MATRICES
Mode Transposition
matrices of matrix
Creating Determinant
matrix and of matrix
edit matrix
Operation of
matrix
Inverse
matrix
44
MATRICES
• The element of matrix A is denoted as , where i and j is the number
of row and column of matrix A respectively.
• The order of matrix A is defined by × , where m and n is the total
number of row and column of matrix A respectively.
Column 1 Column 2 Column 3
MATRIX (3X3) COMMONLY a11 a12 a13 Row 1
WRITTEN AS: A a21 a22 a23 Row 2
Row 3
a31 a32 a33
45
MODE OF MATRIX
Press MODE button 3 time you will find MAT mode at second option, then
2
press .
EQN MAT VC2T
1 23
MODE
46
MATRIX CALCULATIONS
Press (SHIFT) then (MAT) , you will find this three option.
Dim Edit Mat Dim Used to creating the matrices with
Shift 1 2 3 1 define matrix dimension first and
then input the element of matrices.
Edit Used to edit the matrices
2
MAT Mat Used to display the matrix for
3 operation matrices
47
MATRIX CALCULATIONS
Press (SHIFT) (MAT) , you will find this two option.
Det Trn Det Used to find the determinant of
Shift 1 2 1 matrices.
Trn Used to transpose the matrices
2
MAT
48
CREATING A Example: 1 5 ROWS: 3
MATRIX A 0 7 COLUMNS: 2
ORDER OF
4 2 MATRICES: 3x2
SHIFT MATRIX DIMENSION ELEMENT OF MATRIX
MAT Dim NAME m : no. rows ;
MatA12
1 A(1) n: no. columns
MatA22
MatA(mxn) m ? MatA11
MatA32
MatA(mxn) n ? MatA21
MatA31
49
EDIT A MATRIX
Example:
Change the element of A12 =6
SHIFT MATRIX ELEMENT OF MATRIX
MAT Edit NAME
2 A(1)
MatA12
Use the cursor keys to move about
the matrix in
order to edit its elements.
50
OPERATIONS OF MATRIX: ADDITION OF MATRICES
Example: Remember that two
matrix can be add or
Find the sum of following matrix below: subtracted only if
they have the same
1 6 1 4 order.
0 7 4 1
4 2 3 2
AB
51
CREATING A 1 4 ROWS: 3
MATRIX B 4 1 COLUMNS: 2
ORDER OF
SHIFT MATRIX 3 2 MATRICES: 3 x2
MAT Dim NAME
DIMENSION ELEMENT OF MATRIX
1 B(2) m : no. rows ;
n: no. columns MatB12
MatB(mxn) m ? MatB11 MatB22
MatB(mxn) n ? MatB21 MatB32
MatB31
52
Press SHIFT MATRIX Use your cursor keys
MAT Mat NAME DISPLAY to move in order to
view each elements
3 A(1) for the answers.
Mat A DISPLAY ANSWERS
OPERATOR Mat A + Mat B MatAns11 = 2 MatAns12 = 2
MATRIX MatAns21 = 4 MatAns22 = 8
SHIFT MAT Mat NAME DISPLAY
MatAns31 =-7 MatAns32 = 4
3 B(2)
2 2
Mat B 4 8
7 4
53
OPERATIONS OF MATRIX: SUBTRACTION OF
MATRICES
Example: When use the
same element of
Find the subtraction of following matrix below: matrices, then no
need to create
1 6 1 4 the new matrix.
0 7 4 1
4 2 3 2
AB
54
Press SHIFT MATRIX DISPLAY Use your cursor keys
MAT Mat NAME to move in order to
Mat A view each elements
3 A(1) for the answers.
OPERATOR DISPLAY ANSWERS
Mat A - Mat B MatAns11 = 0 MatAns12 = 10
MATRIX DISPLAY MatAns21 = -4 MatAns22 = 6
SHIFT MAT Mat NAME
Mat B MatAns31 =-1 MatAns32 = 0
3 B(2)
0 10
−4 6
−1 0
55
OPERATIONS OF MATRIX: MULTIPLICATION OF
MATRICES BY SCALAR NUMBER
Example: C 4 2 53 , then evaluate ×
1 2
Given that
When use the different element
of matrices, then create the
new matrix.
