The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by jenniesmitty2, 2016-08-29 20:03:46

5th Grade Math student-ebook-course-11

5th Grade Math student-ebook-course-11

LESSON Reducing by Grouping
Factors Equal to 1
54 Dividing Fractions

Power Up Building Power

facts Power Up G
mental
a. Number Sense: 6 × 250 1 1 1 2  2  3  5
math b. Number Sense: 736 − 4080 8 2 223

1 c. Number Sense: 375 + 99
8
d. Money: $8.75 + $5.00

e. Fra18ctional Parts: 1 of 9 2235
2 223

f. Number Sense: 30 × 30

g. Geometry: Can you think of a time when a figure could have the same
value for both its perimeter and its area?

h. Calculation: 8 × 8, − 1, ÷ 9, × 7, + 1, ÷ 5, × 10

problem The PE class ran counterclockwise A
solving
around the school block, starting and 30 m
70 m
finishing at point A. Instead of running all 100 m 50 m
200 m 30 m
the way around the block, Nimah took

what she called her “shortcut,” shown

by the dotted line. How many meters did

Nimah save with her “shortcut?”

New Concepts Increasing Knowledge

reducing by The factors in the problem below are arranged in order from least to
grouping greatest. Notice that some factors appear in both the dividend and the
factors divisor.

equal to 1 1 1 2235
82 223
1
8

Since 2 ÷ 2 equals 1 and 3 ÷ 3 equals 1, we will mark the combinations of
factors equal to 1 in this problem.

2 ·2 ·3· 5
2 ·2 ·3

Looking at the factors this way, the problem becomes 1 ∙ 1 ∙ 1 ∙ 5, which is 5.
Verify Which property helps us know that 1 ∙ 5 = 5?

280 Saxon Math Course 1

Example 1

Reduce this fraction: 2225 1  1  1  2 2 3 1
2235 3 3 4 2

Solution

We will mark combinations of factors equal to 1.

1 · 3 2 · 5 a34  1 b 1 1
2 2
22 2 4·

2 ·2 ·3·5

By grouping factors equal to 1, the pro22blem22 22b32ec22o55m 32es 155  1 11 123, w1 hi2332ch is 23. 3
4

2  2  2  52  221 2323frd1ai555cv1itdioin32n11gs 123 When we divide 10 by 5, we are answering the question “How many 5s are 1
2  2  3  52 2 21  22hirI11nneom1tw22h3223320eim?sm22”55cabWane2323sy23rhef5er1tnos55hm34ewa1reqLeued1iens1ivss1ito22d1i023one,n5i343422t1i0sbisty23“23h23nH12aootwt55wwaehs23maeeranea1nstayhy12ne12121stsodw a34ise1vre12ri12esienoi23gnhr oit34shw?ea”23msWfraa43ahm1212nciylteeio12tintys4343,pisawereeeoa12iftsnaqyk3421ute.eoWast4343w34steieooe12n.12a43b43 12 1
2  
 2 221b12 1
2
2

1 13 3434E22xa1222ma43poiss32tlreeitg12hp21i255ensbart22elodcfaaii1i22pvn3443irdso3422i123oct12han2121e22bbl1p55oarf43no23ts23bhwl12ee155emdr.i1212v231bWisyea1om134r1f.iur12T1sl23thti21pefabi1nln34ydiw34n2323hge12o.11ub34ws1221em1223 tahneyreo12cfitpah34r34eocd12aivl21i134tbso12oarsnsa1wre21ei12rn12th1e.12Th12is 1
2 12 4 2
2
1 1
2

1 How m12 an34y 1 s are in 3 ? aQ34 43 1 Rb a 3 12 12ab34  1 b 1 1 1 1 1 1 1 1
2 2 4 2 4 2 2 2 2 2 2

Solution

Before we show the two-step process, we will solve the problem with our
fraction manipulatives. The question can be stated this way:

How many 1 s are needed to make ?1
2
4
11
44

225 2 We see that the answer is more than one but less than two. If we take one 1
235 2 cu34t int12o two equal par12ts ( ), then we43can fit t21he 31 and 2
3 32 parts23 ( ) together t34o make three fo12urths. 42
1  1  1  2 2 2 and another 1 first
2 3 o n55e 2 1
  2
  of t1he 1sm a1ller23 3
4

1

2

3 a43  1 b We se12e that we need 1 1 of the 1 pieces to make .1
4 2 2 2
4
11
44

1 1aNsok34w1s,w“23He34 owwill23musaenyar12itshamraee34tiinc 34t21o?b”sho12w tha12 t 3  1 equals 1 12.11T211he original pr12ob3lem
52 4 2
25 1  1  1 2223 2  22  5 1  1 3 22 3 4 1
35 2  33  2 4 4 2

3  1 1 1 1 3 3  1 1 1  1  2 1
4 2 2 2 4 4 2 2 2 2

22 3215523a 3455323142a3434134243122214311212b1212221432223a12143b3434221231342312155b233124ToT fhh5523ee121123344s334421134nf23ai1342riu43ns134m23a21t1312434sb3434st112eeh1brpoa21o43u1bi21f23sld121tso2321b12121ei2143bfni343423a21n31243434134do2a33124i2fts34121h2122241312e.b,Wn46w1221ubehm2if12cbinhed43r1146is24133124o21,1123443tfowh123124112feh2112s2212irc1121e11322ib21hn4621cy21ie1p46m21q.21rouu43calt46alis34p16422l 11l121oy12412321f12in12112g21.431221.S462121112o1246t2h46eL4321neussm214612o43b11ne2112435r3442113324 1 3
22 2 4
1 1
1 1 2 311 1 2 1 6
2 2 2 4
42 1
2
5 1 1 122 2 132 6 3
22152232  2 4 4
21521 22 12 3 281 33
1 3  53 2 44
2 3
3412 4

