DBM20023 INTENSIVE E-BOOK ROHANI BINTI AHSAN @ HAMSAN JABATAN MATEMATIK, SAINS DAN KOMPUTER POLITEKNIK SEBERANG PERAI
Pembelajaran Kendiri 1.Belajar mengikut takwim 2.Rujuk Video Youtube Pembelajaran Kendiri 1. Buat latihan dalam Buku 2. buat latihan Buku intensif Waktu Kelas 1. pelajar dah siapkan latihan mengikut takwim 2. Pensyarah panggil pelajar secara random untuk selesaikan masalah 3. Refleksi dengan menggunakan quizizz 4. Score bawah 50% , Pembelajaran Kendiri selesaikan Latihan mengikut takwim 1. Rujuk Video Youtube 2. Tanya kawan 3.Whapp pensyarah Pembelajaran Kendiri 1.muat naik latihan buku intensif dalam cidos (setiap jumaat) 2. Penghantaran PB pada masa yang ditetapkan PROSES PEMBELAJARAN DBM20023
Week Topic Sub Topic Penilaian Berterusan Peperiksaan Akhir Week 1 1 index Quiz 1 Q1 week 2 log Quiz 2 Q1 Week 3 2 power rule Test 1(A) Q2 product quotient chain Week 4 Trigo exp log second order Week 5 stationery points Q3 Week 6 rate of change Q3 parametric Week 7 implicit partial differentiation Q2 Week 8 total differentiation 3 indefinite intergral Test 1(B) Q3 Week 9 subtitution method definite intergral Week 10 Trigo reciprocal Week 11 exponent intergration by part Q4 Week 12 tabular method Q4 Week 13 partial fraction Area Q4 Week 14 volume Q4TAKWIM
Week Page Tutorial Exercise Topic PB PA Week 1 40 a,b, e, g, h, I, k, n, p, q index Quiz 1 Q1 week 2 41 a,d, g, i, k, l,m,n,p, q log Quiz 2 Q1 Week 3 155 1 (a,b,f,g,i) power rule Test 1(A) Q2 156 5(a, b, f, j) product 58--59 Exercise 2.1.2b quotient 63-64 Exercise 2.1.2c chain Week 4 155 2 (a,b,c,d,e,g) Trigo 156 3(a,b,c,e) exp 156 4(a,b,c,d) log 88-90 Exercise 2.3(a,c,f,g,h) second order Week 5 157 7(a,b,c) stationery points Q3 Week 6 161 11(a,b,c, d) rate of change Q3 158 8(c, f,g, h) parametric Week 7 159 9 (b,d,k,m) implicit 160 10(a,b,d,f) partial differentiation Q2 Week 8 162 12(a,b,c) total differentiation 251 1(a,c,e,g,i) indefinite intergral Test 1(B) Q3 Week 9 252 5(b,c,d,g,l) subtitution method 251 2(a,b) definite intergral Week 10 193 exercise 3.3.1(c,d,f, h) Trigo 196 exercise 3.3.2(b,c) 204 3.4a (e,f) reciprocal 206 3.4b (b,d) Week 11 252 4(a,b,c) exponent 222 Exercise 3.6 (a,b,d) intergration by part Q4 Week 12 253 6(b,c,e) tabular method Q4 Week 13 253 7(a,c,e) partial fraction 245 Exercise 3.8.1(a,b,e) Area Q4 Week 14 249 Exercise 3.8.2(a,d,) volume Q4 TAKWIM
FORMULA INDICES
WEEK 1( INDICES) –PB QUIZ 1 1 2 3 4
WEEK 1 ( INDICES) PB QUIZ 1 5 6 7 8
WEEK 2 : FORMULA LOGARITHM
WEEK 2 (LOG)- PB QUIZ 2 1 2 3 4
WEEK 2 (LOG)- PB QUIZ 2 5 6 7 8 2−3 = 5+2
WEEK 3 FORMULA POWER RULE/ PRODUCT RULE
WEEK 3 ( POWER RULE/PRODUCT) 1 = 7 − 2 35 + 53 2 = 2 − 7 + 2 3 3 = (32 +5)( + 7) 4 = ( + 2) 2 (2 − 3) 4
WEEK 3: FORMULA QUOTIENT/ CHAIN
WEEK 3 (QUOTIENT/ CHAIN) 5 = 8 − 2 2 − 5 6 = − 3 2 − 4 7 = (5 − 4) 7 8 = 3 22 − 7 3
WEEK 4 FORMULA TRIGO/ EXPONENT