56
CREATING A 4 2 5 ROWS: 2
MATRIX C COLUMNS: 3
ORDER OF
1 2 3 MATRICES: 2x3
SHIFT MATRIX DIMENSION ELEMENT OF MATRIX
MAT Dim NAME m : no. rows ;
MatC12
1 C(3) n: no. columns
MatC(mxn) m ? MatC11
MatC(mxn) n ? MatC13 MatC21
MatC22 MatC23
57
Press the scalar number Use your cursor keys
to move in order to
view each elements
for the answers.
Then, press OPERATOR DISPLAY
2 x Mat C ANSWERS
MatAns11 = 8 MatAns12 = 4 MatAns13 = 10
MATRIX MatAns21 = -2 MatAns22 = -4 MatAns23 = 6
MAT Mat NAME DISPLAY
SHIFT
3 C(3)
8 4 10
Mat C 2 4 6
58
MULTIPLICATION OF TWO MATRICES
Example:
Find the multiplication of following matrix below:
1 4 Two matrix B & matrix C can be
4 2 5 multiplied only if the number of
4 1 B C columns of matrix B is same as the
number of rows of matrix C.
3 2 1 2 3 The order of snaemwematrix after multiplied
3 X 2 same 2 X 3 matrix B and C equal to the number of
row of matrix B x number of column of
matrix C.
3X3
59
Press SHIFT MATRIX Use your cursor keys
to move in order to
MAT Mat NAME DISPLAY view each elements
for the answers.
3 B(2)
ANSWERS
Mat B DISPLAY
MatAns11 = 8 MatAns12 = 10 MatAns12 = -7
OPERATOR Mat B x Mat C
MatAns21 = 15 MatAns22 = 6 MatAns22 = 23
MATRIX
SHIFT MAT Mat NAME DISPLAY MatAns31 = -14 MatAns32 =-1 0 MatAns32 = -9
3 C(3) 8 10 7
15 6 23
Mat C 14 10 9
60
DETERMINANT OF MATRICES (2X2)
Example: 2 −1
4 3
Find the determinant of the matrix M=
Determinant of matrix When use the different element
can be computed from of matrices, then create the
the elements of a new matrix.
square matrix.
61
CREATING A M= 2 −1 ROWS: 2
MATRIX 4 3 COLUMNS: 2
ORDER OF
SHIFT MATRIX DIMENSION MATRICES: 2x2
MAT Dim NAME m : no. rows ;
ELEMENT OF MATRIX
1 A(1) n: no. columns
MatA12
MatA(mxn) m ? MatA11
MatA22
MatA21
MatA(mxn) n ?
62
Press
SHIFT MAT CURSOR KEYS Det DISPLAY DISPLAY ANSWERS
1 10
Det DetMat A
Answer:
MATRIX DISPLAY det 2 31 =10
SHIFT MAT Mat NAME 4
Mat A
3 A(1)
63
DETERMINANT OF MATRICES (3X3)
Example: 1 3 2 .
B 4 1 3
Find the determinant of the matrix
2 2 0
Determinant of matrix When use the different element
can be computed from of matrices, then create the
the elements of a new matrix.
square matrix.
64
CREATING A 1 3 2 ROWS: 3
MATRIX B 4 1 3 COLUMNS: 3
ORDER OF
2 2 0 MATRICES: 3x3
SHIFT MAT MATRIX DIMENSION ELEMENT OF MATRIX
Dim NAME m : no. rows ;
MatB12
1 B(2) n: no. columns
MatB(mxn) m? MatB11 MatB13
MatB21 MatB22 MatB23
MatB(mxn) n? MatB32 MatB33
MatB31
65
SHIFT MAT CURSOR KEYS Det DISPLAY DISPLAY ANSWERS
1 24
DetMat B
Det
MATRIX Answer:
SHIFT MAT Mat NAME DISPLAY 1 3 2
det 4 1 3 =24
3 B(2) Mat B
2 2 0
66
TRANSPOSITION OF MATRICES
Example: When use the
same element of
Simplify the matrix below: matrices, then no
need to create
1 3 2T the new matrix.
