The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

2141263 Dynamics and Vibrations NAV 1 Plane Curvilinear Motion 0. Introduction 1. Rectangular Coordinates (x-y) 2. Normal and Tangential Coordinates (n-t)

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-02-21 08:54:03

Plane Curvilinear Motion

2141263 Dynamics and Vibrations NAV 1 Plane Curvilinear Motion 0. Introduction 1. Rectangular Coordinates (x-y) 2. Normal and Tangential Coordinates (n-t)

Plane Curvilinear Motion

0. Introduction
1. Rectangular Coordinates (x-y)
2. Normal and Tangential Coordinates (n-t)
3. Polar Coordinates (r-θ)

2141263 Dynamics and Vibrations NAV 1

Plane Curvilinear Motion

Position vector → Velocity vector → Acceleration vector

Position

Change in position
(displacement)

Reference frame

Origin Position vector Distance
(along curve)
2141263 Dynamics and Vibrations NAV
2

Plane Curvilinear Motion

Velocity

  lim r     r
v v dr

t0 t dt

Magnitude: v

Direction: tavn/g/enrtto the curve at that point

Note: v  r

2141263 Dynamics and Vibrations NAV 3

Plane Curvilinear Motion

Acceleration

  lim v     v
a a dv

t0 t dt

Magnitude: a

Direction: poain/t/ingvinward the curve

Note: a  v

2141263 Dynamics and Vibrations NAV 4

Plane Curvilinear Motion

1. Rectangular Coordinates (x-y)

2. Normal and Tangential Coordinates (n-t)
3. Polar Coordinates (r-θ)

Notes: Usage will depend on the situation
Usually, more than one can be used.
Sometimes, more than one is needed at the same time

2141263 Dynamics and Vibrations NAV 5

1.Rectangular Coordinates (x-y)

  xiˆ  yˆj
r

v  xiˆ  yˆj  vxiˆ  vy ˆj

  xiˆ  yˆj  vxiˆ  vy ˆj
a

Magnitude & Direction

- Pythagoras

r  x2  y2

v v 2  v 2
x y

a a 2  a 2
x y

- Trigonometry (sine and

cosine laws, etc.) 6
eg. tan   vy

vx

2141263 Dynamics and Vibrations NAV

1.Rectangular Coordinates (x-y)

Applications

2141263 Dynamics and Vibrations NAV 7

1. Rectangular Coordinates (x-
y)

Projectile Motion

y motion can be considered independently
from the x direction

2141263 Dynamics and Vibrations NAV 8

1.Rectangular Coordinates (x-y)

Example 1:

Notes:

Ans:

2141263 Dynamics and Vibrations NAV 9

1. Rectangular Coordinates (x-y)

Example 2: Projectile Motion

Ans:

2141263 Dynamics and Vibrations NAV 10

1. Rectangular Coordinates (x-y)

Example 3: Projectile Motion

Determine the smallest angle θ, measured above the
horizontal, that the hose should be directed so that the water
stream strikes the bottom of the wall at B. The speed of the
water at the nozzle is vc.

Ans:

2141263 Dynamics and Vibrations NAV 11


Click to View FlipBook Version