The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Bahan Ajar--Rencana Aksi-Rachmat Satrio Wahyudi

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by rachmatswahyudi, 2022-08-12 20:10:58

BAHAN AJAR-KOORDINAT KARTESIUS

Bahan Ajar--Rencana Aksi-Rachmat Satrio Wahyudi

PENDAHULUAN

Bahan ajar ini disusun berdasarkan Kompetensi Dasar yang terdapat
dalam kurikulum 2013 pada Permendikbud Nomor 24 Tahun 2016. LKPD
ini menyajikan mata pelajaran matematika dengan materi Sistem
Koordinat melalui model Problem Based Learning berbasis Kearifan
Lokal Budaya Sunda dengan strategi SQRQCQ. Hal ini berarti bahan ajar
disajikan dengan permasalahan kontekstual yang berhubungan dengan
budaya masyarakat sunda dan memerlukan kemampuan pemahaman
matematika yang baik sehingga siswa diharapkan mampu mengkonstruksi
ilmu yang didapat dan menerapkannya dalam kehidupan sehari-hari.

Penjabaran materi pada bahan ajar terdiri atas kompetensi dasar untuk
materi koordinat kartesius sebagai berikut:
3.2 Menjelaskan kedudukan titik dalam bidang koordinat kartesius yang

dihubungkan dengan masalah kontekstual.
4.2 Menyelesaikan masalah yang berkaitan dengan kedudukan titik dalam bidang

koordiat kartesius.

Terdapat beberapa fitur pada bahan ajar ini, yaitu fitur Ayo Kita
Amati berisi permasalahan kontekstual yang harus kalian amati. Fitur
Mari Kita Lakukan berisi kegiatan berbasis masalah yang harus kalian
lakukan. Fitur Ayo Berlatih berisi soal-soal yang harus kalian kerjakan.
Fitur Rangkuman berisi ringkasan materi dari bahan ajar yang telah
dipelajari, dan fitur Tes Formatif berisi soal-soal untuk mengevaluasi
pemahaman, penerapan serta penalaran peserta didik terhadap materi pada
bahan ajar yang telah dipelajari.

i

PETUNJUK PENGGUNAAN

Pendidik
1. Guru membimbing peserta didik mengenai penggunaan bahan ajar.
2. Guru membagikan link bahan ajar untuk dapat diakses melalui

smartphone masing-masing.
3. Membimbing peserta didik dalam melakukan penyelesaian masalah

yang diberikan pada bahan ajar.
4. Menjelaskan kepada peserta didik yang perlu dibenahi.
Peserta Didik
1. Bahan ajar ini dapat digunakan sebagai referensi dalam belajar

matematika materi koordinat kartesius.
2. Bahan ajar ini dapat diakses melalui smartphone/laptop melalui link

yang diberikan oleh guru.
3. Mengerjakan masalah yang telah diberikan untuk menambah

kemampuan dalam memahami materi.
4. Mengerjakan latihan yang telah diberikan untuk menambah

kemampuan dalam memahami materi.

ii

KOMPETENSI DASAR

3.2. Menjelaskan kedudukan titik dalam bidang koordinat kartesius yang
dihubungkan dengan masalah kontekstual.
4.2. Menyelesaikan masalah yang berkaitan dengan kedudukan titik dalam
bidang koordiat kartesius.

INDIKATOR PENCAPAIAN KOMPETENSI

3.2.1 Mengidentifikasi (C1) posisi titik terhadap sumbu dan sumbu pada bidang

koordinat kartesius.

3.2.2 Menjelaskan (C2) posisi titik terhadap titik asal dan titik tertentu pada bidang

koordinat kartesius.

3.2.3 Menganalisis (C4) posisi titik terhadap sumbu , sumbu , titik pusat , dan

titik tertentu .

