The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Ram Krishna Marahatta, 2020-08-04 07:41:16

IQ Complete Notes

IQ Complete Notes

COMMON SENSE TEST EXERCISE 1

Answer Sheet

1. v

100 hgf l;kfxL 100 Kofs]6 rfprfp 100 lbg

1 hgf l;kfxL 1 Kofs]6 rfprfp 100 lbg

10 hgf l;kfxL 10 Kofs6] rfprfp 100 lbg

1 hgf l;kfxL 1 Kofs6] rfprfp 100 lbg

2. u_ sk8f ;S' g] ;do Pp6} xG' 5 .

3. v_ nn 1  100100 1  5050

22

4. s_ n² = (25)² = 625

5. v_ n²+n = (50)² + 50 = 2550

6. u_ ju{ ;ªV\ ofsf] ofu] kmn lgsfNg] ;q'

nn 12n 1  55 125 1  5611  55

6 66

7. s_ 3g ;ªV\ ofsf] of]ukmn lgsfNg] z"q

= nn 12

 2 

= 1010 12

 2 

= (55)²
= 3025

20% 30% 10m

8. u_ lxnf] kfgL 50% afFsL = 50% = 10 m eP, Total 10m+10m = 20m
9. v_ 200 nfO{ 20 n] efu ubf{ 10 cfp5F / 10 df 10 hf8] \bf 20 x'G5 .
10. s_ bl[ i6ljlxg afxs] ;a}n] lx/f] b]v]
11. v_
12. u_ ;a} ePsf] / ARM df gePsf] N xf] .

13. u_ 30 km/hrs

= 30×1000 = 30000 m k|To]s 60 ldg]6df

1 ldg]6df 30000 = 500
= 60

10 ldg6] df = 500×10 = 5000 ld6/
cf7 hgf Ö Ps kfly xG' 5 .

So,

14. v_ 3 kfyL ± 3 dfgf ± 4 hgf + 9 hgf
15. 3_ 3 kfyL ± 16 dfgf
16. s_ 3 kfyL + 2 kfyL
= 5 kfyL
17. v_ 1 b]lv 100 ;dd 1 cª\s 21 rf]6L cfpF5 .
III hDdf # j6f
18. 3_ Ps Ps k6s xft ldnfpg] ;'q

19. s_ nn 1  150150 1  75149 11175
20. v_
22

kT| os] n] kT| os] ;Fu vN] g] vn] ;DaGwL ;q" M

= nn 1  2525 1  25 24  2512  300

222

;?' df dlGb/ leq l5g{sf] nflu = 10
bfA] a/ ePkl5 10+10 = 20 h'g bfA] a/ x'g' eGbf klxnf = 10

 20

olb ;fg' / /fd;' Fu ^, ^ j6f :ofx¿ x'g] xf] eg] ;fg'n] /fd'nfO{ @ j6f lbbL ;fg' $ / /fd' $ /
/fd' * x'G5 . ;fg'n] /fdn' fo{ # j6f lbbf ;fg' # / /fd' ( x'G5 .
;?' df ! 6o\ fjn]6 vfG5 / To;sf] kT| o]s #) ldg]6df csf{] vfb} h;cg';f/ @ 306f ;do nfU5

21. 3_ ;'q, hDdf prfO – tn emg{] dfg 20-4 = 16 lbg
dfly r9g\ ] – tn emg{] dfg =

5-4

22. u_ ;q' , hDdf prfO – tn emg]{ dfg 20-3 = 11 lbg
dfly r9\g] – tn emg{] dfg =

5-3

23. v_ ;q' , hDdf prfO – tn emg]{ dfg 10-2 = 8 306f
dfly r9g\ ] – tn emg{] dfg =

3-2

Rest Time ePsf] k|Zg ;fw] ]df Ps sd 306f ;Ddsf]

Rest Time nfO{ hf]8\g' k5{ 7×20 min = 140 min = 2:20 min = 8 hours + 2:20 = 10:20

24. s_ b'O{ v'6]\ / rf/ v6' \] ;DaGwL kZ| g ;fw] ]df

hDdf 6fpsfsf] ;ª\Vof × ljk/Lt v§' fsf] ;ªV\ of – hDdf v'§fsf] ;ª\Vof

@

25 × 2 – 90 50 – 90 40
=2 = 2 = 2 = 20

25. u_ !! afx]ssf ;a} d/] d/] eGgs' f] cy{ !! j6f ar]

26. v_ 10 j6f afbF /sf] 40 j6f v'§f 6fpsfs] f] bfA] a/ eGbf !)×@Ö@) df @) n] a9L Ö $)

27. 3_ k|Zg g=+ @$ h:t} u/L ug]{

28. s_ 30 lbgdf 2 ldg6] 30 ;]s]G8 1 lbgdf 150 = 5 sec
30

30 lbg = 150 sec

29. s_ olb 3 af6 eu+ /] f

3 j6f ;Fu' f

3 j6f xfF ; u/L hDdf 9 j6f x'g] xdf] eg] 6 afxs] ;a} euF ]/f xG' 5 / 6 afxs] ;a} ;uF f / 6 afx]s ;a}
xf;F xG' 5g\ .

30. v_ 10 ln6/ = 110 km

1 ln6/ 110 = 11 km
= 10

7 ln6/ = 11 × 7 = 77 km

31. 3_ dgf]h ;'l;n

12 6

–3 –3

93

32. s_ 36 ld= x'Fbf

12m 12m 12m lgnf]

9m 9m 9m 9m /ft f]

/ 15 m xl/of] 5 eg] sn' nDafO{ 12 + 9 + 15 = 36 m
33. s_

/fd h7] f] 5f]/f sfG5f] 5f/] f

50 25 10
+10 +10 +10
60 35 20

10 jif{ kl5 sfG5f] 5f]/fsf] /fd tA] a/ eof] .
34. s_ 200 sf] 60 % = 120 – 60 = 60 afsF L
35. u_

54 (5 + 4 = 9) sum of two digit

–9 (if 9 is subtracted from A it becomes revend pN6g5_

45

36. u_ 66 (6 + 6 = 12) sum of two digit

6 × 6 = 36 (it's product)

37. u_ n(n – 1) = 30(30 – 1) = 435
2 2

38. v_ 50(50 – 1) = 25 × 49 = 1225
2

39. u_ 20(20 – 1) = 10 × 19 = 190
2

40. u_ 30 days = 1 work (complete work)

1
29 days = 2 Part full

1
28 days = 4 Part Full

41. 3_ 20 days = 1 Part Full
16

1
21 days = 8 Part full

1
22 days = 4 Part full

1
23 days = 2 Part Full

24 days = 1 part full

42. 196 steps plus half the number of steps 196 + 196 = 392

43. v_ teacher = x

girls = 2x

boys = 6x

9x

9x = 10800

10800
x= 9

9 n] efu hfg] vfH] g] lsg eg] dflg;sf] ;ª\Vof kfO] G6df x'bF g} .
44. 3_ body = x

head = 9"

1
Tail = 9 + 2 x

18 + x
x=9+ 2

18 + 18 + x
x= 2

2x = 36 + x

x = 36

36
Tail = 9 + 2 = 9 + 18 = 27

Fish = Head + body + Tai = 9 + 36 + 27 = 72

45. 3_ Let, the number of women = x, then number of men = 2x

In city Sukhet, we have
(2x – 10) = (x + 5)
2x – x = 5+10

x = 15

Total number of passenger in the beginning

= x+ 2x

= 3x

= 3×15 = 45

46. 3_ 100 Tiger kill 100 goat in 100 days

1 tiger kill 1 goat in 100 days

So, 4 tiger kill 4 goat in 100 days.

