• Please note that the table is a entirely
fictitious (made up) example and that actual
costs are location and time specific, meaning
that they can vary by region and per season.
By using a spreadsheet you can estimate
harvesting costs for your own situation.
Combine harvesting
• In India, China, Thailand, Vietnam and even in
Cambodia the use of combine harvesters, or simply
combines, for paddy rice is increasing rapidly. This is a
development due to severe labor shortage and the
resulting increase in harvesting cost, which makes the
use of combines economically attractive.
• Combine harvesting combines several operations into
one: cutting the crop, feeding it into threshing
mechanism, threshing, cleaning, and discharging rain
into a bulk wagon or directly into a bags. Straw is
usually discharged behind the combine in a windrow.
• Guidelines for good combine harvesting
methods
• Timing of combine harvesting
Harvest at the correct me (20−25% moisture
content or when 80% of the grains are straw
colored and at least 20% of the grains at the
panicle base have reached hard dough stage).
The time interval for harvesting by combine
harvester is often narrow: too early harvesting
will result in a high percentage of immature
kernels, and too late harvesting will result in high
shattering losses.
• Machine adjustment
Set the threshing speed according to the
machine specifications (check the operator's
manual) based on the grain moisture content,
volume of material entering into the combine,
weeds, etc. Operating thresher speed either
too fast or too slow reduces profit.
Fine tuning forward speed and header height
is especially important to minimize field loss.
• Drying
• Drying is the process that reduces grain
moisture content to a safe level for storage.
It is the most critical operation after
harvesting a rice crop. Delays in drying,
incomplete drying or ineffective drying will
reduce grain quality and result in losses.
What happens after harvest?
• Storage
• Storing grain is done to reduce grain loss to weather,
moisture, rodents, birds, insects and micro‐organisms.
Usually rice should be stored in paddy form rather than
milled rice as the husk provides some protection
against insects. In the International Rice Genebank
where rice seed from more than 118,000 different
types of rice is conserved, rice seed is kept in vacuum
packed, freezers at ‐18 °C, where they can remain
viable for 100 years.
• Rice storage facilities take many forms depending on
the quantity of grain to be stored, the purpose of
storage, and the location of the store.
• A good storage system should include:
• protection from insects, rodents and birds by
allowing proper storage hygiene
• ease of loading and unloading
• efficient use of space
• ease of maintenance and management
• prevention of moisture re‐entering the grain after
drying
• specific solutions to meet the challenges of
storing rice in the humid tropics.
Milling
• Milling is a crucial step in post‐production of rice. The basic
objective of a rice milling system is to remove the husk, and
produce an edible, rice grain that is sufficiently milled and
free of impurities. If only the husk is removed then ‘brown’
rice is the product. If the rice is further milled or polished
then the bran layer is removed to reveal ‘white’ rice.
• Depending on the requirements of the customer, the rice
should have a minimum of broken grains.
• A rice milling system can be a simple one‐or two‐step
process, or a multi‐stage process. Depending on whether
the the paddy is milled in the village for local consumption
or for the marketing rice milling systems can be classified
into the categories village rice mills and commercial mills.
Milling
• Milling
• Milling is a crucial step in post‐production of rice.
The basic objective of a rice milling system is to
remove the husk and the bran layers, and
produce an edible, white rice kernel that is
sufficiently milled and free of impurities.
• Depending on the requirements of the customer,
the rice should have a minimum number of
broken kernels.
• The rice kernel composition Most rice varieties
are composed of roughly 20% rice hull or husk,
11% bran layers, and 69% starchy endosperm,
also referred to as the total milled rice.
• In an ideal milling process this will result in the
following frac ons: 20% husk, 8−12% bran
depending on the milling degree and 68−72%
milled rice or white rice depending on the variety.
Total milled rice contains whole grains or head
rice, and brokens. The by‐products in rice milling
are rice hull, rice germ and bran layers, and fine
brokens.
Rice milling system
• Arice milling system can be a simple one or
two step process, or a multi stage process.
• One step milling ‐ husk and bran removal are
done in one pass
• Two step process ‐ removing husk and
removing bran are done separately
• Multistage milling ‐ can be done in the villageor local
consumption or commercially for marketing rice; rice
undergoes a number of different processing steps, such
as:
– Pre‐cleaning
– Dehusking or dehulling
– Paddy separation
– Whitening or polishing
– Grading and separation of white rice
– Mixing
– Mist polishing
– Weighing of rice
Milling System
• A rice milling system can be a simple one or two step
process, or a multi stage process.