4.2.1 Memecahkan (P4) masalah kontekstual yang berkaitan dengan bidang koordinat

kartesius untuk menentukan posisi terhadap sumbu , sumbu , titik pusat ,

dan titik tertentu .

iii

DAFTAR ISI

PENDAHULUAN.......................................................................................................................i

PETUNJUK PENGGUNAAN...................................................................................................ii

KD & IPK..................................................................................................................................iii

DAFTAR ISI.............................................................................................................................iv

PETA KONSEP.........................................................................................................................v

MENGAPA AL-KHAWARIZMI BELAJAR MATEMATIKA?............................................vi

KOORDINAT KARTESIUS.....................................................................................................1

A. Pengertian Sistem Koordinat Kartesius...............................................................................2

B. Posisi Titik terhadap Sumbu dan Sumbu ..................................................................3

Ayo Kita Amati...................................................................................................................3

Contoh 1..............................................................................................................................4

Mari Kita Lakukan..............................................................................................................5

Kuadran pada Bidang Koordinat........................................................................................6

C. Posisi Titik terhadap Titik Pusat O dan Titik Tertentu ...................................7

Ayo Kita Amati...................................................................................................................7

Contoh 2..............................................................................................................................8

Mari Kita Lakukan..............................................................................................................9

LATIHAN................................................................................................................................10

RANGKUMAN.......................................................................................................................11

TES FORMATIF......................................................................................................................12

DAFTAR PUSTAKA..............................................................................................................14

iv

PETA KONSEP

SSisistteemmKKoooorrddininaatt

TTititikik posisi GGaarrisis

terhadap
terhadap
TSituikmAbusal GarSiusmTbeugak
dan Lurduasn
Sumbu
Sumbu
Sejajar
Titik Asal Tegak Lurus
dan

Titik Tertentu

Berpotongan

v

Mengapa Al-Khawarizmi Belajar Matematika?

Mungkin kamu sudah pernah mengetahui tokoh
matematika Islam yang diberi julukan Bapak
Aljabar, yaitu Muhammad bin M̅s̅ al-Khaw̅rizm ̅
atau lebih dikenal Al-Khawarizmi.

Beliau adalah seorang ahli dalam bidang

matematika, astronomi, astrologi, dan geografi

yang berasal dari Persia. Lahir sekitar tahun 780
di Khw̅rizm (sekarang Khiva, Uzbekistan) dan

wafat sekitar tahun 850 di Baghdad. Hampir

sepanjang hidupnya, ia bekerja sebagai dosen di

Sekolah Kehormatan di Baghdad yang didirikan https://www.pinhome.id/blog/biog

oleh Khalifah Bani Abbasiyah Al-Ma’mun, tempat riaafi-bale-klahjaawrariizlmmiu/ alam dan

matematik, termasuk mempelajari terjemahan manuskrip Sanskerta dan Yunani.

Buku pertamanya, al-Jabar, adalah buku yang membahas solusi sistematik dari

linear dan notasi kuadrat. Sehingga ia disebut sebagai Bapak Aljabar.

Ada cuplikan menarik yang ada pada pembukaan buku tersebut, yaitu “Mengapa
saya menulis buku ini? Saya harus memudahkan matematika dengan ini, karena
sebagian besar ibadah kaum muslimin harus menggunakan ilmu matematika.”
Masya Allah tabarakallah, jika beniat karena Allah, insya Allah berkahnya dapat.
Beliau mempelajari matematika hingga catatannya dipakai sampai saat ini
sehingga teknologi semakin maju dan insya Allah beliau juga dapat pahala
jariyah.

Bagaimana niat kita ketika belajar matematika? Dapat nilai bagus? Masuk
sekolah favorit? Terpaksa? Bismillah.. semoga kita semua selalu diberi petunjuk
supaya apa yang kita perbuat, dasarnya karena Allah. Aamiin..

vi

KOORDINAT KARTESIUS

Coba Perhatikan Gambar di bawah ini!

