The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2018-08-07 13:22:25

Prokis Solution Manual

Prokis Solution Manual

SOLUTIONS MANUAL
Communication Systems Engineering

Second Edition
John G. Proakis
Masoud Salehi
Prepared by Evangelos Zervas

Upper Saddle River, New Jersey 07458

Publisher: Tom Robbins
Editorial Assistant: Jody McDonnell
Executive Managing Editor: Vince O’Brien
Managing Editor: David A. George
Production Editor: Barbara A. Till
Composition: PreTEX, Inc.
Supplement Cover Manager: Paul Gourhan
Supplement Cover Design: PM Workshop Inc.
Manufacturing Buyer: Ilene Kahn

c 2002 Prentice Hall
by Prentice-Hall, Inc.
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in
writing from the publisher.
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-061974-6

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educac`ıon de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Upper Saddle River, New Jersey

Contents

Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

iii

Chapter 2

Problem 2.1
1)

2= ∞ N2
=
x(t) − αiφi(t) dt
−∞ i=1
 
∞N N

x(t) − αiφi(t) x∗(t) − αj∗φj∗(t) dt
−∞ i=1
j=1

∞ N∞ N∞
|x(t)|2dt − αi φi(t)x∗(t)dt − αj∗ φ∗j (t)x(t)dt
=

−∞ i=1 −∞ j=1 −∞

NN ∞

+ αiαj∗ φi(t)φj∗dt

i=1 j=1 −∞

∞ N N∞ N∞ φj∗(t)x(t)dt
|x(t)|2dt + |αi|2 − αi φi(t)x∗(t)dt − αj∗
=

−∞ i=1 i=1 −∞ j=1 −∞

Completing the square in terms of αi we obtain

∞ N∞ 2N ∞ φ∗i (t)x(t)dt 2
2 = |x(t)|2dt − φ∗i (t)x(t)dt + αi −

−∞ i=1 −∞ i=1 −∞

The first two terms are independent of α’s and the last term is always positive. Therefore the

minimum is achieved for ∞

αi = −∞ φi∗(t)x(t)dt

which causes the last term to vanish.

2) With this choice of αi’s ∞ N∞ 2
2= |x(t)|2dt − φ∗i (t)x(t)dt

= −∞ i=1 −∞

∞N

|x(t)|2dt − |αi|2

−∞ i=1

Problem 2.2
1) The signal x1(t) is periodic with period T0 = 2. Thus

1 1 Λ(t)e−j2π n t 1 1
2
x1,n = dt = Λ(t)e−jπntdt
2 −1 2 −1

=1 0 (t + 1)e−jπntdt + 1 1
2 −1 20
(−t + 1)e−jπntdt

1 j te−jπnt 1 e−jπnt 0 j 0
= πn π2n2
+ + e−jπnt
2 −1 2πn
−1

−1 j te−jπnt + 1 e−jπnt 1 j 1
2 πn π2n2
+ e−jπnt
0 2πn
0

1 − 1 (ejπn + e−jπn) = 1 − cos(πn))
π2n2 2π2n2 π2n2 (1

1





































































2jX1(f ) −jX2(f )

1) 2)
e
¡¡ e ee
¡ ee
ee
vv −f0 ¡ f0 e
v ¡¡

3) 2X3(f ) 4) 2X4(f )

ee −f0 ¡ e f0 ¡¡ ee ¡¡
e ¡¡ ee ¡ e ¡

ee −f0 f0
e

X5(f )

5)

−f0 f0

vv
v

−2f0 6) X6(f ) 2f0

ee e ¡¡ ¡¡
e ee ¡ ¡

7) X7(f )

e ¡¡
ee ¡

Problem 2.46
If x(t) is even then X(f ) is a real and even function and therefore −j sgn(f )X(f ) is an imaginary
and odd function. Hence, its inverse Fourier transform xˆ(t) will be odd. If x(t) is odd then X(f )
is imaginary and odd and −j sgn(f )X(f ) is real and even and, therefore, xˆ(t) is even.

Problem 2.47
Using Rayleigh’s theorem of the Fourier transform we have

Ex = ∞|x(t)|2dt = ∞|X(f )|2df

−∞ −∞

and

Exˆ = ∞|xˆ(t)|2dt = ∞| − jsgn(f )X(f )|2df

−∞ −∞

Noting the fact that | − jsgn(f )|2 = 1 except for f = 0, and the fact that X(f ) does not contain

any impulses at the origin we conclude that Ex = Exˆ.