4 1 3
2 2 0
B
67
Press Use your cursor keys
to move in order to
SHIFT MAT CURSOR KEYS Trn DISPLAY DISPLAY view each elements
2 for the answers.
Trn TrnMat B ANSWERS
MATRIX MatAns11 = 1 MatAns12 =4 MatAns13 = 2
SHIFT MAT Mat NAME DISPLAY MatAns21 = 3 MatAns22 =1 MatAns23 = 2
3 B(2) MatAns31 = 2 MatAns32 = 3 MatAns33 = 0
Mat B 1 4 2
BT 3 1 2
2 3 0
68
INVERSE OF MATRICES (2X2)
Example:
For the matrix A 2 31 , find the inverse matrix:
4
A
When use the same element of
matrices, then no need to create
the new matrix.
69
A 1 MATRIX 1
Press xMat NAME DISPLAY
3 A(1)
SHIFT MAT
Mat A
DISPLAY
ANSWERS Convert your answer from decimal places
MatA 1 MatAns11 = 3/10 MatAns12 =1/10 into fraction with press
MatAns21 = -2/5 MatAns22 = 1/5
Then, use your cursor keys to move in
order to view each elements for the
answers.
3 1
10 10
1
2 5 5
70
INVERSE OF MATRICES (3X3)
Example: 1 3 2 , find the inverse matrix:
B 4 1 3
For the matrix
2 2 0
B
When use the same element of
matrices, then no need to create
the new matrix.
71
B 1 Convert your answer from decimal places
into fraction with press
Press
MATRIX 1
xSHIFT MAT
Mat NAME DISPLAY
3 B(2)
Mat B Then, use your cursor keys to move in
order to view each elements for the
ANSWERS answers.
DISPLAY MatAns11 = -1/4 MatAns12 =1/6 MatAns13 = 7/24 11 7
MatAns21 = 1/4 MatAns22 =- 1/6 MatAns23 = 5/24 −4 6 24
MatB 1
MatAns31 = 1/4 MatAns32 = 1/6 MatAns33 = -11/24
B 1 = 1 1 5
4 −6 24
1 1 11
4 6 − 24
72
CALCULATOR’S
RESET
73
VECTOR
Mode vector Scalar (dot) Vector
product of (cross)
Creating two vectors product of
vector and two vectors
edit vector Operation of
vector Magnitude of
vector and
unit vector
74
MODE OF VECTOR
Press MODE button 3 time you will find VCT mode at third option, then
3
press .
EQN MAT VCT
1 23
MODE
75
VECTOR CALCULATION
Press (SHIFT) then (VCT) you will find this at three option.
Dim Edit Vct Dim Used to creating the vector with
Shift 1 2 3 1 define vector dimension first and
then input the element of the
VCT vector.
Edit Used to edit the element of the
2 vector.
Vct Used to display the vector for
3 operation vector.
76
VECTOR CALCULATION
Press (SHIFT) (VCT) (right cursor keys) , you will find this at one option.
Dot Dot Dot operation which is used to
Shift 1 1 solve the dot product of vector.
VCT
77
CREATING A 1 Dimension of
VECTOR Example: A 5 vector: 3
1 ELEMENT OF VECTOR
VECTOR DIMENSION VctA1
SHIFT VCT Dim NAME m : Dimension of
1 A(1) Vector
Vct A(m) m ?
VctA2
VctA3
78
EDIT A VECTOR
Example:
Change the element of A2 =3
VECTOR
SHIFT VCT Edit NAME ELEMENT OF MATRIX
2 A(1) VctA2
Use the cursor keys to move about
the matrix in
order to edit its elements.
79
OPERATIONS OF VECTOR: ADDITION OF VECTOR
Given that and , find
M 3i 2 j 6k N 5i 2 j 4k
M N
3i 2 j 6k 5i 2 j 4k Remember that two
vector can be add or
MN subtracted only if
they have the same
dimension.