j) Assertion and Reason
egfO{ / sf/0f

EXERCISE 1

tn lbPsf k|Zgdf egfO{ / sf/0f k|:tt' ul/Psf] 5 . tn pQ/df pNnv] ul/Psf ljsNk dWo] ;lx kQf
nufpgx' f]; .
1. egfO{ (A) /tGwf] sfgsf] ;d:of xf] .

sf/0f (R) /tGwf] vitamin D sf] sldn] nfU5 .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 / sf/0f (R) unt 5 .
2. egfO{ (a) ;fwf/0f h'Qmf eGbf lxn ePsf] h'Qmf 6]Sb hldgdf a9L ufl8G5 .
sf/0f (R) lxn ePsf] h'Qmfsf] ss' r{' fsf] If]qkmn sd xG' 5 .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
3. egfO{ (a) sf]tkjn{ ] /f0ff zf;gsf] pbo eof] .

sf/0f (R) sft] kj{ hu+ axfb/' sf] w]/} efOx?sf] sf/0f ;Dej eof]
A) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
4. egfO{ (a) bf];|f] ljZj o4' klxnf] ljZjo4' n] hGdfof] .
sf/0f (R) e;{l] nhs] c;dfg ;lGwn] hd{gLnfO{ cfwft k¥' ofPsf] lyof] .
A) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
5. egfO{ (a) ljw'lto tf/ agfpg ;'gsf] ko| fu] ul/G5 .
sf/0f (R) ;g' ljw'lto ;r' fns xf] .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
6. egfO{ (A) vfk] n] /f]unfO{ lgoGq0f u5{ .
sf/0f (R) aRrfx?nfO{ vf]k nufpg' k5{ .
A) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
7. egfO{ (A) lxpbF ofddf ;d'Gb|sf] kfgL hDbf ToxfFsf df5f db{g} g\ .
sf/0f (R) sj] n ;txsf] kfgL dfq hd]sf] xxG' 5 .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
8. egfO{ (A) kfgL k/k] l5 dfq OGb|0] fL nfU5 .
sf/0f (R) kfgLsf yfk] fn] ;'o{sf] ls/0fnfO{ ;ft /u+ df kl/0ft ul/lbG5 .
A) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
9. egfO{ (A) u8\of}nfx? s[lifsf nflu pkof]uL x'bg} g\ .

sf/0f (R) u8o\ f}nfn] df6fn] fO{ ;fgf ;fgf s0fdf 6q' mfp5F g\ h'g pAhgzLn xG' 5 .
A) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xfO] g .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
!)= egfO{ A g]kfn nfs] tflGqs dn' s xf] .
sf/0f R gk] fndf ljleGg sfnv08df ;l+ jwfg hf/L ul/Psf lyP .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
!!= egfO{ A j'w ;jeGbf 6f9fsf] ux| xf] .
sf/0f R ;f}od08ndf aw' ;j eGbf ;fgf] u|x xf] .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xfO] g .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
!@= egfO{ A M gk] fndf db' f| :kmLlt lgoGq0f aflx/ 5 .
sf/0f R M cfotdf cfwfl/t cy{tGq ePsf]n] db' f| :kmLlt a:t';uF lelqG5 .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
!#= egfO{ A M gk] fnsf] Oltxf;df lnlR5jLsfnnfO{ :j0fs{ fn dflgG5 .
sf/0f R M lnR5jLsfndf k|z:t ;'g pTkfbg ul/Psf] lyof] .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xf]Og .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
!$ egfO{ A M gk] fndf Gofokflnsf :jtGq 5 .
sf/0f R Gofokflnsf] ;/sf/L gLlt, of]hgf, sfoq{ md nfu' ug{ ;xof]u b5{ .
A) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xfO] g .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
!%= egfO{ A M hf8] f] ofddf ;]tf] n'uf pkoQ' m xb' g}

sf/0f R M ;t] f] n'ufn] tfknfO{ ;lhn} k/fjtg{ ul/lbG5 .
A) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) b'j} 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xfO] g .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .
!^= egfO{ AM ?vdf kftx? xl/of x'G5g\ .
sf/0f R M Snf/] fl] kmn ePsf kftdf k|sfz ;+Zni] f0f lqmof xG' 5 .
A) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) n] egfO{ (A) sf] ;xL JofVof u5{ .
B) egfO{ (A) / sf/0f (R) bj' } 7Ls 5g\ / sf/0f (R) egfO{ (A) sf] ;xL JofVof xfO] g .
C) egfO{ (A) 7Ls 5 t/ sf/0f (R) unt 5 .
D) egfO{ (A) unt 5 t/ sf/0f (R) ;xL 5 .

In each of the following question, there are two statements labeled as Assertion (A) and Reason
(R).
17. Assertion (A): most of the Himalayan rivers are perennial.

Reason (R): They are feb by melting snow.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
18. Assertion (A) : Diamond is used for cutting glass.
Reason (R) : diamond has a high refraction index.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
19. Assertion (A) : there are no vaccine for AIDs .
Reason (R) : the AIDs virus changes its genetic code.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
20. Assertion (A) : cut fruits and vegetables should not be kept in open for long.

Reason (R) : their vitamin content is ruined.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
21. Assertion (A) : an electric bulb makes a ‘bang’ when it is broen.
Reason (R) the air inside the bulb rushes out immediately on breaking.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
22. Assertion (A) : telephone wires sag more in summer.
Reason (R) : they expand due to summer heat.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
23. Assertion (A) : most of the ancient civilization grew near the rivers.
Reason (R) : the main occupation of man was Agriculture.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
24. Assertion (A) : Nepal is a democratic county.
Reason (R): Nepal has a constitution of its own.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
25. Assertion (A): we prefer to wear white clothes in winter.



Reason (R): white clothes are good reflections of heat.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
26. Assertion (A) : unpolished rice should be eaten.
Reason (R) : polished rice lacks vitamin B.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
27. Assertion (A): red colour of blood is due to hemoglobin.
Reason (R) : hemoglobin is a red pigment
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
28. Assertion (A): when the bus starts, the person inside it falls forward.
Reason (R): the bus pushes the man forward.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
29. Assertion (A): Vaccines prevent dieases.
Reason (R): vaccines must be given to children.
A) If both (A) and (R) are true and( R) is the correct explanation of (A ).
B) If both (A) and (R) are true but (R) is not the correct explanation of (A).
C) If (A) is true but (R) is false.
D) If (A) is false but (R) is true.
E) If (A) and (R) are false.
Answer Sheet

1.D 2.A 3.A 4.B 5.D 6.B 7.B 8.A 9.D 10.B
18.B 19.A 20.A
11. 12.A 13.C 14.C 15.A 16.A 17.A 28.E 29.B

21.C 22.A 23.B 24.B 25.D 26.A 27.A

k) Blood Relationship Test

1. Mother’s or Father’s sons Brother

2. Mother’s or Father’s daughter Sister

3. Mother’s or Father’s brother Uncle

4. Mother’s or Father’s sister Aunt

5. Mother’s or Father’s father Grandfather

6. Son’s wife Daughter-in-law

7. Daughter’s husband son-in-law

8. Husband’s or wife’s sister sister-in-law

9. Husband’s or wife’s brother brother-in-law

10. Brother’s son nephew

11. Brother’s daughter niece

12. Uncle or Aunt’s son or daughter cousion

13. Sister’s husband brother-in-law

14. Brother’s wife sister-in-law

15. Grandson’s or Grand daughter’s daughter great grand
daughter

A relation on the mother side is called ‘Maternal’.