Seorang petugas Air Traffic Control (ATC) dan pilot mengatur penerbangan

pesawat tanpa tabrakan satu sama lain dan dapat mendeteksi apabila pesawat

sudah sampai tujuan. Hal ini dapat terjadi karena pesawat tersebut telah

dilengkapi alat yang canggih seperti radar sebagai alat pendeteksi. Radar yang

telah dipasang pada koordinat dapat menerima sinyal dari semua pesawat

yang pernah melalui lintasan dengan ketinggian b mil. Dengan kata lain, jika

pesawat dan radar lain berada pada ketinggian b mil, maka pesawat tersebut

dapat mengirimkan sinyal kepada radar tersebut. Apabila pesawat tidak

terdeteksi radar, maka koordinat terakhir pesawat menjadi acuan untuk

melakukan investigasi pencarian pesawat. Oleh karena itu, petugas ATC dan pilot

harus memahami cara menentukan letak suatu tempat pada bidang koordinat

kartesius.

1 | Koordinat Kartesius Kelas VIII SMP/MTs

A. Pengertian Sistem Koordinat Kartesius

Istilah kartesius digunakan untuk mengenang ahli matematika sekaligus
filsuf dari Prancis, yaitu Descartes yang perannya besar dalam menggabungkan
aljabar dan geometri. Dalam ilmu matematika sistem koordinat kartesius
digunakan untuk menentukan posisi ataupun letak dari sebuah titik pada suatu
bidang datar. Posisi titik tersebut ditentukan oleh dua buah garis yang ditarik
secara vertikal dan horizontal, dimana titik pusatnya berada pada titik O (0, 0)
sebagai titik asal/pangkal koordinat.

Garis horizontal disebut sebagai sumbu dimana positif digambarkan
mendatar ke kanan, sedangkan negatif digambarkan mendatar ke kiri.
Sementara itu garis vertikal disebut sebagai sumbu , dimana positif
digambarkan ke arah atas dan negatif digambarkan ke arah bawah. Setiap titik
pada bidang koordinat kartesius dinyatakan dengan pasangan berurutan dan ,
dimana merupakan koordinat sumbu (disebut absis) dan merupakan
koordinat sumbu (disebut ordinat). Titik pada bidang koordinat dapat ditulis

.

Suatu titik A dapat dinyatakan sebagai pasangan yang berurutan .
= jarak titik A terhadap sumbu
= jarak titik A terhadap sumbu

2 | Koordinat Kartesius Kelas VIII SMP/MTs

B. Posisi Titik terhadap Sumbu dan sumbu

Perhatikanlah gambar sawah yang diberikan Pak Ogah berikut!

Y

X
=

Perhatikan buah sawo yang diberikan kotak merah.
 Jarak sawo terhadap sumbu adalah 8 satuan
 Jarak sawo terhadap sumbu adalah 12 satuan
 Koordinat sawo adalah (12,-8)

Perhatikan buah salak yang diberikan kotak biru.
 Jarak salak terhadap sumbu adalah 7 satuan
 Jarak salak terhadap sumbu adalah 3 satuan
 Koordinat salak adalah (-3,7)

3 | Koordinat Kartesius Kelas VIII SMP/MTs

Perhatikanlah denah pusat kota A yang disajikan, jika bangunan-bangunan
tersebut berada pada bidang kartesius terhadap sumbu dan sumbu .
Dimanakah letak koordinat dari bangunan-bangunan tersebut?

Dari gambar di atas, jika bangunan-bangunan tersebut kita nyatakan dalam
bidang kartesius dapat dilihat pada gambar berikut.

