The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Step
By Step Guide To Using Scientific Calculator Casio fx 570 MS For Polytechnic
Students, can reduce students' mistakes and negligence in using scientific calculator
while answering mathematic questions This book has been designed to help students
to increase students' knowledge in the use of scientific calculator and students can
master the techniques of using scientific calculators correctly Aside from that, the
concepts, methods and notes are represented conveniently by using simple words
Drill and practice Exercises Questions are provided to help students expand the
understanding in using scientific calculators for beyond teaching

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Penerbit PSIS, 2022-11-11 03:45:23

SCIENTIFIC CALCULATOR CASIO fx 570MS

Step
By Step Guide To Using Scientific Calculator Casio fx 570 MS For Polytechnic
Students, can reduce students' mistakes and negligence in using scientific calculator
while answering mathematic questions This book has been designed to help students
to increase students' knowledge in the use of scientific calculator and students can
master the techniques of using scientific calculators correctly Aside from that, the
concepts, methods and notes are represented conveniently by using simple words
Drill and practice Exercises Questions are provided to help students expand the
understanding in using scientific calculators for beyond teaching

Keywords: Scientific Calculator

MATRICES

Mode Transposition
matrices of matrix

Creating Determinant
matrix and of matrix
edit matrix
Operation of
matrix

Inverse
matrix

44

MATRICES

• The element of matrix A is denoted as , where i and j is the number
of row and column of matrix A respectively.

• The order of matrix A is defined by × , where m and n is the total
number of row and column of matrix A respectively.

Column 1 Column 2 Column 3

MATRIX (3X3) COMMONLY  a11 a12 a13  Row 1
WRITTEN AS: A   a21 a22 a23  Row 2
Row 3
 a31 a32 a33 

45

MODE OF MATRIX

Press MODE button 3 time you will find MAT mode at second option, then

2

press .

EQN MAT VC2T
1 23

MODE

46

MATRIX CALCULATIONS

Press (SHIFT) then (MAT) , you will find this three option.

Dim Edit Mat Dim Used to creating the matrices with
Shift 1 2 3 1 define matrix dimension first and
then input the element of matrices.

Edit Used to edit the matrices
2

MAT Mat Used to display the matrix for
3 operation matrices

47

MATRIX CALCULATIONS

Press (SHIFT) (MAT) , you will find this two option.

Det Trn Det Used to find the determinant of
Shift 1 2 1 matrices.

Trn Used to transpose the matrices
2

MAT

48

CREATING A Example:  1  5 ROWS: 3
MATRIX A 0 7 COLUMNS: 2
ORDER OF
  4 2  MATRICES: 3x2

SHIFT MATRIX DIMENSION ELEMENT OF MATRIX
MAT Dim NAME m : no. rows ;
MatA12
1 A(1) n: no. columns
MatA22
MatA(mxn) m ? MatA11
MatA32
MatA(mxn) n ? MatA21
MatA31

49

EDIT A MATRIX

Example:

Change the element of A12 =6

SHIFT MATRIX ELEMENT OF MATRIX
MAT Edit NAME

2 A(1)

MatA12

Use the cursor keys to move about
the matrix in

order to edit its elements.

50

OPERATIONS OF MATRIX: ADDITION OF MATRICES

Example: Remember that two
matrix can be add or
Find the sum of following matrix below: subtracted only if
they have the same
 1 6  1  4 order.
 0 7   4 1 
  4 2   3 2 

AB

51

CREATING A  1  4 ROWS: 3
MATRIX B 4 1  COLUMNS: 2
ORDER OF
SHIFT MATRIX   3 2  MATRICES: 3 x2
MAT Dim NAME
DIMENSION ELEMENT OF MATRIX
1 B(2) m : no. rows ;
n: no. columns MatB12

MatB(mxn) m ? MatB11 MatB22

MatB(mxn) n ? MatB21 MatB32
MatB31

52

Press SHIFT MATRIX Use your cursor keys
MAT Mat NAME DISPLAY to move in order to
view each elements
3 A(1) for the answers.

