Dealing with Uncertainty
in Decision Making Models
Roger J-B Wets
[email protected]
University of California, Davis
Dealing with Uncertainty – p. 1/33
I. A product mix problem
Dealing with Uncertainty – p. 2/33
A formulation
A furniture manufacturer must choose xj ≥ 0, how many
dressers of type j = 1, . . . , 4 to manufacture so as to
maximize profit
4
cjxj = 12x1 + 25x2 + 21x3 + 40x4
j=1
The constraints: Madir, Izmir, Turkey, Spring 2010
tc1x1 + tc2x2 + tc3x3 + tc4x4 ≤ dc
tf1x1 + tf2x1 + tf3x1 + tf4x1 ≤ df
tcj (tfj) carpentry (finishing) man-hours: dresser type j
dc (df ) = total time available for carpentry (finishing)
Dealing with Uncertainty – p. 3/33
Product mix problem (2)
Solution via linear programming:
max c, x so that T x ≤ d, x ∈ IRn+.
With
T = tc1 tc2 tc3 tc4 = 4 9 7 10 dc = 6000
,
tf1 tf2 tf3 tf4 1 1 3 40 df 4000
Optimal: xd = (4000/3, 0, 0, 200/3)
Value: $ 18,667.
Dealing with Uncertainty – p. 4/33
Product mix problem (3)
But . . . “reality” can’t be ignored!
tcj = tcj + ηcj, tfj = tfj + ηfj
entry possible values
dc + ζc: 5,873 5,967 6,033 6,127
df + ζf : 3,936 3,984 4,016 4,064
10 random variables, say, 4 possible values each
L = 1, 048, 576 possible pairs (T l, dl)
Dealing with Uncertainty – p. 5/33
Product mix problem (4)
What if j4=1(tcj + ηcj)xj > dc + ζc ? =⇒ overtime
With ξ = (η{·,·}, ζ{·}), recourse: (yc(ξ), yf (ξ)) @ cost (qc, qf ).
max c, x −p1 q, y1 −p2 q, y2 · · · − pL q, yL
−y2
s.t. T 1x −y1 ... ≤ d1
y2 ≥ 0, −yL
T 2x ≤ d2
... · · · yL ≥ 0. ...
T Lx ≤ dL
x ≥ 0, y1 ≥ 0,
Structured large scale l.p. (L ≈ 106)
Dealing with Uncertainty – p. 6/33
Product mix problem (5)
Define Ξ = ξ = (η, ζ) , pξ = prob [ξ = ξ]
Q(ξ, x) = max −q, y Tξx − y ≥ dξ, y ≥ 0
EQ(x) = E{Q(ξ, x)} = pξQ(ξ, x)
ξ∈Ξ
the equivalent deterministic program (DEP):
max c, x + EQ(x) so that x ∈ IR+n .
a non-smooth convex optimization problem: EQ concave.
Dealing with Uncertainty – p. 7/33
Product mix problem (6)
Solution of DEP, or large scale l.p.,:
Optimal: x∗ = (257, 0, 665.2, 33.8)
expected Profit: $ 18,051
The solution x∗ is robust : it considered all ≈ 106
possibilities.
Dealing with Uncertainty – p. 8/33
Product mix problem (6)
Solution of DEP, or large scale l.p.,:
Optimal: x∗ = (257, 0, 665.2, 33.8)
expected Profit: $ 18,051
The solution x∗ is robust : it considered all ≈ 106
possibilities.
Recall: xd = (1, 333.33, 0, 0, 66.67)
expected “profit” relying on xd = $ 16,942.
Dealing with Uncertainty – p. 8/33
Product mix problem (6)
Solution of DEP, or large scale l.p.,:
Optimal: x∗ = (257, 0, 665.2, 33.8)
expected Profit: $ 18,051
The solution x∗ is robust : it considered all ≈ 106
possibilities.
Recall: xd = (1, 333.33, 0, 0, 66.67)
expected “profit” relying on xd = $ 16,942.