A relation on the father side is called ‘Paternal’.

Thus, mother’s brother is Maternal uncle and father’s brother is Paternal uncle.

7) Pointing towards a person, a man said to woman, “His mother is the only daughter of your
father.” How is the woman related that person?

a) Daughter b) sister c) mother d) wife

8) Anil introduces Rohit as the son of the only brother of his father’s wife. How is Rohit related

to Anil?

a) Cousin b) son c) uncle d) son-in-law e) brother

9) Pointing out to a lady, Rajan said, “She is the daughter of the woman who is the mother of

the husband of my mother.” Who is the lady to Rajan?

a) Aunt b) granddaughter c) daughter d) sister e) sister-in-law

10) A woman introduces a man as the son of the brother of her mother. How is the man related to
the woman?

a) Nephew b) son c) cousin d) uncle e) grandson



11) Pointing towards a person in the photograph, Anjali said, “He is the only son of the father of
my sister’s brother.” How is that person related to Anjali?

a) Mother b) father c) maternal uncle d) cousin e) none of these

12) Introducing a man, a woman said, “He is the only son of my mother’s mother” How is the

woman related to the man?

a) Mother b) aunt c) sister d) niece e) none of these

13) If X is the brother of the son of Y’s son how is X related to Y?

a) Son b) brother c) cousin d) grandson e) uncle

14) If Neena says, “Anita’s father Ram is the only son of my father-in-law Subash,” Then how

Bindu, who is the sister of Anita, related to Subash?

a) Niece b) daughter c) wife d) daughter-in-law e) none of these

15) Arun said, “The girl is the wife of the grandson of my mother” Who is Arun to girl?

a) Father b) grandfather c) husband d) father-in-law

16) Pointing to a photographer, Arun said “she is the mother of my son’s wife’s daughter.” How

is Arun related to the lady?

a) Uncle b) cousin c) daughter-in-law d) none of these

17) A is B’s sister. C is B’s mother. D is C’ father. E is D’s mother. Then how is A related to D?

a) Grandmother b) grandfather c) daughter d) grand daughter

18) lutfnfO{ lrgfpb} xl/n] eGof], pgsf afa' d/] L cfdfsf] Ps dfq 5f]/f xg' . oxfF lutf xl/sf] s] gftf
kbl{ 5g\ <

s_ sfsL v_ 5f/] L u_ lbbL 3_ cfdf

19) Ps hgfn] Pp6f kmf6] f] b]vfpbF } eGof,] pm d/] L lbbLsf] efOsf] afas' f] Pp6f dfq} 5f/] f x] . ca eGg'xf];\
;f] kmf]6fd] f ePsf] JolQm;Fu tl:a/ bv] fpg] JolQmsf] s] gftf kb5{ <

s_ afa' v_ 5f]/f u_ HjfO{ 3_ sg' } klg xfO] g{

20) Pshgf s6] f / PShgf s6] L lar s'/fsfgL xb' fF s]6fn] s]6LnfO{ eGof], ltdf| afas' L >LdtL d/] L cfdf
x'g\ / pgsf 5f]/fx? $ hgf 5g\ . To:t} s6] Ln] s6] fnfO{ elgg\ ltdL| cfdfsf >Ldfg d]/f afa' xg' \ /
pgsf % hgf 5f]/Lx? 5g\ . pQm s]6f / s]6Lsf @÷@hgf dfdfx? /xs] f 5g\ . ca eGg'xf];\ tL s]6f /
s6] L lar s] gftf xf]nf <

s_ bfh,' alxgL v_ afa,' 5f]/L u_ >Ldfgg, >LdtL 3_ dfdf, efGhL

21) s'g} s6] L si[ 0fsf] afa'sf] 7n" f] bfhs' f] gfltgL 5g\ . ltGL s]6L s[i0fsf] s] gftfdf kb{l5g\ <

s_ elthL v_ alxgL u_ sfsL 3_ ef~hL

22) A rflxF B sL lbbL 5g\ . C rfxLF B sL cfdf 5g\ . D rfxLF C sf afaf 5g\ . E rfxLF D sL cfdf
5g\ . ca eGgx' f;] \ A rfxLF D sf] sf] kb5{ g\ <

s_ 5f/] L v_ a'xf/L u_ gfltgL 3_ gftL

23) ljsf;n] Pp6f kmf6] f]nfO{ bv] fpFb} eGof] o;sf] afa' d]/f afa'/a'afsf] a'xf/Lsf] Psdfq gflt xf] ca
eGgx' f];\ ljsf;n] s;sf] kmf6] f] x/] L/x]sf] xfn] f <

s_ 5f]/f v_ gftL u_ a'af 3_ efO{

24) ljggf]bsf] 5f/] fn] xl/sf] gfltnfO{ afa' eGg'k5{ eg] ljgf]b / sl/ lar s] sf] gftf k5x{ fn] f <

s_ ;fnf, legfh' v_ gflt, xh/' aa' f u_ 5f/] f, aa' f

25) slknsf] /fxn' Psdfq efO xf] eg] ;Gtfi] fsf] ljsf; Psdfq 5f/] f xf], ;Gtfi] fsf] /fxn' gflt k5{eg]
ljsf;sf] slkn s] k5{ <

s_ efO{ v_efGhf u_ ;fnf] 3_ 5f/] f

26) /fd|f;] uF k9L pQ/ lbg'xf];\ .

A+B eGgfn] A, B sf] 5f/] f xf] .

A–B eGgfn] A, B sf] >LdtL xf] .

A*B eGgfn] A, B sf] efO xf] .

A/B eGgfn] A, B sf] cfdf xf] .

A=B eGgfn] A, B sf] lbbL xf] .

caM– P + R – Q af6 P sf] Q s] gftf k5{ <

s_ afa' v_ sfsf u_ 5f]/f 3_ efO

Blood relationship exercise 1

Answer sheet 9.A 10.C 11.E 12.D 13.D 14.E 15.D 16.D
7.C 8.A

17.B 18.B 19.D 20.A 21.A 22.C 23.B 24.B 25.D 26.A

l) Verification of Truth Statement

1. Atmosphere always has

(a) Oxygen (b) Air (c) Germs (d) Dust

Solution: Clearly, though all the alternatives may form a part of the atmosphere, the air is of
the most vital part, without which there can be no atmosphere. So, the answer is (b)

2. A train always has

(a) Engine (b) Rails (c) Driver (d) Guard © passengers.

Solution: Clearly, rails are necessary for the train to move on. Driver alone can move the
train. A guard is also necessary for safety. A train is moved for the passengers. But all these
do not constitute a train. A train cannot be called so without the engine. So, the answer is (a).

