The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

pdfcoffee.com_rumus-perbandingan-sisi-pdf-free

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by vairil, 2022-04-22 21:59:55

pdfcoffee.com_rumus-perbandingan-sisi-pdf-free

pdfcoffee.com_rumus-perbandingan-sisi-pdf-free

Rumus Perbandingan Sisi-Sisi Pada Segitiga Siku-Siku dengan Sudut Khusus
a

Perbandingan sisi segitiga dengan sudut khusus
Rumus Perbandingan Sisi-Sisi Pada Segitiga Siku-Siku dengan Sudut
Khusus
Ada dua rumus perbangingan, diantranya :

1. Rumus Perbandingan Sisi-Sisi Pada Segitiga Siku-Siku dengan
Sudut 30° dan 60°.
2. Rumus Perbandingan Sisi-Sisi Pada Segitiga Siku-Siku dengan
Sudut 45°.
1. Rumus Perbandingan Sisi-Sisi Pada Segitiga Siku-Siku dengan Sudut
30° dan 60°
Berikut rumus perbandingan sisi segitiga dengan sudut 30° dan 60° :

30° : 60° : 90° = 1 : √3 : 2
Untuk bentuk segitiga siku-siku yang bersudut 30° dan 60° bisa dilihat pada
gambar di atas.
Contoh soal :
Tentukan AB pada gambar di bawah !

Jawab :
Diketahui :
CB = 3cm
Sudut segitiga siku-siku = 30°, 60°, dan 90°.
Ditanyakan :
AB = ... ???
Karena sudutnya 30°, 60°, dan 90°, maka berlaku :
30° : 60° : 90° = 1 : √3 : 2

Maka :
AC : AB : CB = 1 : √3 : 2
AB : CB = √3 : 2
AB : 10cm = √3 : 2
AB = (10cm x√3 ) : 2
AB = 10√3cm : 2
AB = 5√3cm

Jadi panjang AB adalah 5√3cm.

2. Rumus Perbandingan Sisi-Sisi Pada Segitiga Siku-Siku dengan Sudut
45°

Berikut rumus perbandingan sisi segitiga dengan sudut 45° :

45° : 45° : 90° = 1 : 1 : √2

Untuk bentuk segitiga siku-siku yang bersudut 45° bisa dilihat pada gambar di
atas.

Contoh Soal :
Tentukan AB pada gambar di bawah ini !!

Jawab :
Diketahui :
CB = 10cm
Sudut segitiga siku-siku = 45°, 45°, dan 90°.

Ditanyakan :
AB = ..???

Karena sudutnya 45°, 45°, dan 90°, maka berlaku :
45° : 45° : 90° = 1 : √3 : 2

Maka :
AC : AB : BC = 1 : 1 : √2
AB : BC = 1 : √2
AB : 10cm = 1 : √2
AB = ( 10cm x 1 ) : √2
AB = 10cm/√2
Untuk lebih menyederhakan kita rasionalkan penyebut dari AB, maka :
AB = ( 10cm/√2 ) x ( √2 /√2 )
AB = (10cm x √2 ) / ( √2 x√2 )

AB = (10cm√2 )/2
AB = 5cm√2

Jadi panjang AB pada gambar di atas adalah 5cm√2


Click to View FlipBook Version