The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

ALSTA HYDROGEL is a potassium polyacrylate based super absorbent polymer manufactured by Chemtex Speciality Ltd. for agricultural sector. The granular polymer has a capacity to absorb water 300-500 times its own weight and release it gradually directly to the plant roots over a period. It is effective at reducing irrigation frequency, maintaining soil texture and permeability while ensuring proper and healthy growth of the plants themselves. It can be used conveniently with de-ionized and de-mineralized water to retain soil moisture as well as reduce use of synthetic NPK fertilizers.

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Alsta Hydrogel, 2017-07-10 07:07:42

Alsta Hydrogel - Super Absorbent Polymer for Dry & Semi Arid regions

ALSTA HYDROGEL is a potassium polyacrylate based super absorbent polymer manufactured by Chemtex Speciality Ltd. for agricultural sector. The granular polymer has a capacity to absorb water 300-500 times its own weight and release it gradually directly to the plant roots over a period. It is effective at reducing irrigation frequency, maintaining soil texture and permeability while ensuring proper and healthy growth of the plants themselves. It can be used conveniently with de-ionized and de-mineralized water to retain soil moisture as well as reduce use of synthetic NPK fertilizers.

Keywords: alsta hydrogel,hydrogel for agriculture,water absorbing material,hydrogel polymer,farming with hydrogel,super absorbent polymer

Super Absorbent Polymer for Dry & Semi Arid
regions

1. Introduction:

21st century has witnessed a steady
decline of irrigation water potential
conjugated with the ever growing global
population & enhanced economic
activities among countries specially
located in arid and semi arid regions of
the world. As these regions are ever
facing water crisis due to uncertain and
inadequate natural precipitation, the
problem with water scarcity may possibly
aggravate further. Global survey shows,
the worst affected areas would be the
semi arid regions of Asia (India), the
Middle-East and Sub-Saharan Africa, all of which already face issues with heavy population growth and majority of them
below the poverty line.

It is estimated; by 2025 water scarcity will be a major issue in India requiring immediate redressal. As per the Central
Water Commission, the demand for water is growing at a steady rate but the availability of clean water in future is
declining even faster. In the Indian scenario, Agricultural irrigation practices seem to be responsible for consumption of
80% of the available potable water. There is an increasing trend to this with the further intensification of agro based
industries. Due to the large geographical dimensions of the sub-continent and varied soil and farming practices, modern
irrigation practices can still only cater to 40% of the grown crops. The remaining areas are far more susceptible to
improper (traditional) practices thus greatly lowering the effective and judicious use of available water for crops.

1.1. Major drawbacks with irrigation practices

The predominant irrigation practice is surface draining i.e. direct application of water to crops from surface. It’s a
problematic and flawed system as the crops can utilize only 50% of the provided water while the remaining is lost in
conveyance, as runoff and by evaporation. Modern methods like drip irrigation and use of sprinklers can effectively
reduce the wastage of irrigation water but high initial costs, inadequate government subsidy and cooperation, lack of
technical input and after sales service, faulty equipment, damage due to pests and high costs of spares prohibits the
farmers from opting these techniques.

It is worth mentioning that 98million of the total 120million farm holdings are small and marginal farmers; thus net
income from small farms makes farmers reluctant to adopt such water management practices in agriculture. Spatial
diversification in soil characteristics, shortage of large land holdings and underprivileged conditions discourage farmers
from adopting advantageous and economical application of water conserving irrigation techniques, even in arid zones
with distinct scarcity of water. The stress on sustainable development practices even in the agricultural sector has laid
emphasis on further judicious, economic and optimum utilization of land, water and plant resources with the major goal to
maximize land and water productivity without threatening the environment and available natural resources.