Exercise 1

4. A mirror always has

(a) Reflects (b) Retracts (c) Distorts (d) Refracts © Reveals the truth

5. A factory always has

(a) Electricity (b) Chimney (c) Workers (d) Files © Sellers

6. A clock always has

(a) Battery (b) Number (c) Alarm (d) Needles © Frame

7. A car always has

(a) Driver (b) Bonnet (c) Dicky (d) Bumper © Wheels

8. A jail always has



(a) Bars (b) Jailor (c) lawyer (d) Locks © Prisoners

9. A camera always has

(a) Lens (b) Reels (c) Flash (d) Photograph © stand

10. A 520ospital always has

(a) Nurse (b) Room (c) Telephone (d) Doctor © Bed

11. A school always has

(a) A principal (b) Building (c) library (d) Teacher © Classes

12. A pen always has

(a) Tube (b) Cap (c) Holder (d) Ink © Nib

13. A newspaper always has

(a) Advertisement (b) News (c) Editor (d) paper © Date

14. Cricket always has

(a) Stumps (b) Pitch (c) Glove (d) Pads © Bat

15. A man always has.

(a) Teeth (b) Feet (c) Eyes (d) Hands © Heart

16. A mountain always has

(a) Ranger (b) Peak (c) Snow (d) Valley

17. A child must have had

(a) Toys (b) Friends (c) Parents (d) Education

18. A lotus flower always has

(a) petals (b) Mud (c) Roots (d) Water

19) Atmosphere always has

a) oxygen b) Air c) Germs d) Moisture e) Dust

20) A train always has

a) Engine b) Rails c) Driver d) Guard e) Passengers

21) Which of the following a 'Drama' must have?

a) Actors b) Story c) Sets d) Director e) Spectators

22) A fan always has

a) Switch b) Blades c) Current d) Wire e) Regulator

23) A shoe always has

a) Laces b) Leather c) Design d) Sole

Answer Sheet

1. 2 3 4.A 5.C 6.E 7.E 8.D 9.A 10.D
11.D 17.C 18.A 19.B
11.D 12.E 13. B 14. D 15.E 16.B

21.B 22. E 23.D

m) Situation Judgement/Reaction Test

This test is mainly to judge a candidate ability to use his presence of mind to tackle a given
situation he may come across any time in life. The candidate is thus expected to choose the best
response which shall present him/her as a good person or a sincere professional.

Exercise 1
Select the most appropriate alternative as the answer.
1. If in an examination hall, you find that the question paper is too tough to be answer

satisfactorily by you, the best thing to do for you is to.
a) Tell the examiner that the questions are out of course.
b) Provoke the candidates to walk out of the examination hall.
c) Try to know something from your neighbor.
d) Try to solve the questions as much as you know with a cool heard.
2. Your friends like smoking and influence you to do the same. You will
a) Smoke only because your friends are smoking
b) Refuse to smoke
c) Smoke but only in their presence
d) Refuse and lie to them you have asthma
3. If on a tough day you are only person available to handle the customers, you should.
a) Ask the additional help from the boss,
b) Take leave and go back home
c) Just do your part of work
d) Try and work to the maximum of your ability to satisfy customers
4. When you get angry, you usually,
a) Throw things
b) Withdraw yourself and start crying.
c) Leave the situation and engage yourself in a different activity.
d) None of these
5. You are alone in your office and your receptionist suddenly experiencing heart pains you.
a) Would definitely get upset and do not know what is the right step
b) Go out of the office to call your family doctor
c) Walk her to the nearest hospital
d) Call an ambulance for emergency
6. You want to get married to a person of your choice but your family members give their own
reasons why you should not marry that person, which you do not find very convincing. What
would you do?
a) Try to convince your family about your choice
b) Go by what your family says
c) Become thoroughly confused and still remain undecided
d) Marry the person of your choice



7. When you see a blind man trying to cross the road, you..
a) Ask someone to help him
b) Go and help him
c) Wait till he crossed the road
d) Ignore and moves on

8. “No risk no gain”. You..
a) Feel that risk means no gain
b) Believe that this slogan is correct
c) Feel that risk may be taken only after judging the situation thoroughly
d) Feel it is foolish to accept unnecessary risk

9. While travelling in your car, certain person stop you on the way asking you to take an insured
child to the hospital, you would.
a) Ask them to leave your way and then drive away
b) Ask them to first call the police
c) Immediately take the child to the hospital
d) Get out of the car and ask some other person to help them

10. You are walking down the street and suddenly yu see a golden ring on the pavement. What
action will you take?
a) Pocket it yourself
b) Leave it where it is
c) Give the ring to a beggar
d) Deposit it I n the nearest police station.

11. While sitting in a park, you observe that a smart young man comes to the place on a scooter,
leaves it there and goes away with someone else on a motorbike. You would.
a) Chase the person
b) Inform the police nearby booth
c) Cal back the person
d) Remain engaged in your employment

12. While you board a bus at the station, you find a suitcase beneath your seat. you would.
a) Report the matter to the police
b) Open up the suitcase to look through its contents
c) Try to find out the address of the owner from the paper, etc. in the suitcase
d) Finding no one to claim it, take it into the own possession.

13. While firing crackers, a child gets severs burrs on the hand. What would you do?
a) Dip the child’s hands in cold water till there is no ore burning sensation
b) Wash the hands with Dettol
c) Send someone to call the doctor
d) Apply some ointment on the affected area

ANSWER SHEET (SRT)

1.D 2.D 3.D 4.C 5.C 6.A 7.B 8.C 9.C 10.D 11.B 12.A 13.A

n) Jumble Spelling Test

Exercise –1
1. If you rearrange the letters of "CIFAIPC" you would have the name of ……………………

(a) River (b) Country (c) Player (d) Ocean

2. If you replace a letter in 'COAT' you would have the name of an animal which is that letter?

(a) K (b) S (c) G (d) None of these

3. If you rearrange the letters in 'NEHAXOG', you would have the name of shape which is that?

(a) None of these (b) Rectangular (c) Circle (d) hexagon

4. If you rearrange the letters in 'AFYKISTAHWN', you would have the name of hard and soft
drinks.

(a) Fanta and Rum (b) Coke and Fanta(c) Fanta and whisky (d) No idea

5. Rearrange the letter in 'JI BEGN' to form the name of a capital city of an Asian Country.

(a) Kathmandu (b) Delhi (c) Beijing (d) Dhaka

6. Rearrange the letter in 'RTARRSIUAHIL', you would have the name of a lake and river of
Nepal.

(a) Fewa and Narayani (b) Rara and Gandaki

(c) Trisuli and Rara (d) None of these

7. If you rearrange the letter in "HRAAOPK' you would have the name of city of Nepal.

(a) Delhi (b) Pokhara (c) Kolkota (d) New York

Answer Sheet
1. d 2. c 3. d 4. c 5. c 6. c 7. b

2. NON-VERBAL REASONING TEST
a) Analogy Test

Find the relation between first and second figure and then find out the relation between third and
fourth figure.

Example 1

lbPsf] lrqaf6 klxnf] / bf]>f] lrqsf] qmd kQf nufO{ To;n} fO{ cfwf/ dfg]/ t]>f] / rfy} f] lrqsf] lgdf0{ f
ug'{xf;] \ .

?

A BC D 1 23 4 5

A eGg] lrq To;df ePsf ;Dk0" f{ sg' fdf afl9Psf] 5 ToxL cfwf/df ca lrq D klg lrq 3 sf] ljleGg
sg' fsf cfwf/df af9Lg' k5{ < pQ/ -4_



Fig (A) is divided into as many parts as the number of sides in the figure, to get fig. (B) similarly,
fig (4) will be obtained when fig. (C) is divided into as many parts as the number of sides in fig.
(C). Hence, fig (4) is the answer.

EXERCISE -1

1.

?

A BC D 1 23 4 5

2.

?

A BC D 1 23 4 5

3.

?

A BC D 1 23 4 5
4.

5. 1 23 4 5
1 23 4 5
? 1 23 4 5
1 23 4 5
A BC D 1 23 4 5

6.

?

A BC D

7.

?

A BC D

8.

?

A BC D

9.

?