Bangunan Jarak terhadap Jarak terhadap Koordinat
sumbu sumbu Bangunan
Toko Buku 4 satuan 1 satuan
Hotel 3 satuan 3 satuan (-4, 1)
0 satuan 4 satuan (-3, -3)
Sekolah 3 satuan 2 satuan (0, 4)
Mall 7 satuan 3 satuan (3, 2)
4 satuan 2 satuan (7, 3)
Rumah Sakit (4, -2)
Rumah Makan

4 | Koordinat Kartesius Kelas VIII SMP/MTs

Mari Kita Lakukan

Pernahkah kalian menelusuri daerah sekitar Tugu Marlin Pangandaran ? Apa

saja yang terletak di sekitarnya ?, Mari kita perhatikan gambar denah

berikut! Y

X

Dari denah di atas kita dapat melihat beberapa objek tempat yang terletak
di sekitar daerah Tugu Marlin.

No. Nama Tempat Koordinat Jarak terhadap

Sumbu x Sumbu y

1. Tugu Marlin (0, 0) 0 satuan 0 satuan

2. Yan’s Seafood (6, 1) 1 satuan 6 satuan

3. … …… …

4. … …… …

5. … …… …

6. … …… …

7. … …… …

8. … …… …

9. … …… …

10. … …… …

11. … …… …

12. … …… …

5 | Koordinat Kartesius Kelas VIII SMP/MTs

6 | Koordinat Kartesius Kelas VIII SMP/MTs

C. Posisi Titik terhadap Titik Pusat O(0,0) dan
Titik Tertentu

Gambar letak persembunyian kawan-kawan Unyil

Y

X

Perhatikan gambar Pak Ogah yang diberikan kotak merah.
Jarak Pak Ogah terhadap sumbu adalah 5 satuan
Jarak Pak Ogah terhadap sumbu adalah 5 satuan
Posisi Unyil terhadap Pak Ogah adalah ke kanan 5 satuan dan ke bawah 5 satuan
Titik Koordinat Pak Ogah adalah ( 5 , -5)

7 | Koordinat Kartesius Kelas VIII SMP/MTs

2
Setelah kalian dapat menentukan koordinat suatu titik dan jarak titik tersebut
terhadap sumbu dan sumbu dalam bidang koordinat. Sekarang kalian akan
mempelajari bagaimana koordinat titik tersebut terhadap titik tertentu (a, b).
Untuk lebih jelasnya perhatikan denah berikut!

Y

X

Berdasarkan denah tersebut, coba tentukanlah posisi rumah sakit, rumah Tono,
rumah Sita, rumah Doni dan rumah makan terhadap bunderan reog!

Tempat Posisi Tempat terhadap Bundaran Reog

Rumah Sakit Koordinat Keterangan
Rumah Tono
Rumah Sita (-2, 4) 2 satuan ke kiri dan 4 satuan ke atas
Rumah Doni
Rumah Makan (-1, 2) 1 satuan ke kiri dan 2 satuan ke atas

(2, 4) 2 satuan ke kanan dan 4 satuan ke atas

(2, -2) 2 satuan ke kanan dan 2 satuan ke bawah

(-4, -2) 4 satuan ke kiri dan 2 satuan ke bawah

8 | Koordinat Kartesius Kelas VIII SMP/MTs

Mari Kita Lakukan

Gambar letak persembunyian kawan-kawan Cuplis

Y

X

Mari kita bantu dengan menemukan letak kedudukan Cuplis, Ucrit, Usro,
Unyil, Ndut, Mei dan Lena terhadap kawan yang lain dengan cara menjawab
pertanyaan di bawah
Bagaimanakah letak kedudukan Cuplis terhadap Unyil, Mei dan Usro ?
(dalam satuan)

Bagaimanakah letak kedudukan Unyil terhadap Ndut, Lena dan Mei ?
(dalam satuan)

Bagaimanakah letak kedudukan Lena terhadap Ucrit, Usro dan Unyil ?
(dalam satuan)

9 | Koordinat Kartesius Kelas VIII SMP/MTs

1. Coba jelaskan apa itu koordinat kartesius menggunakan kalimatmu sendiri!
2. Gambar di samping menunjukkan aliran

sungai yang melewati beberapa desa yang
dinyatakan dalam bidang koordinat.
a. Tentukan jarak masing-masing desa

terhadap sumbu dan sumbu
b. Tentukan koordinat masing-masing

desa yang dilalui oleh aliran sungai
tersebut.
c. Sebutkan titik yang terletak di
kuadran 2 pada aliran sungai
tersebut.