Problem 2.48
Here we use Parseval’s Theorem of the Fourier Transform to obtain

∞x(t)xˆ(t) dt = ∞X(f )[−jsgn(f )X(f )]∗df

−∞ −∞

36

0 +∞ |X(f )|2df
= −j |X(f )|2df + j

−∞ 0

=0

where in the last step we have used the fact that X(f ) is Hermitian and therefore |X(f )|2 is even.

Problem 2.49
We note that C(f ) = M (f ) X(f ). From the assumption on the bandwidth of m(t) and x(t) we
see that C(f ) consists of two separate positive frequency and negative frequency regions that do
not overlap. Let us denote these regions by C+(f ) and C−(f ) respectively. A moment’s thought
shows that

C+(f ) = M (f ) X+(f )

and
C−(f ) = M (f ) X−(f )

To find the Hilbert Transform of c(t) we note that

F[cˆ(t)] = −jsgn(f )C(f )
= −jC+(f ) + jC−(f )
= −jM (f ) X+(f ) + jM (f ) X−(f )
= M (f ) [−jX+(f ) + jX−(f )]
= M (f ) [−jsgn(f )X(f )]
= M (f ) F[xˆ(t)]

Returning to the time domain we obtain

cˆ(t) = m(t)xˆ(t)

Problem 2.50
It is enough to note that

F [xˆˆ(t)] = (−jsgn(f ))2X(f )

and hence

F[xˆˆ(t)] = −X(f )

where we have used the fact that X(f ) does not contain any impulses at the origin.

Problem 2.51
Using the result of Problem 2.49 and noting that the Hilbert transform of cos is sin we have

x(t) cos(2πf0t) = x(t) sin(2πf0t)

Problem 2.52

F [A sin(2πf0t + θ)] = −jsgn(f )A − 1 δ(f + f0)ej2πf θ + 1 − f0)e−j2πf θ
2j 2f0 δ(f 2f0

2j

= A sgn(−f0)δ(f + f0)ej2πf θ − sgn(−f0)δ(f − f0)e−j2πf θ
2 2f0 2f0

= −A δ(f + f0)ej2πf θ + δ(f − f0)e−j2πf θ
2 2f0 2f0

= −AF [cos(2πf0t + θ)]

37

Thus, A sin(2πf0t + θ) = −A cos(2πf0t + θ)

Problem 2.53

Taking the Fourier transform of ej2πf0t we obtain

Thus, F [ej2πf0t] = −jsgn(f )δ(f − f0) = −jsgn(f0)δ(f − f0)
ej2πf0t = F −1[−jsgn(f0)δ(f − f0)] = −jsgn(f0)ej2πf0t

Problem 2.54

F d x(t) = F[x(t) δ (t)] = −jsgn(f )F[x(t) δ (t)]
dt
= −jsgn(f )j2πf X(f ) = 2πf sgn(f )X(f )
= 2π|f |X(f )

Problem 2.55
We need to prove that x (t) = (xˆ(t)) .

F[x (t)] = F[x(t) δ (t)] = −jsgn(f )F[x(t) δ (t)] = −jsgn(f )X(f )j2πf
= F[xˆ(t)]j2πf = F[(xˆ(t)) ]

Taking the inverse Fourier transform of both sides of the previous relation we obtain, x (t) = (xˆ(t))

Problem 2.56

x(t) = sinct cos 2πf0t =⇒ X(f ) = 1 + f0)) + 1 − f0))
Π(f Π(f

2 2

h(t) = sinc2t sin 2πf0t =⇒ H(f ) = −1 Λ(f + f0)) + 1 Λ(f − f0))
2j 2j

The lowpass equivalents are

Xl(f ) = 2u(f + f0)X(f + f0) = Π(f )

Hl(f ) = 2u(f + f0)H(f + f0) 1
Yl(f ) = = Λ(f )
 1 j − 1 < f ≤ 0
1  2j 2
2 Xl(f )Hl(f ) =  1 (f + 1) 1
2j (−f + 1) 0 ≤ f < 2

0 otherwise

Taking the inverse Fourier transform of Yl(f ) we can find the lowpass equivalent response of the
system. Thus,

yl(t) = F −1[Yl(f )]