3
32
4
1 a3412 31 b
2 42
3 1 2143 11 1 212
1 1 11 1 1 3412 3 3434 1 4  2  22 1 1 12 2 2  21  2 4
2 2 2 4 2 2
2 12

12 2 4 42 2 122 2

22551112122232311214323444333123443435555143122111134134122212224623111342223112222321132344a13124223(121211212123a23343443324312412332325523a435534E31132242()3421b2121x2baS2a323am31421o134343434blp)46112121SSHUWtOuhl12121tttso1ereeeei21ii2132344433wo111212213132242ng(ppsbs312bgn312421i1it1224131nmm12e3112432211(oap:12:p2au12l233214s4323FlHUttnr1112221ip)2hhfwiyoifsn12ree21er34oeweda4611334222d()na342121bc3241stt23at2a3nu46m46htolh43ie34sam213122434eoobeawmr1nky43bnWnene21)ye:u334443mt13234a41121122ru12rih21oer.mn21mb11221b11aadoss21bt1121221n6421bufo?21iefa21cep112lr34vrrair133244aus21neQ21beoc12olgaitifntfn1122112itho46121121i213421ve3412n2s12st.1243e?o33344434pRbiTosinnr313242,h(fo121te1421123a2344334331a4423bh14n.n212t12le64eo1441ds134a243m34qifit212m)2isu12h.n434623334344eepdnbsnleit34f46312434ae46i313422(yc12ob1212121d1122o121ne1212n12344433dcv111221a43e34t4621n1211)bor34443323443433t221121i43bmne23433344ga121212s43k133422(21t12343443eato246t12e23244334346112122143d43?3412211221).t46422113h21W21i1342ase122146212143334344w12w342121a4621i334434yl43l:221b43r1212146e212143211v21i12e334443461432a43w4343122431112121234334344611124123b22111221221211423462121234a221121461224621412324623344334213434b14616422122463344

3 2  2 22 2 5521TaNow32rhfoeeetwhci551naeuwnt12tseh?o1wr”fwef1eeio1rllnpis1seah32lrooeat1ssfw21stehtqth23ehue34at12abhnalrre121i23te.h.W22mpSaeoert22tni23sceo.oe32fTfd34httheio55s43roecneruei34gfteoi1ndouaefrf21ldt1php34tsaroor(1tbmo12l41eaf141432m43k)e41,a4141w12s.ket23os34s,me“e12Hatkohewa12t21mt.waInfo12y 3 31 1
4 2  2 23 2 4 42 2

3 341s 1 3
4 21 4
2 2 2 
3

2  (221 21234) 5 3 nu43ma43123422ber22a12o1b43f123432s4312i55nb11.34121T121he43 1n43124343u34m34121b34e32r 33 1  3  4
34 3 1th4213e re1c343421iap12123443roca12lb34of34434. 4 3
1
2 1  F1irs1t4w e32 fi4nd23the is 3 3 11 3
4 14
1 1 a34 1 212b 432 1231212543 33 3 3 1 1 3 3443 21 2 2 14412
2 2 2 44 4 4 2 4
2 3

3 231 2  55433432122215534122211443311212 34341132412122232342431134341 4312255112222343321212343212234123551222232323aSTOmA134hg21t221114231ru22ee55ia1221lg344312pti3141nin131242231212ip112221342n12231u,434334343lbay2m:w1222123il34143n2HFeb55pg43ieo2431nw22366444r.1r1wod3ialob23l34534tm23f32314lrh431ee3253241eavms34n344233312455in121e23y431i:ubn132214w342a34433134m4311324221122143112stbhi14343asee23a22r2343r43343443e21s2211.o1b3142tiSefn343312p34o342134121ss23ab?3344t3512143hwin12e43124213343423e2211155n434316644t.31242211112u2211o,34344312b34mow23ak3344bh3214433243433443et3344ic43o23r1122hos664413421eof1266344466441221bql3412v12use32a1211itnl43323223sh21211e121243312231322813124a21i43p433434s343124ro121334344b12o123443l36444321f12eb3443212m4366344412.432121.W4343221e4343323442332f12i34233n122413432134121d5433412215121211221o34433443f31244343213422b43433412y432243343214 344321 13 4 1 6443 1
4 242 3  3 2
24 2

3 1 1 433434 4
4 1 3
1 1 2
2 2

1 11 1 1  4  4 
2 22 2 2 3 6

212  22  25 333421 35345543 4 1
23 2343  25 6

34 21(12 3
41 4
2 2134 3  3 )
4 8

331212381222222(382212223512222243224322222255223212332)5383333P3255212223512r345a5335551222c2255314212t3242S5555i22ca222334xe41322o32nS2255133eM55t3833a135th41343a35C342313455SRo13443te55u34(ea21dr381sp.121u38ae38b2a3212(c243834311e832:23:)2UtTo324321h12212s21b)efeb3inn23aat512d34h34s2a35eitm43h112211222138nep121212u38blbnmi211212f31423242uy43bbmtehb22re83eo(21221arf33n2o314212s1fs2w31241284353i2ns)e34131422113r1i.(n55122151((112341252143.124321b83.)38382134)34)224 1 2143218321(122112123434 38) 4 83(1238 2 1 3 4 1 31
21 63 13 21 3443 3 23421 34146434432
3 2 ) 31  4321421 1 1
2 34 8 2 2
2 1 4 3 2
48 3 2 1 43 1
1 1 6 2
2 8
3
1 22211122134(331238533438)55 1 83 (2143  4 1
 2  38312) 2
8
4 2
6  3

( 3  1 ) 31 2235 22335 3 1 (
8 2  3 1    8 2






























































































Click to View FlipBook Version