3. Diketahui koordinat titik-titik A(5, 0), B(-1, 3), C(5, 1) dan D(1, -2). Jika
keempat titik tersebut dihubungkan, bangun apakah yang terbentuk?

4. Diketahui koordinat titik P(-3, 5), Q(-3, -4) dan R(2, -4). Tentukan titik
koordinat S, sehingga jika keempat titik tersebut dihubungkan membentuk
persegi panjang.

5. Arum sedang bermain di lapangan. Jika pergerakan Arum dinyatakan dalam
bidang koordinat, posisi awal Arum berada pada titik asal. Arum melangkah 2
satuan ke timur dan 3 satuan ke utara. Lalu Arum melangkah lagi 4 satuan ke
barat dan 2 satuan ke selatan. Kemudian Arum melangkah lagi 2 satuan ke
selatan dan 1 satuan ke timur.
a. Gambarlah koordinat kartesius dari uraian di atas.
b. Tentukan koordinat posisi awal arum, posisi setelah melangkah pertama,
posisi setelah melangkah kedua, dan posisi setelah melangkah ketiga.

10 | Koordinat Kartesius Kelas VIII SMP/MTs

11 | Koordinat Kartesius Kelas VIII SMP/MTs

TES FORMATIF

1.
Ayo Melangkah

Sebuah lembaga survei melakukan penelitian mengenai jumlah langkah per hari
dari lebih 700 penduduk di berbagai negara. Hasil penelitian tersebut
disandingkan dengan usia harapan hidup serta persentase penduduk yang
kelebihan berat badan.

Negara Jumlah Langkah Usia Harapan Persentase
per Hari Hidup (tahun) Penduduk
China Kelebihan Berat
Jepang 6.189 77
Korea Selatan 6.010 84 Badan
Indonesia 5.755 83 27,4%
India 3.513 71 17,6%
Malaysia 4.297 69 27,2%
3.963 75 30,6%
20,7%
48,6%

Nyatakanlah permasalahan di atas dalam koordinat kartesius! (Sumbu-x
menyatakan jumlah langkah per hari dan sumbu-y menyatakan usia harapan
hidup).

12 | Koordinat Kartesius Kelas VIII SMP/MTs

Berdasarkan koordinat kartesius di atas, tentukanlah pernyataan berikut benar
atau salah!
 China terletak di sisi paling kanan
 Indonesia berada di atas India
 Terdapat empat negara yang terletak di kiri India
 Jarak koordinat titik Jepang terhadap sumbu-x adalah 83 satuan
 Malaysia berada pada urutan keempat dari atas

2. Untuk hari Raya Lebaran, Fitri membuat beberapa kantung yang diisi permen
warna oranye dan hitam untuk 5 orang cucunya. Titik-titik berikut
menggambarkan jumlah permen oranye dan hitam dalam 4 kantung yang ada.

Kantung kelima memiliki 4 permen oranye lebih banyak dari kantung 1 dan 1
permen hitam lebih sedikit dari kantung 2.
Tentukanlah titik koordinat kantung kelima tersebut!

13 | Koordinat Kartesius Kelas VIII SMP/MTs

DAFTAR PUSTAKA

Adinawan, M. Cholik. 2016. Matematika untuk SMP/MTs Kelas VIII Semester 1. Jakarta:
Erlangga.

Kementerian Pendidikan dan Kebudayaan Republik Indonesia. 2017. Buku Matematika
Kelas VIII SMP/MTs Berbasis Kurikulum 2013. Jakarta : Kementerian Pendidikan
dan Kebudayaan.

14 | Koordinat Kartesius Kelas VIII SMP/MTs


Click to View FlipBook Version