b). i). Find ⃗ ⃗ ⃗⃗ ⃗ and use ⃗⃗ ⃗⃗ ⃗ = ⃗⃗ ⃗⃗ ⃗ ,
AC 3 ~x 2 y K1
5m 5m
~
Use triangle law to find ⃗⃗ ⃗⃗ ⃗
⃗ ⃗ ⃗⃗ ⃗ = ⃗ ⃗ ⃗⃗ ⃗ + ⃗⃗ ⃗⃗ ⃗
N1 DC 3 ~x 2 1 y
5m 5m
~
ii). Use triangle law to find ⃗ ⃗ ⃗⃗ ⃗ and use ⃗⃗ ⃗⃗ ⃗ = ⃗ ⃗⃗ ⃗⃗ ⃗
5
⃗ ⃗ ⃗⃗ ⃗ = ⃗ ⃗⃗ ⃗⃗ ⃗ + ⃗⃗ ⃗⃗ ⃗
x n 1 y N1
~ 5 ~
c). Equate ~x K1
3
5 = 1
3
N1 = 5
Equate coefficient y and substitute =∗ 3
5
~
2 K1
5 ∗ (35) − 1 = 5 − 1
10
N1 = 3
10
9 a).i). Use Binomial formulae and find ( = 1)
5 1(0.6)(0.4)4 K1
ii). Use Binomial formulae N1 0.0768
( = 0) = 5 0(0.4)0(0.6)5 K1
( < 3) = ( = 0) + ( = 1) + ( = 2)
5 0(0.4)0(0.6)5 + 5 1(0.4)1(0.6)4 + 5 2(0.4)2(0.6)3
OR
5 3(0.6)3(0.4)2 + 5 4(0.6)4(0.4)1 + 5 5(0.6)5
K1
N1 0.3174
b). i). Use = − , K1
2 − 1.5 ( < 2.5) = 0.9938 N1
( < 2) = 1 − ( > 0.2 )
ii). Find inverse normal from the area under z-score graph
K1 Equate = − with the value of x-axis.
N1 = 1.423
− 1.5
K1 0.2 =∗ −0.385
10
10 a). Equate the equation of straight line and the curve.
2 K1
3 = − 2 + 8
= −8, = 2
= 3(2)
ℎ = 2, = 6 N1
Substitute = 0 and find the value of x,
2
0=− 2 +8
= ±4
N1 = 4
b). Integrate4 x2 8dx and substitute limit
22
x3 4 K1
8x
6
2
Find the area of triangle and add the area
K1 1 (2 x 6) x3 4
2 8x
6
2
N1 38 unit2
3
c). Integrate ∫06 (16 − 2 ) K1
and substitute limit y=0 and y=6.
Find the volume of cone
K1 = 1 (2)2(6)
3
subtract
y16y 26 8 K1
0
N1 52 10
11 11. a
√ . 3.16 4.47 5.48 6.32 7.07 7.75
Table for the values of √ N1
b.
y
10
9
8
7
6
5
4
3
2.1
2
1
0 1 2 3 4 5 6 7 8 √
Correct axes, uniform scale and one point correctly plotted K1
All points correctly plotted
Line of best fit N1
c. i. y = 5a√ + b P1 N1
Find and equate gradient with 5a
K1
N1 a = 0.196
ii. use b = y-intercept K1
b = 2.1 N1
iii. x = 36 N1 10
12 a). Find first equation when = 4, = 0, P1
16 + 4 = 0
Find second equation when = 1, = −2 P1
2 + = −2
Solve simultaneous equation
16 + 4 = 0 and 2 + = −2 K1
N1 = 1, = −4
b). Differentiate V and equate to 0 and find time for turning point.
2 − 4 < 0, K1
0 < < 4 N1
c).
U shape and (2,-4), (6,12) N1
d). Integrate ∫34 2 − 4
K1
Substitute limit t=3 and t=4
K1 43 4(4)2 33 4(3)2
[− ]−[ − ]
32 32
N1 2
13
10
13 a). i). 2014 = 105×75 K1 10
100
N1 2014 = 78.75
ii). 2008 = 183×100 K1
122
N1 2008 = 150
b). Equate
108 = 110 × 3 + 105 × + 120 × + 102 × 2 K1
3 + 4
= 2 N1 P1 Use ratio 3:∗ 2:∗ 2:∗ 4
Find 1̅ 5 ,
+ 08
112 × 3 + 107 ×∗ 2 + 122 ×∗ 2 107 ×∗ 4
1̅ 5 = ∗ 11
08
OR
(∗ 101.82 × 3) + (101.9 ×∗ 2) + (∗ 101.67 ×∗ 2) + (∗ 104.9 ×∗ 4)
∗ 11
Find 15 for P,Q, R and S, (101.82, 101.9,101.67,104.9) K1
14
111.09
1̅ 5 = 108 × 100 K1
14 N1 1̅ 5 = 102.86 ↔ 102.93
14
14 (i)Use cos rule
132 = 122 + 152 – 2(12)(15)COS <DCE K1
< PRS = 56.250 N1
(ii)Find ,
< BCA = 1800 – 56.250 K1
= 123.750
Use sin rule
K1 = 30
sin 30 sin 123.75
BC = 18.04 cm N1
(iii) < ABC = 1800 – 300 – ( 1800 – 56.250)
= 26.250
Use formulae area of triangle
K1 Area of ∆ ABC = 1(30)(18.04) sin 26.25
2
N1 = 119.68 cm2
(b)
B
18.04 cm 56.25 18.04 cm
cm N
0
C
FindNBC K1
< NBC = 1800 - 2(56.250)
= 67.500
Use sin rule OR cos rule
K1 = 18.0403
sin 67.50 sin 56.25
N1 BC = 20.0453 cm 10
15
10