະຽຖງ 27c ຽຓໃ ບຶ ຍໃ ຓຖີ ຓ຺ ຋ໃ ເີ ຆຘໄ ານົຍເຌກາຌ
ຽ຃ໃ ຄຘາງ຋ໃ ຘີ ະຑາຘະຌ຃ີໄ :

243

Y  1.075(80)2  0.839m
8 1, 024

ຉທ຺ ດໃ າຄ:14 ຅ໃ ຄ຺ ຃າຌທຌນາ຾ປຄຈໃ ຄຽ຃ໃ ຄຘາງຂຌໄ ຉຌ຺ໄ ຋ໃ ບີ ໃ ຸຌນະຑຸຓຘະຽຖງຍໃ ຓຖີ ຓ຺ ຾ປຄຈໃ ຄຶ ຘູຄຘຸຈນົຄ

ຽ຃ໃ ຄຘາງ 10 ຎີ ຾ຖະ ແຖງະງໃ ບຌງໃ າຌຂບຄຘາງບາຖຓູ ຌີ ຼຓ຾ກໃ ຌຽນກົ ຂະໜາຈ 380/50 mm2 ຋ໃ ບີ ໃ ຸຌນະຑຸຓ
ຘະຽຖງຍໃ ຓຖີ ຓ຺ ເຌຖະຍຍ຺ ຘາງຘໃ ຄ຺ 115 kV .຿ຈງຂຓໄ ູຌ຃ຸຌຘຓ຺ ຍຈຘາງ ຾ຖະ ຂຓໄ ຌູ ບໃ ຌໂຓຈີ ໃ ຄຌ:ີໄ

ຆະຌຈິ ຂບຄຘາງ ຽຎຌຘາງບາຖູຓຌີ ຼຓຽຎບງ (ACSR) ຂະໜາຈ 380/50 mm2

ຽຌບໄ ຋ໃ ໜີ າໄ ຉຈ A 431.5 mm2
mm
ຽຘຌໄ ຏໃ າຘູຌກາຄຂບຄຘາງ d 27.0 kg

຾ປຄຈໃ ຄຶ ຘູຄຘຸຈ UTS 12,312

ກາຌນຈ຺ ດຈຶ ຂບຄຘາງ E 7,000 kg/mm2
ຌາໄ ໜກຂບຄຘາງ
W 1.443 kg/m

ຘາຎະຘຈິ ກາຌຂະນງາງຉທ຺ ຂບຄຘາງ  0.0000193 / C

຃ທາຓຖາໄ ຂບຄຘາງ C 0.04 %

ແຖງະຆໃ ທຄຽຘາ຺ L 80 m

຾ປຄຖຓ຺ ຎະ຋ະ p 40 kg/mm2

Aerodynamic factor Adf 1.0
ບໃ ຸຌນະຑຸຓຉໃ າຘຸຈ t0 6 C

ບໃ ຸຌນະຑຸຓຘະຽຖງ t1 27 C

ທ຋ິ ຾ີ ກ:ໄ

T13  [(C1W0L)2  T0  C2 (T1  T0  C0 )]T12  (C1W1L)2  0
T0 100

 ນາ຃ໃ າ C1  (EA / 24)  7,000 431.5 / 24  354.76
 ນາ຃ໃ າ C2  EA  0.00001937,000431.5  58.295

244


Click to View FlipBook Version