Mat A DISPLAY ANSWERS

OPERATOR Mat A + Mat B MatAns11 = 2 MatAns12 = 2

MATRIX MatAns21 = 4 MatAns22 = 8
SHIFT MAT Mat NAME DISPLAY
MatAns31 =-7 MatAns32 = 4
3 B(2)
 2 2
Mat B  4 8
  7 4

53

OPERATIONS OF MATRIX: SUBTRACTION OF
MATRICES

Example: When use the
same element of
Find the subtraction of following matrix below: matrices, then no
need to create
 1 6  1  4 the new matrix.
 0 7   4 1 
  4 2   3 2 

AB

54

Press SHIFT MATRIX DISPLAY Use your cursor keys
MAT Mat NAME to move in order to
Mat A view each elements
3 A(1) for the answers.

OPERATOR DISPLAY ANSWERS

Mat A - Mat B MatAns11 = 0 MatAns12 = 10

MATRIX DISPLAY MatAns21 = -4 MatAns22 = 6
SHIFT MAT Mat NAME
Mat B MatAns31 =-1 MatAns32 = 0
3 B(2)
0 10
−4 6
−1 0

55

OPERATIONS OF MATRIX: MULTIPLICATION OF
MATRICES BY SCALAR NUMBER

Example: C   4 2 53 , then evaluate ×
1 2
Given that

When use the different element
of matrices, then create the
new matrix.

56

CREATING A  4 2 5 ROWS: 2
MATRIX C    COLUMNS: 3

  ORDER OF
 1  2 3 MATRICES: 2x3

SHIFT MATRIX DIMENSION ELEMENT OF MATRIX
MAT Dim NAME m : no. rows ;
MatC12
1 C(3) n: no. columns

MatC(mxn) m ? MatC11

MatC(mxn) n ? MatC13 MatC21
MatC22 MatC23

57

Press the scalar number Use your cursor keys
to move in order to
view each elements
for the answers.

Then, press OPERATOR DISPLAY

2 x Mat C ANSWERS
MatAns11 = 8 MatAns12 = 4 MatAns13 = 10
MATRIX MatAns21 = -2 MatAns22 = -4 MatAns23 = 6
MAT Mat NAME DISPLAY
SHIFT
3 C(3)
 8 4 10 
Mat C 2 4 6

58

MULTIPLICATION OF TWO MATRICES

Example:

Find the multiplication of following matrix below:

 1  4   Two matrix B & matrix C can be

  4 2 5  multiplied only if the number of
 4 1  B C columns of matrix B is same as the

  number of rows of matrix C.
  3 2  1  2 3  The order of snaemwematrix after multiplied

3 X 2 same 2 X 3 matrix B and C equal to the number of
row of matrix B x number of column of

matrix C.

3X3

59

Press SHIFT MATRIX Use your cursor keys
to move in order to
MAT Mat NAME DISPLAY view each elements
for the answers.
3 B(2)
ANSWERS
Mat B DISPLAY
MatAns11 = 8 MatAns12 = 10 MatAns12 = -7
OPERATOR Mat B x Mat C
MatAns21 = 15 MatAns22 = 6 MatAns22 = 23
MATRIX
SHIFT MAT Mat NAME DISPLAY MatAns31 = -14 MatAns32 =-1 0 MatAns32 = -9

3 C(3)  8 10  7
 15 6 23 
Mat C  14 10  9

60

DETERMINANT OF MATRICES (2X2)

Example: 2 −1
4 3
Find the determinant of the matrix M=

 Determinant of matrix When use the different element
can be computed from of matrices, then create the
the elements of a new matrix.
square matrix.

61

CREATING A M= 2 −1 ROWS: 2
MATRIX 4 3 COLUMNS: 2
ORDER OF
SHIFT MATRIX DIMENSION MATRICES: 2x2
MAT Dim NAME m : no. rows ;
ELEMENT OF MATRIX
1 A(1) n: no. columns
MatA12
MatA(mxn) m ? MatA11
MatA22
MatA21

MatA(mxn) n ?

62

Press

SHIFT MAT CURSOR KEYS Det DISPLAY DISPLAY ANSWERS
1 10
Det DetMat A

Answer:

MATRIX DISPLAY det 2 31 =10
SHIFT MAT Mat NAME 4
Mat A
3 A(1)

63

DETERMINANT OF MATRICES (3X3)

Example:  1 3 2  .
B 4 1 3
Find the determinant of the matrix

 2 2 0

 Determinant of matrix When use the different element
can be computed from of matrices, then create the
the elements of a new matrix.
square matrix.