2. Super Absorbent Polymers (SAPs)

Extensive research all over the world, particularly Iran, China, Europe and USA has led to the development of a particular
class of Super Absorbent Polymers that can increase water use efficiency and enhance crop yield. Soil conditioning with
SAP is an interesting and innovative facet in the field of modern agriculture as well as rainfed agriculture. It was shown
that SAP materials are hydrophilic networks that can absorb and retain large amounts of water or aqueous solutions. Their
uptake can be as high as 100,000% and even more. SAPs are in general, small sugar like hygroscopic crystals that can be
directly added to cultivation soils. They are predominantly used for improving irrigation efficiency; smart delivery
materials that can help combat plant pathogens even with lower pesticide dosage, reducing the quantity of soluble NPK
fertilizers per crop cycle thus greatly contributing to water and environmental conservancy practices.

2.1. Hydrogels

Hydrogel agriculture technology involves gel forming polymers that are insoluble water absorbing polymers designed
exclusively for agricultural use by the late 1980’s. They were developed to improve physical properties of soil to:

a) Increase water holding capacity
b) Increase water use efficiency
c) Enhance soil permeability and infiltration rate
d) Reduce irrigation frequency
e) Reduce compaction tendency
f) Stop soil erosion, farm run-off & surface leaching
g) Increase plant performance, particularly in structure-less soils stressed with drought condition

Hydrogels as they are commonly called are cross-linked three-dimensional networked water absorbent polymers. Three
main types of Hydrogels have so far been found appropriate for agricultural use:

i. Starch-graft copolymers
ii. Cross-linked Polyacrylates
iii. Cross-linked Polyacrylamides & Acrylamide-acrylate copolymers

Potassium Polyacrylate is the principle material used in SAP industry and marketed as hydrogel for agricultural use
because of its longer retention and high efficiency in soil with nil toxicity issues. They are prepared by polymerizing
Acrylic acid with a cross linker. Cross-linked polymers can hold water 400 times their own weight and release 95% of that
to growing plants. Use of Hydrogel leads to increased water use efficiency by preventing leaching and increasing
frequency for irrigation. During summer months particularly in semi arid regions, lack of soil moisture can cause plant
stress. Moisture released by hydrogel close to root area helps reduce stress and increase growth and plant performance.
Hydrogels can reduce fertilizer leaching and reduce application of pesticides.

2.2. Water Absorption with Hydrogel

Hydrogel works as water reservoirs round the root mass
zones of the plant. In presence of water, it expands to
around 200-800 times the original volume. There is ample
possibility to trap irrigation and rainwater that can then be
collected, stored and gradually released for crop
requirements over prolonged durations. Hydrogel mixed
with soil increase soil permeability and improve
germination rates. It is compatible with a wide range and type of soils and thus has in general a tendency to increase plant
performance and yield. Rainwater retention, soil erosion by storm water run-offs, especially in sloped terrains can be
greatly averted. There has been proof of decrease in fruit & vegetable loss due to insect by around 10-30%.

3. Agriculture specific applications of Hydrogel

Hydrogel application in agriculture in terms of proposed practices and their advantages are summarized herein.

3.1. Conservation in Agricultural Lands can
on
Addition of hydrogel polymer can increase water retention
capacity of soil by 50-70% with proper amendment with various
dosages of soil to hydrogel ratio. Consecutively soil bulk density
reduce by 8-10%. There is an upward trend in saturated water
volumetric content of soil with increasing dose of hydrogel
showing clear signs of increase in agricultural water use
efficiency in arid and semi-arid regions. This has positive impact
the net plant yield. Hydrogel directly influences soil permeability,
density, structure, texture, evaporation and infiltration rates of
water. Irrigation frequency, compaction tendency and run-offs
decrease while aeration & microbial activity is promoted.

3.2. Increase in Irrigation Efficiency

Water stress due to scarcity of moisture around root zones is often associated with premature leaf shedding, decreasing
chlorophyll content, reduced seed yield, less fruit and flower yield per plant. Use of hydrogel can help moderate these
impacts caused by deficit irrigation. Being a water retaining agent greatly increase irrigation period of cultivation,
enhancing irrigation efficiency particularly in arid & semi-arid belts.