A BC D

10.

?

A BC D 1 23 4 5

11. (a) (b) (c) (d)

? (a) (b) (c) (d)
(a) (b) (c) (d)
A B CD (a) (b) (c) (d)

?12. (a) (b) (c) (d)
(a) (b) (c) (d)
A BC D (a) (b) (c) (d)
(a) (b) (c) (d)
?13. (a) (b) (c) (d)

A BC D

14. ?

A BC D

?15.

A BC D

?16.

A BC D

17. + ?
+-
A BC D

?18.

A BC D

?19.

A BC D



20. (a) (b) (c) (d)
(a) (b) (c) (d)
?21. (a) (b) (c) (d)
(a) (b) (c) (d)
A BC D
(a) (b) (c) (d)
22. ? (a) (b) (c) (d)
(a) (b) (c) (d)
A BC D (a) (b) (c) (d)
(a) (b) (c) (d)
23. ?

A BC D

?24.

A BC D
25.

?26.

A BC D

27. ?

A BC D

28. ?

A BC D

29. ?

A BC D

?30.

A BC D

31.

32. ?

A BC D (a) (b) (c) (d)

lbPsf] pQ/ x]/L vfnL 7fpdF f ;lx pQ/ /fVgx' f];\ .

?33. ?
I II III IV I IV I IV I IV I IV I IV

AB C D E

?34. ? I IV I IV I IV I IV I IV

I II III IV A B C D E

35.

?36. ? I IV I IV I IV I IV I IV

I II III IV A B C D E

?37. ? I IV I IV I IV I IV I IV

I II III IV A B C D E

1. 1 Answer / Figure (Analogy)
2. 5
3. 1 aflx/L cfs[lt (135° (CW) / leqL cfs[lt 135°(ACW) n] 3'd]sf] 5 .
bfofF efusf] cfwf lrq x/fPsf] 5 / ar]sf] cfwf efu sfnf] kfl/Psf] 5 .
4. 2 klxnf] lrqdf eGbf bf];|f] lrqdf ps sd eh' f /xs] f 5g\ / leq ePsf b'O{j6f uf]nf] Circle
5. 4 aflx/ cfP/ leq sfnf] uf]nf] 5 .
6. 4 klxnf] lrq (45°) (ACW) n] 3d' ]sf] 5 .
7. 1 klxnf] lrqdf hltj6f side x? 5g\ Tolt g} uf]nf] efu lardf kg{] u/L /flvPsf] 5 .
8. 5 klxnf] lrqdf cfvF fsf] x/] fO{ bf];|f] lrqdf ljkl/t 5 .
klxnf] lrq (90°) (CW) n] 3d' ]sf] 5 / To;sf] aflx/ Ps sd eh' f cfP/ a;]sf 5 .
klxnf] lrqsf] P]gfdf cfs[lt bf;] f| ] lrq xf] .



9. 5 klxnf] lrqsf] aflx/L efu 180° n] 3'd]sf] 5 / dflysf] efu ;dfg /x]sf] 5 .
10. 1 klxnf] lrqnfO{ ljleGg /v] fn] sfl6Psf] 5 .
11. b klxnf] lrqdf ePsf] leqL efu aflx/ cfpF5 .
12. b klxnf] lrqdf Pp6f circle 5 bf];|f]df Pp6f lqe'h To;}u/L 2 j6f lqe'h 2 j6f Ciicle
13. d klxnf] lrqsf] aflx/L efu hf8] \bf bf];|f] aG5 .
14. b klxnf] lrqnfO{ 90°cw 3'dfP/ ljraf6 sf6]n tn / dfly kmsfP{ / /flvPsf] 5 .
15. d klxnf] lrqdf ePsf] aflx/ lrq bf;] f| ]df leq uP/ aflx/ gofF lrq cfPsf] 5 .
16. a klxnf] lrqdf leq ePsf] lqe'h bf;] f| ] lrqdf b'Oj{ 6f eP/ aflx/ kms]s{ f] 5 .
17. a klxnf] lrq leq ePsf km/s km/s lrqx? clGtdsf] cufl8 uP/ a;s] f] 5 .
18. a klxnf] lrqdf ePsf] cfs[lt bfofF / afofF kl/jt{g ePsf] 5 .
19. d klxnf] lrqdf b'O{ efu hf]l8P/ bf;] f| ] lrq ags] f] 5 .
20. d klxnf] lrq 90°CW n] 3d' ]sf] 5 / To;sf] dfly /x]sf] lrq tn kms{]/ b'Oj{ 6f ag]sf] 5 eg]
tnsf] lrq dfly uP/ ;'N6f] ePsf] 5 .
21. c klxnf] lrq s'g} 7fpdF f ePsf] lrq kl/jt{g ePsf] 5g} ToxL 7fpF xg] ]{ .
22. d klxnf] lrqdf ePsf] aflx/sf] lrq leq uPsf] 5 / leqsf] lrq aflx/ cfPsf] 5 .
23. b klxnf] lrqsf] tnsf] Ps nfOg sf6/] hf]8]sf] 5 / leqL efu ljkl/t uPsf] 5 .
24. a klxnf] lrqsf b'O{ leGg efu hf]l8P/ k/' f ul/Psf] 5 .
25. c klxnf] lrqdf ePsf] ;fgf] aS; cfsl[ t (CW) lt/ b'O{ step move ePsf] 5 .
26. a klxnf] lrqsf] ljkl/t lrq bf;] |f] ag]sf] 5 .
27. a klxnf] lrqsf] leqL efu x6fP/ bf;] f| ] lrq ag]sf] 5 .
28. a klxnf] lrqnfO{ b'O{ a/fa/ efudf sf6/] cufl8sf] efu k'/} sfnf] ul/Psf] 5 / lardf tn
lbOPsf] ;fgf] lrqnfO{ /flvPsf] 5 .
29. c klxnf] lrqdf ePsf] cfs[ltnfO{ b'O{ agfP/ Pp6f ;fgf] Pp6f 7n" f] agfP/ hf8] /] /flvPsf] 5 .
30. c klxnf] lrq 90° (ACW) n] 3'd]sf] 5 .
31. b lbOPsf] lrq o;/L kl/jtg{ ul/Psf] 5 .

Similarly

32. d klxnf] lrqsf] e'hf Ps a9]/ bf];f| ] lrq ag]sf] 5 / p:t} lrqx? vlK6P/ a;s] f 5g\ .
33. a
34. a o:tf] lrqdf (III) sf] lbzfnfO{ x/] /] (I) agfpgk' 5{ / (II) sf] lbzfnfO{ x]/]/ (IV) agfpgk' 5{ .

35. (III) sf] lrq tn kms]{sfn] ] klxnf] lrq tn kmsfpg' k5{ / (II) sf] lrq dfly kms]{sfn] ] (IV)
dfly kmsfp{ g' k5{ .