64

CREATING A 1 3 2 ROWS: 3
MATRIX B  4 1 3 COLUMNS: 3
ORDER OF
 2 2 0 MATRICES: 3x3

SHIFT MAT MATRIX DIMENSION ELEMENT OF MATRIX
Dim NAME m : no. rows ;
MatB12
1 B(2) n: no. columns

MatB(mxn) m? MatB11 MatB13

MatB21 MatB22 MatB23
MatB(mxn) n? MatB32 MatB33

MatB31

65

SHIFT MAT CURSOR KEYS Det DISPLAY DISPLAY ANSWERS
1 24
DetMat B
Det

MATRIX Answer:

SHIFT MAT Mat NAME DISPLAY 1 3 2
det 4 1 3 =24
3 B(2) Mat B
 2 2 0

66

TRANSPOSITION OF MATRICES

Example: When use the
same element of
Simplify the matrix below: matrices, then no
need to create
 1 3 2T the new matrix.
4 1 3
 2 2 0

B

67

Press Use your cursor keys
to move in order to
SHIFT MAT CURSOR KEYS Trn DISPLAY DISPLAY view each elements
2 for the answers.

Trn TrnMat B ANSWERS

MATRIX MatAns11 = 1 MatAns12 =4 MatAns13 = 2
SHIFT MAT Mat NAME DISPLAY MatAns21 = 3 MatAns22 =1 MatAns23 = 2

3 B(2) MatAns31 = 2 MatAns32 = 3 MatAns33 = 0

Mat B 1 4 2
BT  3 1 2

 2 3 0

68

INVERSE OF MATRICES (2X2)

Example:

For the matrix A   2 31 , find the inverse matrix:
4

A

When use the same element of
matrices, then no need to create

the new matrix.

69

A 1 MATRIX 1

Press xMat NAME DISPLAY
3 A(1)
SHIFT MAT
Mat A
DISPLAY
ANSWERS Convert your answer from decimal places
MatA 1 MatAns11 = 3/10 MatAns12 =1/10 into fraction with press
MatAns21 = -2/5 MatAns22 = 1/5
Then, use your cursor keys to move in
order to view each elements for the
answers.

 3 1 
10 10
 1
  2 5 5

70

INVERSE OF MATRICES (3X3)

Example:  1 3 2  , find the inverse matrix:
B 4 1 3 
For the matrix

 2 2 0

B

When use the same element of
matrices, then no need to create

the new matrix.

71

B 1 Convert your answer from decimal places
into fraction with press
Press

MATRIX 1

xSHIFT MAT
Mat NAME DISPLAY

3 B(2)

Mat B Then, use your cursor keys to move in
order to view each elements for the
ANSWERS answers.

DISPLAY MatAns11 = -1/4 MatAns12 =1/6 MatAns13 = 7/24 11 7
MatAns21 = 1/4 MatAns22 =- 1/6 MatAns23 = 5/24 −4 6 24
MatB 1
MatAns31 = 1/4 MatAns32 = 1/6 MatAns33 = -11/24
B 1 = 1 1 5
4 −6 24
1 1 11
4 6 − 24

72

CALCULATOR’S
RESET

73

VECTOR

Mode vector Scalar (dot) Vector
product of (cross)
Creating two vectors product of
vector and two vectors
edit vector Operation of
vector Magnitude of
vector and
unit vector

74

MODE OF VECTOR

Press MODE button 3 time you will find VCT mode at third option, then

3

press .

EQN MAT VCT
1 23

MODE

75

VECTOR CALCULATION

Press (SHIFT) then (VCT) you will find this at three option.

Dim Edit Vct Dim Used to creating the vector with
Shift 1 2 3 1 define vector dimension first and
then input the element of the
VCT vector.

Edit Used to edit the element of the
2 vector.

Vct Used to display the vector for
3 operation vector.

76

VECTOR CALCULATION

Press (SHIFT) (VCT) (right cursor keys) , you will find this at one option.

Dot Dot Dot operation which is used to
Shift 1 1 solve the dot product of vector.

VCT

77

CREATING A   1  Dimension of
VECTOR Example: A    5 vector: 3

 1 ELEMENT OF VECTOR

VECTOR DIMENSION VctA1
SHIFT VCT Dim NAME m : Dimension of

1 A(1) Vector

Vct A(m) m ?

VctA2

VctA3

78

EDIT A VECTOR

Example:

Change the element of A2 =3

VECTOR

SHIFT VCT Edit NAME ELEMENT OF MATRIX

2 A(1) VctA2

Use the cursor keys to move about
the matrix in

order to edit its elements.