• In a one step milling process, husk and bran removal are
done in one pass and milled or white rice is produced
directly out of paddy.
• In a two step process, removing husk and removing bran
are done separately, and brown rice is produced as an
intermediate product.
• In multistage milling, rice will undergo a number of
different processing steps. Depending on whether the the
paddy is milled in the village for local consumption or for
the marketing rice milling systems can be classified into two
categories: (1) village rice mills and (2) commercial mills.
Village Milling System
• Village‐type rice mills can be found in rural
communities and are used for service milling paddy of
farmers for home consumption.
• Traditional milling
• Hand pounding of paddy in a mortar with a pestle is
the traditional milling process in remote villages.
Pounding the paddy induces upward and downward
forces on grain against grain that removes the husk and
bran layers. The pounding also breaks up fissured grain.
The final cleaning is by winnowing in a woven bamboo
tray. The winnowing process to separate unmilled
paddy grain is an art.
• Village level rice mills
• Village‐type rice mills can be found in rural
communities and are used for service milling paddy of
farmers for home consumption.
• Single pass, single stage mill
• Photo: Single stage, single pass mill
• The single pass rice mill is an adaptation of the
"Engleberg" coffee huller from the United States,
modified for milling rice. In earlier days this type of rice
mill was very popular in most rice‐growing countries. It
is still the mainstay technology for milling parboiled
paddy in Bangladesh, and in many African countries.
• The "iron hullers", or "single pass mills" which all refer to
the same mill are notorious for breaking the paddy grain.
Because of the high breakage, the total milled rice recovery
is 53‐55%, and head rice recovery is in the order of 30% of
the milled rice. The fine brokens are mixed with the bran
and the ground rice hull. This by‐product is used for animal
feed. In many rural areas, Engleberg mills are used for
custom milling the rice requirements of households. The
bran produced is left to the miller as the milling fee. The
poor performance of the Engleberg mill has led
governments to discourage its use and has limited further
proliferation. In many Asian countries, Engleberg mills can
no longer be licensed to operate as service or commercial
mills.
• The Micro mill is also a single pass single stage
mill, which was designed for local production.
All components can be produced by local
welding workshops. However, the milling
recovery and head rice recovery is quite low
and it is therefore only suitable for milling
paddy for home consumption in very remote
areas where the farmers don’t have access to
a custom rice mill.
• Two stage mills (single pass or two pass)
• Two stage milling is either done in compact 2‐stage rice
mills, or with two separate machines for husking and
polishing. Typically they have 0.5 to 1 ton per hour
paddy input capacity. They are also used for custom
milling services in the rural areas. A typical compact
rice mill consists of a 6‐inch diameter x 6‐inch wide
rubber roller husker, and a friction whitener. The
friction whitener has a very similar design
configuration as the Engleberg except that is has no
husking knife. The milling performance of the compact
rice mill is superior to the single pass Engleberg huller.
Milling recoveries are normally above 60%.
• Mobile rice mills
• Photo: Mobile Rice Mill in Cambodia with rubber
roller husker on the right and polisher on the left.
• A recent development are mobile rice mills.
These typically consist either of two stage, single
pass mills, or alternatively a huller and a polisher
mounted on a self propelled vehicle. These
mobile mills can be seen in Vietnam, Cambodia,
Indonesia and the Philippines. The mill comes to
the customer, who does not have to transport his
paddy to the mill and the milled rice back.
PENGGILINGAN PADI
• Sejarah:
– Penggilingan padi pertama di Inggris sekitar 140
tahun lalu
– Mesin penggiling padi modern 35 tahun kemudian
di Jepang
– Modern rice milling 40 tahun kemudian
Kriteria Teknis Primer:
Menghasilkan rendemen beras kepala maksimal
Penyosohan seragam sehingga warna beras spt yang
diinginkan
Kriteria Teknis Sekunder:
Kapasitas giling maksimal
Konsumsi energi minimal
Konsumsi “consumable part” rendah
Produktivitas pekerja (operator) maksimal
POTENSI GILING GABAH (RENDEMEN)
Potensi giling gabah sangat ditentukan oleh :
• Karakteristik varietas :
– Persen sekam :17 – 24 % gabah
– Bentuk gabah (perbandingan panjang dan lebar).