• xd is not close to optimal
• xd isn’t pointing in the right direction
Dealing with Uncertainty – p. 8/33
Mathematics & Numerics
Stochastic Programming relies on:
linear, non-linear, mixed-integer programming
large scale: decomposition methods, structured
programs, grid computing
Variational Analysis: non-smooth, duality,
epi-convergence (approximations), etc.
Probability: stochastic processes, asymptotic laws
Statistics: estimation, lack of data issues
Functional Analysis, Combinatorial Geometry, etc.
Dealing with Uncertainty – p. 9/33
II. Modeling, modeling &
modeling!
Dealing with Uncertainty – p. 10/33
Uncertain parameters
Deterministic Optimization problem:
min f0(x) so that x ∈ S ⊂ IRn
Dealing with Uncertainty – p. 11/33
Uncertain parameters
Deterministic Optimization problem:
min f0(x) so that x ∈ S ⊂ IRn
Uncertain parameters: ξ ∈ Ξ ⊂ IRN ,
min f0(ξ, x) so that x ∈ S(ξ) ⊂ IRn
Dealing with Uncertainty – p. 11/33
Uncertain parameters
Deterministic Optimization problem:
min f0(x) so that x ∈ S ⊂ IRn
Uncertain parameters: ξ ∈ Ξ ⊂ IRN ,
min f0(ξ, x) so that x ∈ S(ξ) ⊂ IRn
Wait-and-see solution ??
x(ξ) ∈ argmin f0(ξ, x) x ∈ S(ξ)
What’s needed: a here-and-now solution.
Dealing with Uncertainty – p. 11/33
The NewsVendor Problem
ξ ∈ Ξ ⊂ IR+ demand for a (perishable) good
e.g., plant capacity, overbooking, etc.
x ≥ 0 quantity ordered @ unit cost: c = 10
y ≥ 0 quantity sold, per unit profit r = 15
Total revenue (possibly negative):
−cx + (c + r)y where 0 ≤ x,
0 ≤ y ≤ min {x, ξ}
Find optimal x∗!
Dealing with Uncertainty – p. 12/33
The “deterministic” approach
Pick ξˆ ∈ Ξ (guessing the future) and solve
min f0(ξˆ, x) so that x ∈ S(ξˆ) ⊂ IRn
Dealing with Uncertainty – p. 13/33
The “deterministic” approach
Pick ξˆ ∈ Ξ (guessing the future) and solve
min f0(ξˆ, x) so that x ∈ S(ξˆ) ⊂ IRn
NewsVendor: Ξ = [0, 150], pick ξˆ = 75,
max −cx + (c + r)y
x ≥ 0, 0 ≤ y ≤ min{x, ξˆ}
Solution: xo = yo = ξˆ, obj. value = rξˆ = 1125
But doesn’t tell much about “profit” if ξ = 75!
Dealing with Uncertainty – p. 13/33
Scenario Analysis
Pick ξ1, . . . , ξL (scenarios), and for each ξl find:
xl ∈ argmin f0(ξl, x) x ∈ S(ξl)
and “reconcile” the solutions to obtain xo.
Dealing with Uncertainty – p. 14/33
Scenario Analysis
Pick ξ1, . . . , ξL (scenarios), and for each ξl find:
xl ∈ argmin f0(ξl, x) x ∈ S(ξl)
and “reconcile” the solutions to obtain xo.
NewsVendor: pick ξ1 = 10, ξ2 = 20, . . . , ξ15 = 150,
(xl, yl) ∈ argmax{−cx + (c + r)y y ≤ min[ξl, x]}
x≥0,y≥0
Wait-and-see sol’ns: xl = ξl. “Reconciliation”?
No help in choosing xo the quantity to order.
Dealing with Uncertainty – p. 14/33
ξ: Estimated Density h
ξ log-normal: h(z) = (zτ √2π)−1 e− (ln z−θ)2
2τ 2
θ = 4.43, τ = 0.38; H(z) = z h(s) ds
0
from data, expert(s), all information available
0.014
0.012
0.01 lognormal density
Expectation = 90
Strd.Dev. = 36
0.008
0.006
0.004
0.002
0
0 20 40 60 80 100 120 140 160 180 200
might affect choice of ξˆ, scenarios: ξ1, . . .