(III) sf] lrq x/] /] klxnf] lrq Pp6f dfly Pp6f leqL tn kmsfp{ g' k5{ / (II) sf] lrq x]/]/
(IV) nfO{ b'Oj{ 6} lrq dfly kmsf{pg' k5{ .

b) Analytical Reasoning Test

1. -Hofldlto lrqx¿ ;DaGwL ;d:ofsf] ;dfwfg_
tn lbPsf] lrqsf] ;/n /]vf kQf nufpgx' f;] \ . Find the number of straight line in the following figure

ABC

H J D
I

Gf e

Cleary in this figure horizontal lines namely -7f8f] /]vf_ = AG + BF + CE = 3

Vertical lines namely -t;] f| ] /]vf_ = AC + HD + G = 3

Slanting lines namely -58s\ ] /]vf_ = AD + AE + GC + GD + CD + CE = 6

There are 3 + 3 + 6 = 12 straight lines

2. lqe'h (Triangles)
Formula nfUg] lqe'hx¿

Type 1.

o:tf] lqe'hdf 1 + 4n nufpg] n = leqL lqe'h

=1+4×2=9

Type 2.

o:tf] lqe'hdf 3n formula nufpg]
n = 6'Kkf]x¿sf] km/s

3n = 3 × 4 = 12

Type 3.

o:tf] lqeh' df 3n formula nufpg]
n = nfOgx¿sf] Uofk

3n = 3 × 3 = 9

Type 4

o:tf] lqeh' df (1n ) formula nufpg]

=5

Type 5

o:tf] lrqaf6 lqe'h kQf nufpgsf] nflu 4n formula nufpg] h;df
n = leqL efudf ePsf l;wf /v] fx¿ x'g\ .



Type 6

o:tf] lrqdf lqe'h kQf nufpgsf] 2n formula nufpg] h;df

n = tf/fsf rR' rfx] ¿ xg' \

2n = 2 × 5 = 10

Type 7

o:tf] lrqdf lqeh' kQf nufpgsf] nflu

n(n + 1) formula nufpg]
2

Type 8

tn lbOPsf lrqdf lqeh' sf] ;ª\Vof slt xG" 5 <

o:tf] lrqdf lqeh' kQf nufpgsf] nflu  nn  1  3 formula k|of]u ug{ ;lsG5 .

2

Type 9

tn lbOPsf lrqdf lqe'hsf] ;ªV\ of slt xG' 5 <

n=4

Pp6f :ffO8df ePsf Point x¿
olb n hf/] 5 eg] o:tf] lrqdf lqe'hsf] ;ª\Vof kQf nufpgsf] nflu of] Formula k|ofu] ug{ ;lsG5 .

   n 2n2  n  2  4 2 42  4  2  432  6  4 26 13
8 8 88

Type 10

tn lbOPsf] lrqdf lqe'hsf] ;ªV\ of slt xG' 5 <

olb n lahf/] 5 eg] o:tf] lrqdf lqeh' sf] ;ªV\ of kQf nufpgsf] nflu of] Formula ko| fu] ug{ ;lsG5 .

(n2 – 1) (2n – 1)

8

(52 – 1) (2 × 5 – 1) (25 – 1) (10 – 1)
=8 =8

24 × 9
=8 = 27

Formula nufpg gldNg] t/ lqe'h kQf nufpg' kg]{ lrqdf lqe'h kQf nufpg] tl/sf

B C ;'?df singl Traingle uGg] = ABE, BEF, EFC, CDE & AED = 5
F ca bO' { j6f Traingle hf8] \g] lrq uGg] = ABF + BCE + ACe & ABD = 4
ca tLg j6f Traingle hf8] \g] lrq uGg] = AFC + BCD = 2
E
;a} hf8] \bf 5 + 4 + 2 + 1 = 12
AD

 pQm lrqdf 12 j6f 5g\

@= jus{ f] ;+Vof kQf nufpg] (Square)

lrqx¿ bO' { lsl;dsf x'G5g\ . Regular / Non- regular

Square lrqsf] nflu

olb Row / Column a/fa/ ePsf] lrq Regular x'G5 o:tf] cj:yfdf

o:t} u/L

o:tf] lrqdf Row eGbf Column a9L xF'bf

klxnf 3 × 3 sf] ?knfO{ k/" f ug{]

3×4 32 + 22 + 12 +( 3 + 2 + 1)×1

= 14 + 6 = 20

Non - Regular Figure df

11 klxnf] aflx/ lg:ss] f] lrqdf 1 + 2 hf]8g\ ] = 3 + 1 x'G5
22 bf]>f] aflx/ lg:ss] f] lrqdf 1 + 2 hf]8g\ ] = 3 + 1 ug]{ .
ca k'0f{ lrq x]g{] h;df lrqdf 1 + 2 + 3 + 4 hf8] g\ ] = 4 + 3 + 2 + 1 = 10
3 ca k/' } hf8] g\ ] 10 + 4 + 4= 18
41

2



Example 1: What is the number of straight lines in the following figure?

a. 10 b. 12 c. 13 d. 17
Solution: We shall label the figure as shown below: d. 19

AB C

H D
IJ

OF E

Clearly, in this figure:

There are 3 horizontal lines namely AG, BF and CE.

There are 3 vertical lines namely AC, HD and GE.

There are 6 slanting line namely AD, A, GC, GD, CD and C.

There are 3 + 3 + 6 = 12 straight lines in all

Hence the answer (b)

1. a. 16 b. 17 c. 18

Some Practice Questions

tn lbOPsf] lrqdf lqe'hsf] ;ª\Vof slt xG' 5 <

1. 2. 3.

a. 10 b. 11 a. 15 b. 17 a. 15 b. 18
c. 12 d. 14 c. 10 d. 12 c. 20 d. 21
4.
5. 6.

a. 5 b. 7 a. 12 b. 11
a. 10 b. 11 c. 10 d. 9
c. 12 d. 15 c. 10 d. 8
7. 8.
9.

a. 8 b. 20 a. 38 b. 32 a. 10 b. 13
c. 24 d. 28 c. 28 d. 44 c. 15 d. 17
10. 11.
12.

a. 16 b. 17 a. 7 b. 12 a. 13 b. 16
c. 18 d. 20 c. 13 d. 17 c. 18 d. 21
13.
14. 15.

a. 12 b. 10 a. 14 d. 16 a. 30 b. 40
c. 8 d. 4 c. 21 d. 27 c. 45 d. 48
16. 17.
18.

a. 12 b. 16 a. 16 b. 17 a. 28 b. 32
c. 21 d. 18 c. 18 d. 20 c. 36 d. 38

19. 20.

a. 7 b. 9 a. 7 b. 8
c. 9 d. 11
c. 11 d. 5

tn lbOPsf] lrqdf jus{ f] ;ª\Vof slt xG' 5 < 3.

1. 2. –

a. 54 b. 50 a. 24 b. 26 a. 55 b. 40
c. 55 d. 60 c. 28 d. 30 c. 50 d. 60
4. 5.
6.

a. 40 b. 45 a. 50 b. 54 a. 14 b. 15
c. 44 d. 46 c. 60 d. 48 c. 16 d. 18

EXERCISE 1

lbOPsf] lrqdf sltj6f ;/n /]vf xf]nfg\ . Find the minimum number of straight lines.

1. 2.

(a) 16 (b) 17 (a) 11 (b) 14
(c) 18 (d) 19 (c) 16 (d) 17
4.
3.

(a) 9 (b) 11 (a) 13 (b) 15
(c) 15 (d) 16 (c) 17 (d) 19

lbOPsf] lrqdf sltj6f lqe'h xfn] fg\ . Find the number of triangles.

5. 6. 7.

(a) 4 (b) 5 (a) 5 (b) 6 (a) 16 (b) 13
(c) 6 (d) 7 (c) 8 (d) 10 (c) 9 (d) 7

8. 9. 10.

(a) 15 (b) 16 (a) 8 (b) 10 (a) 11 (b) 13
(c) 17 (d) 18 (c) 12 (d) 14 (c) 15 (d) 17
12.
11. 13.