1 0 (f + 1)ej2πftdf + 1 1
=
2j 1 2j 0 2 (−f + 1)ej2πftdf
2


1 1 f ej2πft 1 ej2πf t 0 +1 1 0
2j j2πt 4π2
= + t2 1 2j j2πt ej2πf t 1
2 2
− −

−1 1 f ej2πft + 1 ej2πf t 1 + 1 1 1
2j j2πt 4π2t2 2
ej2πf t 2
0 2j j2πt
0

= j −1 sin πt + 1 (cos πt − 1)
4πt 4π2t2

38

The output of the system y(t) can now be found from y(t) = Re[yl(t)ej2πf0t]. Thus

y(t) = Re (j[− 1 sin πt + 1 (cos πt − 1)])(cos 2πf0t + j sin 2πf0t)
4πt 4π2t2

= 1 (1 − cos πt) + 1 sin πt] sin 2πf0t
[ 4π2t2 4πt

Problem 2.57
1) The spectrum of the output signal y(t) is the product of X(f ) and H(f ). Thus,

Y (f ) = H(f )X(f ) = X(f )A(f0)ej(θ(f0)+(f−f0)θ (f)|f=f0 )

y(t) is a narrowband signal centered at frequencies f = ±f0. To obtain the lowpass equivalent
signal we have to shift the spectrum (positive band) of y(t) to the right by f0. Hence,

Yl(f ) = u(f + f0)X(f + f0)A(f0)ej(θ(f0)+fθ (f)|f=f0 ) = Xl(f )A(f0)ej(θ(f0)+fθ (f)|f=f0 )

2) Taking the inverse Fourier transform of the previous relation, we obtain

yl(t) = F −1 Xl(f )A(f0)ejθ(f0)ejfθ (f)|f=f0

1 (f )|f=f0 )
= A(f0)xl(t + θ


With y(t) = Re[yl(t)ej2πf0t] and xl(t) = Vx(t)ejΘx(t) we get

y(t) = Re[yl(t)ej2πf0t]

= Re A(f0)xl(t + 1 (f )|f =f0 )ejθ(f0)ej2πf0t
θ



= Re A(f0)Vx(t + 1 (f )|f =f0 )ej2πf0t ejΘx (t+ 1 θ (f )|f=f0 )
θ 2π



= A(f0)Vx(t − tg ) cos(2πf0t + θ(f0) + Θx(t + 1 (f )|f=f0 ))
θ



= A(f0)Vx(t − tg ) cos(2πf0(t + θ(f0) ) + Θx(t + 1 (f )|f=f0 ))
2πf0 θ



= A(f0)Vx(t − tg ) cos(2πf0(t − tp) + Θx(t + 1 (f )|f=f0 ))
θ



where 1 1 θ(f0) 1 θ(f )
2π 2π f0 2π f
tg = − θ (f )|f=f0 , tp = − = −

f =f0

3) tg can be considered as a time lag of the envelope of the signal, whereas tp is the time

corresponding to a phase delay of 1 θ(f0) .
2π f0

Problem 2.58

1) We can write Hθ(f ) as follows

 f >0
 cos θ − j sin θ f =0
f <0
Hθ(f ) =  0 = cos θ − jsgn(f ) sin θ
cos θ
+ j sin θ

Thus,

hθ (t) = F −1[Hθ(f )] = cos θδ(t) + 1 sin θ
πt

39

2)

1
xθ (t) = x(t) hθ(t) = x(t) (cos θδ(t) + sin θ)
πt

1
= cos θx(t) δ(t) + sin θ x(t)

πt

= cos θx(t) + sin θxˆ(t)

3)

∞∞
|xθ(t)|2dt = | cos θx(t) + sin θxˆ(t)|2dt

−∞ −∞

∞∞

= cos2 θ |x(t)|2dt + sin2 θ |xˆ(t)|2dt

−∞ −∞

∞∞

+ cos θ sin θ x(t)xˆ∗(t)dt + cos θ sin θ x∗(t)xˆ(t)dt

−∞ −∞

But ∞ |x(t)|2dt = ∞ |xˆ(t)|2dt = Ex and ∞ x(t)xˆ∗(t)dt = 0 since x(t) and xˆ(t) are orthogonal.
−∞ −∞ −∞

Thus,

Exθ = Ex(cos2 θ + sin2 θ) = Ex

Problem 2.59
1)

z(t) = x(t) + jxˆ(t) = m(t) cos(2πf0t) − mˆ (t) sin(2πf0t)
+j[m(t)cos(2πf0t) − mˆ (t)sin(2πf0t)

= m(t) cos(2πf0t) − mˆ (t) sin(2πf0t)
+jm(t) sin(2πf0t) + jmˆ (t) cos(2πf0t)