Dealing with Uncertainty – p. 15/33
Maximize Expected Return
max − cx + E{(c + r)yξ}
so that x ≥ 0, 0 ≤ yξ ≤ min [ ξ, x ]
The equivalent deterministic program:
max −cx + EQ(x), EQ(x) = E{Q(ξ, x)}
x≥0
where Q(ξ, x) = (c + r)ξ if ξ ≤ x,
(c + r)x if ξ ≥ x
EQ(x) = (c + r) x∞
ξ H(dξ) + x H(dξ)
0x
Dealing with Uncertainty – p. 16/33
Optimal: Expected Profit
x∗ = H−1 r = H−1(0.6) = 99.2
c+r
for c = 10, r = 15.
1
0.9 Cumulative Distribution
lognormal
0.8 Expect.=90, Std.Dev.=36
0.7
0.6
0.5
0.4
0.3
H0.2
0.1
92.2
0
0 20 40 60 80 100 120 140 160 180 200
Dealing with Uncertainty – p. 17/33
NewsVendor’s Objective
1100
1050
1000
950
900
850 Ew = 90, Stdev=36
Cost=10, Revenue=15
Opt. sol’n: 99.2, E[profit] = 1,084
800 Sol’n guess: 75, E[profit] = 1,000
750
700
650
600
40 60 80 100 120 140 160
Dealing with Uncertainty – p. 18/33
. . . but is maximum expected
return the “real” objective?
Dealing with Uncertainty – p. 19/33
The Returns’ Densities
x 10−3
8
7
6 Return Densities
5
x=72.2
4
3
x=92.2
2
1 x=152.2 x=112.2
0 x=132.2
−1000 −500
0 500 1000 1500 2000 2500 3000
Dealing with Uncertainty – p. 20/33
Choosing the Returns’ Distribution
1
0.9 x=112.2
x=92.2
Distribution
0.8 Functions
0.7
x=132.2
0.6
0.5
0.4
0.3 x=72.2
x=152.2
0.2
0.1
0
−1000 −500 0 500 1000 1500 2000 2500
Dealing with Uncertainty – p. 21/33
Decision Criteria
Reducing the choice of a distribution function
to the choice of a “number”
maximize expected return (scaled?),
max. E{return} & minimize customers lost,
minimize Value-at-Risk (VaR),
minimize the probability of any loss,
minimizing a “Safeguarding” Measure
variants & combinations of the above
Dealing with Uncertainty – p. 22/33
Maximizing Expected Utility
“generic” stochastic optimization problem:
max E{f0(ξ, x)} such that fi(ξ, x) ≤ 0, i = 1, . . . , m,
Risk-averse or risk-seeking =⇒ utility function
von Neuman-Morgenstern: under “rationality”
(axiomatics) there exists a utility function u such
that x¯ ∈ argmax E{u f0(ξ, x) } (subject to the
constraints) identifies the preferred return’s
distribution
Modeling hurdle: no blueprint for u’s design!
Dealing with Uncertainty – p. 23/33
Robust Optimization
“generic” optimization problem: max γ
so that γ − f0(ξ, x) ≤ 0,
fi(ξ, x) ≤ 0, i = 1, . . . , m,
“robust” counterpart: max γ
so that γ − f0(ξ, x) ≤ 0, ∀ ξ ∈ U ⊂ Ξ
fi(ξ, x) ≤ 0, i = 1, . . . , m, ∀ ξ ∈ U ,
Challenges:
formulate a computationally tractable robust
counterpart
specify reasonable uncertainty for set U
Dealing with Uncertainty – p. 24/33
Reliability: Chance Constraints
Satisfy constraints with probability α ∈ (0, 1]
min f0(x) so that prob. [ x ∈ S(ξ) ] ≥ α
Variant:
min f0(x)
so that prob. [ fi(ξ, x) ≤ 0 ] ≥ αi, i ∈ I
αi dictated by
contractual obligations
company policy, guess, etc.