(a) 2((ca7)) 27 (((bdb)) )322808 (a) 36 (b) 40 (a) 16 (b) 18
29 (d) 30 (c) 44 (d) 48 (c) 14 (d) 15

(c) 29 15. 16.

14.

(a) 12 (b) 18 (a) 8 (b) 10
(c) 22 (d) 26 (c) 12 (d) 14

(a) 21 (b) 23
(c) 25 (d) 27



17. 18. 19.

(a) 22 (b) 24 (a) 27 (b) 25 (a) 10 (b) 19
(c) 26 (d) 28 (c) 23 (d) 21 (c) 21 (d) 23
20. 21.
22.

(a) 12 (b) 13 (a) 18 (b) 20
(c) 14 (d) 15 (c) 28 (d) 34

23. (a) 8 (b) 10 25.
(c) 11 (d) 12
24.

(a) 28 (b) 20 (a) 11 (b) 13 (a) 16 (b) 18
(c) 24 (d) 27 (c) 15 (d) 17 (c) 19 (d) 21
27.
26. 28.

(a) 20 (b) 24 (a) 23 (b) 27
(c) 28 (d) 32 (c) 29 (d) 31

(a) 10 (b) 12 31.
(c) 14 (d) 16
29.

(a) 28 (b) 32
(c) 36 (d) 40

(a) 34 (b) 36
(c) 35 (d) 32

lbOPsf] lrqdf sltj6f ju{ xfn] fg\ . Find the number of squares.

32. 33. 34.

(a) 6 (b) 7 (a) 32 (b) 30 (a) 8 (b) 12

(c) 9 (d) 10 (c) 29 (d) 28 (c) 15 (d) 18

35. 36. 37.

(a) 18 (b) 19 (a) 12 (b) 13 (a) 11 (b) 21
(c) 25 (d) 27 (c) 16 (d) 17 (c) 24 (d) 26
38. 39.

(a) 13 (b) 16 (a) 22 (b) 20
(c) 19 (d) 20 (c) 18 (d) 14



tn lbOPsf] lrqdf rt'e'hsf] ;V+ of kQf nufpg'xf;] \ . 42.

40. 41.

(a) 100 (b) 150 (a) 32 (b) 30 (a) 15 (b) 18
(c) 80 (d) 30 (c) 40 (d) 35 (c) 19 (d) 20
43.
44.

(a) 8 (b) 9

(c) 7 (d) 5

(a) 18 (b) 17

(c) 19 (d) 20

jfl} 4s k/LIff -cfO={So_" . . . . . 501

45. In the adjoining figure, If the centre of all the circles are joined by
horizontal and vertical lines, then find the number of squares that
can be formed.

(a) 6 (b) 7
(c) 8 (d) 1

46. Find the number of 47. 48.
triangles of these
figures.

(a)27 (b) 20

(c) 21 (d) 18 (a) 21 (b) 13
(c) 15 (d) 17
(a) 12 (b) 20
(c) 22 (d) 24

In each of the following question count the number of triangles and square in the given
figure.

49. 50.

(a) 28 triangles, 10 squares (a) 44 triangles, 10 squares
(b) 28 triangles, 8 squares (b) 14 triangles, 16 squares
(c) 32 triangles, 10 squares (c) 27 triangles, 6 squares
(d) 32 triangles, 8 squares (d) 36 triangles, 9 squares
51. 52.

(a) 28 triangles, 3 squares (a) 26 triangles, 5 squares
(b) 34 triangles, 5 squares (b) 28 triangles, 5 squares
(c) 28 triangles, 5 squares (c) 26 triangles, 6 squares
(d) 24 triangles, 8 squares (d) 28 triangles, 6 squares

502 . . . . . c;O{ k/LIff bk0{ f 54.

53.

(a) 36 triangles, 7 squares (a) 21 triangles, 7 squares
(b) 38 triangles, 9 squares
(c) 40 triangles, 7 squares (b) 18 triangles, 8 squares
(d) 42 triangles, 9 squares
(c) 20 triangles, 8 squares
55. How many circles are there in the
adjoining figure? (d) 22 triangles, 7 squares

56. Consider the adjoining diagram:

What is the minimum number of colours
required to fill the spaces in the diagram
without any two adjacent spaces having the
same colour?

(a) 11 (b) 12 (c) 13 (d) 14 (a) 6 (b) 5 (c) 4 (d) 3

57. Consider the adjoining diagram:
What is the minimum number of
different colours required to paint the
figure given above such that no two
adjacent regions have the same colour?

(a) 3 (b) 4 (c) 5 (d) 6

jfl} 4s k/LIff -cfO={So_" . . . . . 503

ANALYTICAL REASONING

EXERCISE -1 ANSWER SHEET

1.B 2.B 3.B 4.A 5.B 6.D 7.A 8.C 9.C 10.C

11. B 12.D 13.B 14.B 15.D 16.D 17.D 18.A 19.C 20.D

21.B 22.C 23.C 24.C 25.D 26.C 27.C 28.C 29.C 30.

31.B 32.C 33.B 34.C 35.D 36.D 37.C 38.B 39.C 40.A

41.B 42.C 43.B 44.A 45.C 46.C 47.A 48.A 49.C 50.A

51.C 52.C 53.C 54.A 55.C 56.D 57.A

c) Classification Test/Odd One Out Test

lbPsf lrqx¿dWo] sg' } Ps km/s lrq kQf nufpgx' f];\ .

Example 1

(a) (b) (c) (d) (e)

Solution: In this case, all the figures, except fig (e) can be rotated into each other. Hence, fig (e) is
the answer.

;a} lrq qmd ldnfP/ 3'd]sf 5g\ eg] lrq (e) rfxL 5g} . To;n} ] pQ/ (e)

EXERCISE-1
1.

(a) (b) (c) (d) (e)

2.

(a) (b) (c) (d) (e)

3.

(a) (b) (c) (d) (e)


504 . . . . . c;O{ k/LIff bk{0f

4.

AF Z EN

(a) (b) (c) (d) (e)

5.

(a) (b) (c) (d) (e)

6.

(a) (b) (c) (d) (e)

7.

8.

(a) (b) (c) (d) (e)

9. x x x xx x

xx x x

(a) (b) (c) (d) (e)

10.

(a) (b) (c) (d) (e)

11.

(a) (b) (c) (d) (e)

jf}l4s k/LIff -cfO{=So_" . . . . . 505

12.

D
(a) (b) (c) (d) (e)

13.

(a) (b) (c) (d) (e)

14.

(a) (b) (c) (d) (e)

15.

(a) (b) (c) (d) (e)

16.

(a) (b) (c) (d) (e)

17.

(a) (b) (c) (d) (e)

18.

(a) (b) (c) (d) (e)



506 . . . . . c;O{ k/LIff bk0{ f

19.

(a) (b) (c) (d) (e)

20.

(a) (b) (c) (d) (e)

Type 2

lbPsf] lrqx¿sf] qmd;Fu} ldng] lrq 5fGgx' f];\ .

21.

1 23 4 5
22.

1 23 4 5
23.

1 23 4 5
24.

1 23 4 5

25.