= (m(t) + jmˆ (t))ej2πf0t

The lowpass equivalent signal is given by

xl(t) = z(t)e−j2πf0t = m(t) + jmˆ (t)

2) The Fourier transform of m(t) is Λ(f ). Thus

X(f ) = Λ(f + f0) + Λ(f − f0) − (−jsgn(f )Λ(f ))
2

− 1 δ(f + f0) + 1 δ(f − f0)
2j 2j

= 1 + f0) [1 − sgn(f + f0)] + 1 − f0) [1 + sgn(f − f0)]
Λ(f Λ(f

2 2

. . 1 . .
  d
  . . . . . .
  d
. . . . d

−f0 − 1 −f0 f0 f0 + 1

The bandwidth of x(t) is W = 1.

40

3)

z(t) = x(t) + jxˆ(t) = m(t) cos(2πf0t) + mˆ (t) sin(2πf0t)

+j[m(t)cos(2πf0t) + mˆ (t)sin(2πf0t)
= m(t) cos(2πf0t) + mˆ (t) sin(2πf0t)

+jm(t) sin(2πf0t) − jmˆ (t) cos(2πf0t)
= (m(t) − jmˆ (t))ej2πf0t

The lowpass equivalent signal is given by
xl(t) = z(t)e−j2πf0t = m(t) − jmˆ (t)

The Fourier transform of x(t) is

X(f ) = Λ(f + f0) + Λ(f − f0) − (jsgn(f )Λ(f ))
2

−1 δ(f + f0) + 1 δ(f − f0)
2j 2j

= 1 + f0) [1 + sgn(f + f0)] + 1 − f0) [1 − sgn(f − f0)]
Λ(f Λ(f

2 2

.. d..... dd 1    ..... ..
. .
. ... . . ... .
. .

−f0 −f0 + 1 f0 − 1 f0

41

Chapter 3

Problem 3.1
The modulated signal is

u(t) = m(t)c(t) = Am(t) cos(2π4 × 103t)

= A 200 250 π cos(2π4 × 103t)
2 cos(2π t) + 4 sin(2π t + )
π π3

= A cos(2π(4 × 103 + 200 + A cos(2π(4 × 103 − 200
)t) )t)
ππ

+2A sin(2π(4 × 103 + 250 + π ) − 2A sin(2π(4 × 103 − 250 − π )
)t )t
π3 π3

Taking the Fourier transform of the previous relation, we obtain

U (f ) = A δ(f − 200 ) + δ(f + 200 ) + 2 ej π δ(f − 250 ) − 2 e−j π δ(f + 250 )
3 3
π πj πj π

1 − 4 × 103) + δ(f + 4 × 103)]
[δ(f
2

= A δ(f − 4 × 103 − 200 + δ(f − 4 × 103 + 200
) )
2π π

+2e−j π δ(f − 4 × 103 − 250 + 2ej π δ(f − 4 × 103 + 250
6 ) 6 )
ππ

+δ(f + 4 × 103 − 200 + δ(f + 4 × 103 + 200
) )
ππ

+2e−j π δ(f + 4 × 103 − 250 + 2ej π δ(f + 4 × 103 + 250
6 ) 6 )
ππ

The next figure depicts the magnitude and the phase of the spectrum U (f ).

T T |U (f )| A ......................
TT

. . . . . . . . . . . . . . . . . . . . . . .A/2 TT
TT

−fc − 2π5−0 fc − 200 −fc + 2π00−fc + 250 fc − 250 fc − 200 fc + 200 fc + 250
π π π π π π

U (f )
π
s s
. . . . . . . . . . . . . . . . . . . . . . .6. . . . . .

s . . . . . . . .−. .π6. . . . . . . . . . . . . . . . . . . s

To find the power content of the modulated signal we write u2(t) as

u2(t) = A2 cos2(2π(4 × 103 + 200 + A2 cos2(2π(4 × 103 − 200
)t) )t)
ππ

+4A2 sin2(2π(4 × 103 + 250 )t + π ) + 4A2 sin2(2π(4 × 103 − 250 )t − π )
π3 π3

+terms of cosine and sine functions in the first power

Hence,

P = lim T u2(t)dt = A2 A2 4A2 4A2 = 5A2
2 ++ +

T →∞ − T 22 2 2
2

42

Problem 3.2

u(t) = m(t)c(t) = A(sinc(t) + sinc2(t)) cos(2πfct)
Taking the Fourier transform of both sides, we obtain

U (f ) = A (δ(f − fc) + δ(f + fc))
[Π(f ) + Λ(f )]

2

= A [Π(f − fc) + Λ(f − fc) + Π(f + fc) + Λ(f + fc)]
2

Π(f − fc) = 0 for |f − fc| < 1 , whereas Λ(f − fc) = 0 for |f − fc| < 1. Hence, the bandwidth of
2

the bandpass filter is 2.