3.3. Drought Stress Reduction

Drought stress can lead to production of Oxygen radicals that result in increased lipid perioxidation and oxidative stress in
the plants. Visible effects include stunned height, decrease in leaf area and foliar matrix damage etc. Hydrogel can reduce
drought impact on plants leading to reduced stress and oxygen radical formation. This in turn provides scope for better
growth and yield even in unfavorable climatic conditions.

3.4. Enhanced Fertilizer Efficiency

Irrigation technology has major constraints in the fields of application of fertilizers, herbicides and germicides. Studies
suggest the use of synthetic fertilizers can be greatly reduced when hydrogel agriculture is practiced without hindering
with crop yield and nutritional value. It would indeed be a more appropriate practice for sustainable agriculture in arid and
semi-arid conditions and regions with similar ecological constrains. Moreover, potassium polyacrylate is safe and non-
toxic thus prevents pollution of agro ecosystems.

4. Biodegradability of Hydrogel Polymer

Studies have confirmed that hydrogel is sensitive to the action of UV rays, and degrades into oligomers. The Polyacrylate
becomes much more sensitive to aerobic and anaerobic microbiological degradation and can degrade at rates of 10-15%
per year into water, carbon dioxide and nitrogen compounds. The hydrogel molecules are too voluminous to be absorbed
into plant tissue and have zero bioaccumulation potential.

5. Application rates

Considering the efficiency of hydrogel in soil conditioning and moisture retention, it can be understood that an optimum
mixing ratio is needed to get maximum efficacy of the method. Since the moisture holding capacity is a function of soil
characteristics, dosage of hydrogel is also varied and designed based on the type of soil it is used with. A simple dosage
chart has been illustrated herein but the ultimate quantity and application can only be determined after testing specific
soils to be conditioned.

Type of Soil Suggested dosage of Hydrogel
Arid & Semi-arid Regions
For all level of water stress treatment and improved irrigation period 4-6g/kg soil
To delay permanent wilting point in sandy soils 2.25-3g/kg soil
0.2-0.4g/kg OR 0.8% of soil whichever is
To reduce irrigation water by 50% in loamy soil more
To improve relative water content and leaf water use efficiency
To reduce drought stress 2-4g/ plant pit
To prohibit drought stress totally 0.5-2.0g/pot
To decrease water stress 0.2-0.4% of soil
225-300kg/ha of cultivated area
3% by weight

ALSTA HYDROGEL: SUPER ABSORBANT POLYMER for AGRICULTURE

ALSTA HYDROGEL is a potassium polyacrylate based super absorbent polymer manufactured by Chemtex Speciality
Ltd. for agricultural sector. The granular polymer has a capacity to absorb water 300-500 times its own weight and release
it gradually directly to the plant roots over a period. It is effective at reducing irrigation frequency, maintaining soil
texture and permeability while ensuring proper and healthy growth of the plants themselves. It can be used conveniently
with de-ionized and de-mineralized water to retain soil moisture as well as reduce use of synthetic NPK fertilizers.

ALSTA HYDROGEL is non-toxic and does not bioaccumulate. Under proper soil conditions, it has a long working life
without any adverse impact on the agro-ecosystem. It is an easy to use farmer friendly product compatible with a large
array of soil types. It finds large scale applications in Open Field & Protective Cultivation, Terrace Farming, Vertical
Farming, Domestic Gardens, Arboriculture, Bare Root Dripping, Hydro Seeding, Hydroponics etc.

The salient features of ALSTA HYDROGEL include:

 Reduction in fertilizer and herbicide leaching
 Improvement in soil and soilless media characteristics
 Enhanced seed germination and seedling growth
 Increases root growth and density
 Moderates drought stress significantly
 Reduction in nursery establishment period
 Reduction in irrigation frequency
 Prevents premature defoliation
 Increases fruiting/flowering density
 Increases overall growth and plant biomass

ALSTA HYDROGEL is the economical and eco-friendly step to a better water management system for all types of
agriculture systems, especially in arid and semi-arid regions without compromising with the crop yield.


Click to View FlipBook Version