79

OPERATIONS OF VECTOR: ADDITION OF VECTOR

Given that  and  , find

M  3i  2 j  6k N  5i  2 j  4k



M N

3i  2 j  6k   5i  2 j  4k  Remember that two
vector can be add or
MN subtracted only if
they have the same
dimension.

80

CREATING A  Dimension of
vector: 3
VECTOR Example: M  3i  2 j  6k

VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctA1
1 A(1) Vector VctA2

Vct A(m) m ?

VctA3

81

CRVEEACTTIONRG A Example:   5i  2 j  4k Dimension of
vector: 3
N

VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctB1
1 B(2) Vector VctB2

Vct B(m) m ?

VctB3

82

VECTOR Use your cursor keys
to move in order to
Press SHIFT VCT Vct NAME DISPLAY DISPLAY view each elements
for the answers.
3 A(1) VctA

OPERATOR Vct A + Vct B ANSWERS
Vct Ans1 = 8

Vct Ans2 = -4

VECTOR Vct Ans3 =2

SHIFT VCT Vct NAME DISPLAY

3 B(2) VctB 

M N  8i  4 j  2k

83

OPERATIONS OF VECTOR: SUBTRACTION OF

VECTOR

Example:  

Given that M  3i  2 j  6k and N  5i  2 j  4k , find

 When use the
same element of
M N

3i  2 j  6k   5i  2 j  4k  vector, then no
need to create

Remember that two the new vector.

A B vector can be add or

subtracted only if

they have the same

dimension.

84

Press SHIFT VECTOR Use your cursor keys
to move in order to
VCT Vct NAME DISPLAY DISPLAY view each elements
for the answers.
3 A(1) VctA

OPERATOR ANSWERS
Vct Ans1 = -2
Vct A - Vct B
Vct Ans2 = 0

VECTOR Vct Ans3 = 10
SHIFT VCT Vct NAME
DISPLAY 
3 B(2)
M N  2i  10k
VctB

85

OPERATIONS OF VECTOR: MULTIPLICATION OF
VECTOR BY SCALAR NUMBER

 Example: 

Given that C  3,  2 , then evaluate 2 × Ԧ

When use the different element
of vector, then create the new

vector.

86

CREATING A C  3,  2 
VECTOR Dimension of
vector: 2

SHIFT VCT VECTOR DIMENSION ELEMENT OF VECTOR
Dim NAME m : Dimension
VctC1
1 C(3) of Vector VctC2

Vct C(m) m ?

87

Press the scalar number Use your cursor keys
to move in order to
view each elements
for the answers.

Then, press OPERATOR

DISPLAY ANSWERS
Vct Ans1 = 6
2 x VctC Vct Ans2 = - 4

MATRIX DISPLAY 2 × Ԧ = , − @ −
SHIFT VCT Vct NAME
VctC
3 C(3)

88

SCALAR (DOT) PRODUCT OF TWO VECTORS

Example:  

Given that OP  9i  3 j  8k and OQ  5i  4 j  4k , find

 When use the
different vector,
OP OQ then create the

9i  3 j  8k    5i  4 j  4k  new vector.

Remember that two

A B vector can be apply dot
product only if they

have the same

dimension.

89

CREATING A  Dimension of
OP  9i  3 j  8k vector: 3
VECTOR

VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctA1
1 A(1) Vector VctA2

Vct A(m) m ?

VctA3

90

CREATING A  Dimension of
VECTOR vector: 3
OQ  5i  4 j  4k

VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctB1
1 B(2) Vector VctB2

Vct B(m) m ?

VctB3

91

Press SHIFT VCT VECTOR DISPLAY
Vct NAME
3 A(1) VctA DISPLAY

SHIFT VCT CURSOR KEYS Dot -25
1 OPERATOR
Vct A Vct B

VECTOR DISPLAY Answer:
SHIFT VCT Vct NAME
VctB 
3 B(2)
OP  OQ  25

92

VECTOR (CROSS) PRODUCT OF TWO VECTORS

Example:  and  , find

Given that OP  9i  3 j  8k OQ  5i  4 j  4k

 When use the
same element of
OP OQ

9i  3 j  8k    5i  4 j  4k  vector, then no
need to create the

Remember that two vector new vector.

A B can be apply cross

product only if they have

the same dimension.

93


Click to View FlipBook Version