Problem 3.3
The following figure shows the modulated signals for A = 1 and f0 = 10. As it is observed
both signals have the same envelope but there is a phase reversal at t = 1 for the second signal
Am2(t) cos(2πf0t) (right plot). This discontinuity is shown clearly in the next figure where we
plotted Am2(t) cos(2πf0t) with f0 = 3.

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0 0
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8

-10 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -10 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

-10 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Problem 3.4
y(t) = x(t) + 1 x2(t)
2

43

= 1 m2(t) + cos2(2πfct) + 2m(t) cos(2πfct)
m(t) + cos(2πfct) + 2

= m(t) + cos(2πfct) + 1 m2(t) + 1 + 1 cos(2π2fct) + m(t) cos(2πfct)
2 4 4

Taking the Fourier transform of the previous, we obtain

Y (f ) = 1 M (f ) + 1 (M (f − fc) + M (f + fc))
M (f ) + M (f ) 2

2

1 + 1 (δ(f − fc) + δ(f + fc)) + 1 (δ(f − 2fc) + δ(f + 2fc))
+ δ(f ) 2 8

4

The next figure depicts the spectrum Y (f )

1/2

1/4 1/8

-2fc -fc -2W 2W fc 2fc

Problem 3.5

u(t) = m(t) · c(t)
= 100(2 cos(2π2000t) + 5 cos(2π3000t)) cos(2πfct)

Thus,

U (f ) = 100 δ(f − 2000) + δ(f + 2000) + 5 (δ(f − 3000) + δ(f + 3000))
2 2

[δ(f − 50000) + δ(f + 50000)]

= 50 δ(f − 52000) + δ(f − 48000) + 5 − 53000) + 5 δ(f − 47000)
δ(f
22

55
+δ(f + 52000) + δ(f + 48000) + δ(f + 53000) + δ(f + 47000)

22

A plot of the spectrum of the modulated signal is given in the next figure

. ..... .. ..... ..... .. .... 125 T T
T T

. . . . . . . . . . . . . . . . . . . . .5.0. . . . . . . . . . . . . . . . . . .
TT TT

-53 -52 -48 -47 0 47 48 52 53 KHz

Problem 3.6
The mixed signal y(t) is given by

y(t) = u(t) · xL(t) = Am(t) cos(2πfct) cos(2πfct + θ)
A

= 2 m(t) [cos(2π2fct + θ) + cos(θ)]

44

The lowpass filter will cut-off the frequencies above W , where W is the bandwidth of the message
signal m(t). Thus, the output of the lowpass filter is

A
z(t) = m(t) cos(θ)

2

If the power of m(t) is PM , then the power of the output signal z(t) is Pout = PM A2 cos2(θ). The
4
A2
power of the modulated signal u(t) = Am(t) cos(2πfct) is PU = 2 PM . Hence,

Pout = 1 cos2(θ)
PU 2

A plot of Pout for 0≤θ≤π is given in the next figure.
PU

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

00 0.5 1 1.5 2 2.5 3 3.5
Theta (rad)

Problem 3.7
1) The spectrum of u(t) is

U (f ) = 20 [δ(f − fc) + δ(f + fc)]
2

2 [δ(f − fc − 1500) + δ(f − fc + 1500)
+

4

+δ(f + fc − 1500) + δ(f + fc + 1500)]

10 [δ(f − fc − 3000) + δ(f − fc + 3000)
+

4

+δ(f + fc − 3000) + δ(f + fc + 3000)]

The next figure depicts the spectrum of u(t).

......................................
T 10 T

T T . 1. ./.2. . . . . . . . . . . . . . . . . . . . . . . .
T T TT

.5./.2. . . . . . . . . . . . . . . . . . . .
TT

-1030-1015-1000 -985 -970 0 970 985 1000 10151030
X 100 Hz

2) The square of the modulated signal is
u2(t) = 400 cos2(2πfct) + cos2(2π(fc − 1500)t) + cos2(2π(fc + 1500)t)
+25 cos2(2π(fc − 3000)t) + 25 cos2(2π(fc + 3000)t)
+ terms that are multiples of cosines

45

If we integrate u2(t) from − T to T , normalize the integral by 1 and take the limit as T → ∞,
2 2 T

then all the terms involving cosines tend to zero, whereas the squares of the cosines give a value of

1 . Hence, the power content at the frequency fc = 105 Hz is Pfc = 400 = 200, the power content
2 2

at the frequency Pfc+1500 is the same as the power content at the frequency Pfc−1500 and equal to
1 25
2 , whereas Pfc+3000 = Pfc−3000 = 2 .

