Plane Curvilinear Motion
0. Introduction
1. Rectangular Coordinates (x-y)
2. Normal and Tangential Coordinates (n-t)
3. Polar Coordinates (r-θ)
2141263 Dynamics and Vibrations NAV 1
Plane Curvilinear Motion
Position vector → Velocity vector → Acceleration vector
Position
Change in position
(displacement)
Reference frame
Origin Position vector Distance
(along curve)
2141263 Dynamics and Vibrations NAV
2
Plane Curvilinear Motion
Velocity
lim r r
v v dr
t0 t dt
Magnitude: v
Direction: tavn/g/enrtto the curve at that point
Note: v r
2141263 Dynamics and Vibrations NAV 3
Plane Curvilinear Motion
Acceleration
lim v v
a a dv
t0 t dt
Magnitude: a
Direction: poain/t/ingvinward the curve
Note: a v
2141263 Dynamics and Vibrations NAV 4
Plane Curvilinear Motion
1. Rectangular Coordinates (x-y)
2. Normal and Tangential Coordinates (n-t)
3. Polar Coordinates (r-θ)
Notes: Usage will depend on the situation
Usually, more than one can be used.
Sometimes, more than one is needed at the same time
2141263 Dynamics and Vibrations NAV 5
1.Rectangular Coordinates (x-y)
xiˆ yˆj
r
v xiˆ yˆj vxiˆ vy ˆj
xiˆ yˆj vxiˆ vy ˆj
a
Magnitude & Direction
- Pythagoras
r x2 y2
v v 2 v 2
x y
a a 2 a 2
x y
- Trigonometry (sine and
cosine laws, etc.) 6
eg. tan vy
vx
2141263 Dynamics and Vibrations NAV
1.Rectangular Coordinates (x-y)
Applications
2141263 Dynamics and Vibrations NAV 7
1. Rectangular Coordinates (x-
y)
Projectile Motion
y motion can be considered independently
from the x direction
2141263 Dynamics and Vibrations NAV 8
1.Rectangular Coordinates (x-y)
Example 1:
Notes:
Ans:
2141263 Dynamics and Vibrations NAV 9
1. Rectangular Coordinates (x-y)
Example 2: Projectile Motion
Ans:
2141263 Dynamics and Vibrations NAV 10
1. Rectangular Coordinates (x-y)
Example 3: Projectile Motion
Determine the smallest angle θ, measured above the
horizontal, that the hose should be directed so that the water
stream strikes the bottom of the wall at B. The speed of the
water at the nozzle is vc.
Ans:
2141263 Dynamics and Vibrations NAV 11