80
CREATING A Dimension of
vector: 3
VECTOR Example: M 3i 2 j 6k
VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctA1
1 A(1) Vector VctA2
Vct A(m) m ?
VctA3
81
CRVEEACTTIONRG A Example: 5i 2 j 4k Dimension of
vector: 3
N
VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctB1
1 B(2) Vector VctB2
Vct B(m) m ?
VctB3
82
VECTOR Use your cursor keys
to move in order to
Press SHIFT VCT Vct NAME DISPLAY DISPLAY view each elements
for the answers.
3 A(1) VctA
OPERATOR Vct A + Vct B ANSWERS
Vct Ans1 = 8
Vct Ans2 = -4
VECTOR Vct Ans3 =2
SHIFT VCT Vct NAME DISPLAY
3 B(2) VctB
M N 8i 4 j 2k
83
OPERATIONS OF VECTOR: SUBTRACTION OF
VECTOR
Example:
Given that M 3i 2 j 6k and N 5i 2 j 4k , find
When use the
same element of
M N
3i 2 j 6k 5i 2 j 4k vector, then no
need to create
Remember that two the new vector.
A B vector can be add or
subtracted only if
they have the same
dimension.
84
Press SHIFT VECTOR Use your cursor keys
to move in order to
VCT Vct NAME DISPLAY DISPLAY view each elements
for the answers.
3 A(1) VctA
OPERATOR ANSWERS
Vct Ans1 = -2
Vct A - Vct B
Vct Ans2 = 0
VECTOR Vct Ans3 = 10
SHIFT VCT Vct NAME
DISPLAY
3 B(2)
M N 2i 10k
VctB
85
OPERATIONS OF VECTOR: MULTIPLICATION OF
VECTOR BY SCALAR NUMBER
Example:
Given that C 3, 2 , then evaluate 2 × Ԧ
When use the different element
of vector, then create the new
vector.
86
CREATING A C 3, 2
VECTOR Dimension of
vector: 2
SHIFT VCT VECTOR DIMENSION ELEMENT OF VECTOR
Dim NAME m : Dimension
VctC1
1 C(3) of Vector VctC2
Vct C(m) m ?
87
Press the scalar number Use your cursor keys
to move in order to
view each elements
for the answers.
Then, press OPERATOR
DISPLAY ANSWERS
Vct Ans1 = 6
2 x VctC Vct Ans2 = - 4
MATRIX DISPLAY 2 × Ԧ = , − @ −
SHIFT VCT Vct NAME
VctC
3 C(3)
88
SCALAR (DOT) PRODUCT OF TWO VECTORS
Example:
Given that OP 9i 3 j 8k and OQ 5i 4 j 4k , find
When use the
different vector,
OP OQ then create the
9i 3 j 8k 5i 4 j 4k new vector.
Remember that two
A B vector can be apply dot
product only if they
have the same
dimension.
89
CREATING A Dimension of
OP 9i 3 j 8k vector: 3
VECTOR
VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctA1
1 A(1) Vector VctA2
Vct A(m) m ?
VctA3
90
CREATING A Dimension of
VECTOR vector: 3
OQ 5i 4 j 4k
VECTOR DIMENSION ELEMENT OF VECTOR
SHIFT VCT Dim NAME m : Dimension of
VctB1
1 B(2) Vector VctB2
Vct B(m) m ?
VctB3
91
Press SHIFT VCT VECTOR DISPLAY
Vct NAME
3 A(1) VctA DISPLAY
SHIFT VCT CURSOR KEYS Dot -25
1 OPERATOR
Vct A Vct B
VECTOR DISPLAY Answer:
SHIFT VCT Vct NAME
VctB
3 B(2)
OP OQ 25
92
VECTOR (CROSS) PRODUCT OF TWO VECTORS
Example: and , find
Given that OP 9i 3 j 8k OQ 5i 4 j 4k
When use the
same element of
OP OQ
9i 3 j 8k 5i 4 j 4k vector, then no
need to create the
Remember that two vector new vector.
A B can be apply cross
product only if they have
the same dimension.
93