3)

u(t) = (20 + 2 cos(2π1500t) + 10 cos(2π3000t)) cos(2πfct)
11

= 20(1 + 10 cos(2π1500t) + 2 cos(2π3000t)) cos(2πfct)

This is the form of a conventional AM signal with message signal

11
m(t) = cos(2π1500t) + cos(2π3000t)

10 2
= cos2(2π1500t) + 1 cos(2π1500t) − 1

10 2

The minimum of g(z) = z2 + 1 z − 1 is achieved for z = − 1 and it is min(g(z)) = − 201 . Since
10 2 20 400
− 1 − 201
z = 20 is in the range of cos(2π1500t), we conclude that the minimum value of m(t) is 400 .

Hence, the modulation index is

α = − 201
400

4)

u(t) = 20 cos(2πfct) + cos(2π(fc − 1500)t) + cos(2π(fc − 1500)t)
= 5 cos(2π(fc − 3000)t) + 5 cos(2π(fc + 3000)t)

The power in the sidebands is

1 1 25 25
Psidebands = 2 + 2 + 2 + 2 = 26

The total power is Ptotal = Pcarrier + Psidebands = 200 + 26 = 226. The ratio of the sidebands power

to the total power is

Psidebands = 26
Ptotal 226

Problem 3.8
1)

u(t) = m(t)c(t)

= 100(cos(2π1000t) + 2 cos(2π2000t)) cos(2πfct)

= 100 cos(2π1000t) cos(2πfct) + 200 cos(2π2000t) cos(2πfct)

= 100 [cos(2π(fc + 1000)t) + cos(2π(fc − 1000)t)]
2

200 [cos(2π(fc + 2000)t) + cos(2π(fc − 2000)t)]
2

Thus, the upper sideband (USB) signal is

uu(t) = 50 cos(2π(fc + 1000)t) + 100 cos(2π(fc + 2000)t)

46

2) Taking the Fourier transform of both sides, we obtain

Uu(f ) = 25 (δ(f − (fc + 1000)) + δ(f + (fc + 1000)))
+50 (δ(f − (fc + 2000)) + δ(f + (fc + 2000)))

A plot of Uu(f ) is given in the next figure.
. . . . . . . . . . . . . . . . . . . . . . . .5.0. . . . . . . . . . . . . . . . . . . . .
TT
. . . . . . . . . . . . . . . . .2.5. . . . . . . . . . . . . . .
TT

-1002 -1001 0 1001 1002 KHz

Problem 3.9

If we let Tp Tp
4 4
x(t) = −Π t + +Π t −

Tp Tp

2 2

then using the results of Problem 2.23, we obtain



v(t) = m(t)s(t) = m(t) x(t − nTp)

n=−∞

1 ∞ n )ej2π n t
= m(t) Tp
X(
Tp n=−∞ Tp

where

n = F −Π t + Tp +Π t − Tp
X( ) 4 4

Tp Tp Tp f = n
Tp
2 2

= Tp sinc(f Tp ) e−j 2πf Tp − ej2πf Tp
4 4
22
f = n
Tp

= Tp sinc( n )(−2j) sin(n π )
22 2

Hence, the Fourier transform of v(t) is

1 ∞ sinc( n )(−2j) π n
V (f ) = sin(n )
2 n=−∞ 2 )M (f −
2 Tp

The bandpass filter will cut-off all the frequencies except the ones centered at 1 , that is for n = ±1.
Tp
Thus, the output spectrum is

U (f ) = sinc( 1 )(−j)M (f − 1 1 1
) + sinc( )jM (f + )
2 Tp 2 Tp

= − 2 jM (f − 12 1
) + jM (f + )
π Tp π Tp

= 4 M (f ) 1 δ(f − 1 ) − 1 δ(f + 1 )
π 2j Tp 2j Tp

Taking the inverse Fourier transform of the previous expression, we obtain

41
u(t) = m(t) sin(2π t)

π Tp

47


Click to View FlipBook Version