WEEK 4 ( TRIGO/EXPONENT) 1 = 3 sin 42 2 = 3sin2 (22 − 1) 3 = 3( −5 + 7) 4 = 1 3−7
WEEK 4 FORMULA LOG/SECOND ORDER First derivative ′() Second derivative 2 2 "(x)
WEEK 4 ( LOG /SECOND ORDER) 5 = ln() 2 6 = 1 15 ln(5 + 1) 7 Second order = 3 3 8 Second order y = -4 2 + 5 3 + 3
WEEK 5 STEPS TO SOLVE STATIONERY POINT 1. Determine the stationary point i. Find ii. Find the value of , = 0 iii. Find the value of , when = ? 2. Determine the nature of stationary point i. Find 2 2 or substitute the value of in 2 2 ii. From the answer of 2 2 , identify the nature
WEEK 5 (STATIONERY POINT ) 1 = −3 2 − 2 + 5 2 = 3 2 + 3 + 4 3 = 23 − 4 4 = 23 − 62 + 6
WEEK 6 ( RATE OF CHANGE) 1 Find the rate of change of the area of square whose side is 8cm long, if the side length is increasing at 2/. 2 A spherical balloon is inflated at a rate of 33/. Find the increment rate of the radius when the radius is 2 and 4 3 The radius of a circle is decreasing at a rate of 7/. Find the rate of change of the area for circle at the instant when the radius is 4
WEEK 6 (PARAMETRIC) 5 = 2 sin = 2 − 3 Find dy/dx 6 = 2 sin , = 3 cos 2. Find dy/dx 7 = 5ln(2 − 3) and = 32 + 4. Compute
WEEK 7 ( IMPLICIT ) 1 62 − 3 = 1 2 2 + 2 = 3 + ln 3 42 + 33 − 2 = 6 4 52 − 3 sin = 3
WEEK 7 ( PARTIAL DIFFERENTIATION) 5 = (8 + 3)(7 + 5) Find , , 2 , and 2 6 = 53 + 32 4 −22 Find 2 2 , 2 2 , 2 , and 2
WEEK 8 TOTAL DIFFERENTIATION 1 Given = 32 + 2 . Determine the total differential of . 2 Given = 18 − 53 2 − 23 . Find the total differential of , if (, ) changes from (0.2,0.5) to (0.25, 0.6)
WEEK 8 INDEFINITE INTERGRAL 5 න 2 5 5 − 3 2 + 1 6 න 2 4 − 3 3 7 න 4 10 − 2 4 + 15 2 3 8 න 3 4 3 + 7 5 + 1 6
WEEK 9 (SUBTITUTION METHOD) 1 න(4 + 7) 4 2 න 2 (1 + 2 3 ) 5 3 න 10 + 15 2 + 3 − 10 4 න 2 1 + 3
WEEK 9 DEFINITE INTERGRAL 5 න −1 2 (4 − 2 ) 6 න −2 −1 4 + 5 3 7 න 0 1 (15 4 − 10)
WEEK 10 (TRIGO) 1 න(5 sin 3 + cos 1 2 ) 2 න 2 3 cos 3 Subtitution method න 0 1 3 sin(4 − 3)
WEEK 10 (RECIPROCAL) 5 න 5 2( − 9) 6 න 2 4 1 2 + 4 7 Subtitution Method න 0 1 3 4 + 12
WEEK 11 (EXPONENT) 1 න 6−4 + 1 2 න + 2 ( ) + − 3 න 0 1 26 2 4 Subtitution method න 0 1 26−1
SUBTITUTION METHOD ( MIX FUNCTION) 1 2 3 4
WEEK 11 (INTERGRATION BY PART) – LATE 1 න 2 ln 2 න 3 ln 5 3 න 1 2 1 3 ln
WEEK 12 (INTERGRATION-TABULAR METHOD) - LATE 1 න 2 4 2 න 3 3 sin
WEEK 13 (PARTIAL FRACTION) 1 න 5 + 2 + 1 + 4 2 න 3 + 2 2 − − 2 3 න 18 − 30 2(2 − 1)
WEEK 13 (AREA) Find the area of the curve below between = to = 37 12 2
WEEK 13 (AREA) Find the area between the curve = 2 + 2 and by line = 4 and = 12 19.2 2
WEEK 14 (VOLUME) Find the volume of the solid formed when the shaded region is bounded by the curve = 2 + 1 and the line = + 7 is rotated through 360° on the x−axis. 625 3
WEEK 14 (VOLUME) Find the volume generated by area bounded by the curve = 2 from = 1 to = 3 rotating about the y-axis 2.67 3