Gabah ramping lebih mudah patah dibandingkan
gabah bulat.
– Derajat kekerasan : Kekerasan lapisan permukaan
beras merupakan karakteristik varietas. Beras yang
memiliki lapisan keras cenderung menghasilkan
kualitas dan rendemen yang tinggi.
– Butir mengapur : dapat merupakan ciri varietas atau
karena lingkungan. Berpengaruh terhadap rendemen
dan kualitas.
Mutu Gabah :
Kadar air : kadar air optimum gabah untuk penggilingan
berkisar 14 %
Persen gabah hampa : standar < 3 %
Butir retak : panen terlambat atau gabah terlalu matang
menyebabkan butir retak. Hal ini akan berakibat pada
rendahnya rendemen beras giling dan beras kepala.
Butir hijau : gabah yang belum matang berwarna hijau dan
apabila digiling cenderung berukuran kecil, berwarna hijau,
mengapur dan menghasilkan beras patah atau hancur.
Butir kuning dan butir rusak : butir kuning terjadi karena
tidak dapat dikeringkan. Butir rusak umumnya terjadi
serangan cendawang di sekitar lembaga. Sering
menghasilkan beras dengan bintik hitam.
MESIN‐MESIN UTAMA
Mesin Pembersih Mekanis (Mechanical
Cleaning):
untuk menghilangkan kotoran gabah : potongan
jerami, debu, batu, metal, kaca, serangga (binatang)
hidup.
Paddy Cleaner (Pembersih Gabah). Alat terdiri dari
saringan dan aspirator. Bahan bergerak ke bawah
melintasi screen karena saringan dipasang miring.
Kotoran berukuran lebih besar akan tersaring pada
saringan I, sedangkan yang lebih kecil dari gabah akan
tersaring pada saringan setelah gabah. Kotoran yang
lebih ringan dari gabah akan dipisahkan dengan
aspirator.
– Distoner. Memisahkan gabah dengan dari batu,
tanah liat, kaca, atau benda‐benda yang lebih
berat. Alat destoner adalah gravity separator.
Benda‐benda (kotoran) yang berat mengalir ke
bagian atas dari kemiringan, sedangkan gabah
cenderung ke bawah. Kotoran berupa benda‐
benda yang berat jenisnya lebih besar dari gabah
menjadi terpisah dengan arah aliran yang
berbeda.
• Precleaning
• Mesin precleaning bertanggung jawab terhadap
pembersihan debu yang dapat menimbulkan masalah
pada penggilingan
• Pada penggilingan kecil digunakan Distoner (gravity
separator)
• Pada penggilingan besar atau pada semua tipe
penggilingan padi buatan Jepang digandengkan dengan
aspirator dan mesin precleaning yang memisahkan
gabah hampa dan butir hijau‐mengapur.
Doble Action Rough Rice Cleaning Machine
Penggilingan Tipe
Engelberg
PADDY HULLER/HUSKER (PENGUPAS GABAH
PECAH KULIT)
• Gabah masuk ke dalam celah antara dua rubber roll yang
berputer dengan kecepatan berbeda dan arah berlawanan.
• Gesekan dan tekanan dua rubber roll akan melepaskan beras
pecah kulit (PK) dari sekam, dan akan tercampur kembali
setelah melalui celah rol.
• Selanjutnya campuran sekam dan beras PK masuk ke dalam
bagian aspirator. Pada aspirator, campuran beras PK dan
sekam akan melewati lapisan tipis dan jatuh ke dalam kolom
dengan udara yang bergerak dan dapat diatur.
• Selanjutnya sekam dihembus ke luar terpisah dengan beras
PK.
• Faktor‐faktor yang menentukan Efisiensi
Penggilingan Beras PK:
– Kadar air gabah, umumnya terlalu basah
menyebabkan gabah tidak terkupas
– Keseragaman masuknya gabah ke dalam celah
rubber roll husker.
– Rasio kecepatan dua rubber roll: semakin rendah
perbedaan kecepatan berputar antar kedua roll
menyebabkan efisiensi penggilingan rendah.
– Tekanan antara dua rubber roll. Semakin tinggi
tekanan semakin banyak gabah terkupas, tetapi
akan menyebabkan beras patah dan roll cepat aus.
– Keseragaman masuknya gabah ke aspirator.