Dealing with Uncertainty – p. 25/33
NewsVendor: Chance C. Model
max −cx + (c + r)y so that x ≥ 0, y ∈ [H−1(α), x]
1
0.9
0.8
0.7
0.6 Cumulative Distribution
lognormal
0.5 Expect.=90, Std.Dev.=36
0.4
0.3
H0.2
0.1
0 108.1 135.87
0 20 40 60 80 100 120 140 160 180 200
Infeasible if x < H−1(α). Profit? later
When α = 0.9 : xˆ = 135.9; α = 0.75 : xˆ = 108.1.
Dealing with Uncertainty – p. 26/33
VaR: Value-at-Risk
Let F (s; x) = prob [ −cx + Q(ξ, x) ≤ s ]
Value-at-Risk (VaR) for α ∈ (0, 1):
VaR(α; x) = F −1(α; x) (= sup{v v ∈ F −1(α; x)})
Objective: find x that maximizes VaR(α; x)
Dealing with Uncertainty – p. 27/33
VaR: Value-at-Risk
Let F (s; x) = prob [ −cx + Q(ξ, x) ≤ s ]
Value-at-Risk (VaR) for α ∈ (0, 1):
VaR(α; x) = F −1(α; x) (= sup{v v ∈ F −1(α; x)})
Objective: find x that maximizes VaR(α; x)
Challenge: x → VaR(α; x) isn’t concave.
Heuristic: F is N (µ(x), σ(x)2) and
VaR(α; x) = N −1(α; µ(x), σ(x)2)
Dealing with Uncertainty – p. 27/33
VaR: NewsVendor Problem
0.2
0.18 x=112.2
x=92.2
VaR (Value @ Risk)
0.16
0.14
x=132.2
0.12
0.1
10%
0.08
0.06 x=72.2
x=152.2
0.04
0.02
0
−400 −200 0 200 400 600
Dealing with Uncertainty – p. 28/33
Stochastic Dominance
1
0.9 x=112.2
x=92.2
Distribution
0.8 Functions
0.7
x=132.2
0.6
0.5
0.4
0.3 x=72.2
x=152.2
0.2
0.1
0
−1000 −500 0 500 1000 1500 2000 2500
Stochastic Dominance: Dx(s) ≤ Dxˆ(s), ∀ s
=⇒ probability of the return to be ≤ s
always smaller when choosing x rather than xˆ
unfortunately unusual
‘
Dealing with Uncertainty – p. 29/33
Second order Stochastic Dominance
s
D2(s) = D(ξ) dξ = E{(s − ξ)+}
−∞
D2: the expected shortfall function
3500 Expected ShortFall x = 72.2
3000 x = 112.2
2500
2000 x = 92.2
1500
1000 152.2 132.2
500 0 500 1000 1500 2000 2500
0
−500
Dealing with Uncertainty – p. 30/33
Stochastic Dominance Constraint
NewsVendor problem
max rx, x ≥ 0
such that Dx2(s) ≤ G2(s), s ∈ [α, β]
given a “desirable” distribution function G
Dx: distribution of actual return, decision x
rx when ξ ≤ x and (c + r)ξ − cx when ξ < x
leads to a semi-infinite optimization problem
used in portfolio optimization, for example
Dealing with Uncertainty – p. 31/33
Perturbing the Probability Measure
900
850
800
102.4 Optimal sol’n
750 Ew = 100, Stdev= 40
"loss": 0.15%
Newsboy problem
700 Objective function
Ew = 90, Stdev=36
650 Cost=10, Revenue=15
Optimal sol’n: 99.2
600
550
40 60 80 100 120 140 160
stress testing via distribution contamination
Dealing with Uncertainty – p. 32/33
A few references
1. A. Shapiro, D. Dentcheva & A. Ruszczynski, Lectures
on Stochastic Programming, MPS-SIAM Series. 2009.
2. S. Choi, A. Ruszczynski & Y. Zhao, A multi-product
risk-averse newsvendor with law invariant coherent
measures of risk, optimization-online, 2009
3. G. Pflug & W. Römisch, Modeling, Measuring and
Managing Risk, World Scientific, 2007
4. J. Dupacˇová, Stress testing via contamination. Coping
with Uncertainty: Modeling and Policy Issues, LNEMS
581, Springer. 2006. pp. 29-46.
5. R. Wets, An Optimization Primer, 2011 “soon”
Dealing with Uncertainty – p. 33/33