1 23 4 5

CLASSIFICATION EXERCISE -1
Answer sheet
1.D 2.A 3.A 4.D 5.C 6.D 7.B 8.B 9.C 10.A
11.C 12.D 13.E 14.B 15.A 16.D 17.A 18.C 19.C 20.E
21. 4 22. 2 23. 5 24. 3 25. 2

jf}l4s k/LIff -cfO{=So"_ . . . . . 507

1. (d) Answer (Classification) Figure
2. (a)
3. (a) lrq g+= # af6 kl/jtg{ eP/ csf{] lrq cfpg'kg{] ToxL lrq cfof] .
4. (d)
5. (c) ;a} lrqsf] tNnf] efu sfnf] kl/Psf] 5 'a' sf] dflysf] efu sfnf] 5 .
6. (d) ;a} k/' f lrq x'g\ eg] 'a' df ePsf] lrq cfwf 5 .
7. (b)
;a} Alphabet # j6f l;wf /v] fn] ags] f 5g\ t/ E rflx rf/j6f l;wf /v] fn] ag]sf] 5 .
8. (b)
9. (c) ;a} (cw) n] a9]sf /]vf x'g\ eg] 'c' df ePsf] /v] f (ACW) n] a9]sf] 5 .
10. (a) ;a}n] Angle agfpF5g\ t/ 'd' df ePsf lrqx/ ljkl/t lbzfdf uPsf 5g\ .
11. (c)
;a} lrqdf aflx/eGbf leq Ps a9L e'hf /xs] f 5g\ t/ 'b' df aflx/eGbf leq Ps sd
12. (d) e'hf 5 .
;a} lrq Straight line n] ag]sf 5g\ t/ 'b' df circle 5 .
13. (e)
;a} lrqdf 'x' ljkl/t lbzfdf 5 t/ 'c' df Pp6} side df /x]sf] 5 .
14. (b) lrq g+= (a) df circle 5 c?df 5g} .

15. (a) ;a} lrqx? p:t} p:t} lrq vlK6P/ ags] f 5g\ t/ 'c' df km/s km/s lrq ldn]/ a;]sf
5g\ .
16. (d) leqL lrqsf] r'Rrf] aflx/L Arrow sf] rR' rf] ;a}df Pp6} bzfdf a;s] f 5g\ t/ (d) sf]
lrqdf km/s lbzfdf b]vfp5F g\ .
17. (a) ;a} lrqdf ePsf b'O{j6f arrow x? ljkl/t lbzf b]vfp5F g\ t/ (e) lrqdf ePsf Arrow
18. (c) x? Pp6} lbzf b]vfp5F g\ .
19. (c) ;a} lrqsf] cfwf efu sfnf] ljkl/t side df /flvPsf] 5 t/ (b) df Pp6} side df
20. (e) /flvPsf] 5 .
21. 4
;a} lrqsf] leqL efu cfwf sfnf] dfly / cfwf sfnf] tn /fv]sf] 5 t/ (a) df ePsf]
22. 2 lrqsf] bj' s} f] cfwf sfnf] tn /flvPsf] 5 .
23. 5
24. 3 ;a} lrqsf] Pp6f ufn] f] leq /flvPsf 5 eg] (b) df ePsf] lrqsf] ;a} ufn] f] aflx/
25. 2 /flvPsf] 5 .

;a} lrqn] ljrdf Pp6f sg' fnfO{ 5f]8s] f 5g\ t/ (a) df ePsf] lrqn] 5f8] ]sf] 5}g .
;a} lrqsf] Pg] fsf] cfs[lt 5 t/ (c) sf] 5}g .

;a} lrqdf leq ePsf] sfnf] efun] cfk;df xG' 5 t/ (c) df ePsf] lrqn] xF'bg} .

;a} lrqx? (cw) n] 3'd]sf 5g\ t/ (e) df ePsf] lrq (ACW) n] 3'd]sf] 5 .
o:tf] lrqdf cufl8 lbOPsf lrqsf] agfj6 x/] ]/ To:t} agfj6 ePsf] lrq 5fGgk' 5{ .
o;df ;a} lrq cfwf cfwf u/L al9Psf] 5 .
aflx/L lrqeGbf leq Ps sd eh' f /xs] f 5g\ .

aflx/L lrq h:tf] 5 leq ToxL sfnf] 5 .

;ad} f hf]/ ;V+ ofdf ufn] f]x? /x]sf 5g\ .
aflx/ hlt e'hf /xs] f 5g\ leq Toltg} efudf afl9Psf] 5 .

d) Series Test



508 . . . . . c;O{ k/LIff bk{0f

klxnf] kZ| gdf lbOPsf lrqx? qmdsf cfwf/df /flvPsf] xG' 5 To;}nfO{ cfwf/ dfg]/ lbOPsf ljsNkdWo] Pp6f
;xL ljsNk 5gf]6 ug{] .

Example 1

ABCDE 12345

Solution:

The smaller arrow rotates through 90° ACW and 45° ACW alternately while the larger arrow
rotates through 135° CW in each step. Hence, the answer is fig (4)

Example 2

ABCDE 12345

Solution:

In each step, the circle moves to the adjacent corner (of the square boundary) in an ACW direction
while the other element moves to the adjacent corner in a CW direction. Clearly, fig. (4) is the
answer.

Exercise: 1
1.

ABCDE 12345
2.

3.

4.

ABCDE 12345

5. C xC = C C CC C
#x
C x = x CT =T = =T = T =
C

ABCDE 12345

jf}l4s k/LIff -cfO{=So"_ . . . . . 509

6.

ABCDE 12345

7. + + + + ++ +++ ? ++++ ?

+ ++ ? +++ ++++ ? ++++

ABCDE 12345

8.

ABCD 12345

9.

ABCD 12345

10. 12345
12345
?

ABCD

11.

?

ABCD

12.

13. 12345

?

ABCD

14.



510 . . . . . c;O{ k/LIff bk0{ f

15.

12 34 5

16.

12 34 5

17.

12 34 5

18.

12 34 5

?19. Z

A BC D 1 2 34

20 ? 1 2 3 45
1 2 3 45
A BC D
1 2 3 45
21. ?
1 2 3 45
A BC D

22. ?

A BC D

23. ?

A BC D

24. ? D jfl} 4s k/LIff -cfO{=So"_ . . . . . 511
D
A BC D 1 2 3 45

25. + ? D - + - + +-

A BC D 1 2 3 45
D
26. ? D 1 2 3 45

A BC 1 2 3 45
C
27. ? C

A BC 1 2 3 45

28. S? 1 2 3 45

CS 1 2 3 45

A BC

29. ?

A BC

30. ?

A BC
31.

32. ? 1 2 3 45

A BC D 1 2 3 45

33. ? –

A B C DE

512 . . . . . c;O{ k/LIff bk{0f

34.

35. ? 1 2 3 45
1 2 3 45
A B C DE

36. ?

A B C DE
37.

38. ? 1 2 3 45

A B C DE

Answer / Figure (Series)

1. 5 The arrow moves one, two, three, four …… spaces (ACW) sequentially. The
arrowhead changes in the sequences, circle  arc  triangles  circles……

2. 5 ;fgf] /v] flrq;uF hf]l8Psf] 5 / Tof] 2, 1, 3, 1, 4 ….. ub{} 38Lsf] lbzf tkm{ cufl8 al9/xs] f]
5.

3. 3 lbOPsf] >]0fLdf ePsf] lrq 90°, 45°….. ubf{ (cw) n] a9s] f] 5 / leqL sfnf] efun] side
change ub}{ cufl8 a9s] f] 5 .

4. 2 kT| os] k6s Pp6f yk /]vfn] side change u/]sf] 5

5. 4 lbOPsf] >0] fL leq ePsf lrqx? o;/L kl/jt{g ePsf 5g\

/
kT| os] k6s km/s tl/sfn] kl/jtg{ xF'b} ljrdf gofF lrq ylkFb} cfPsf] 5 .

6. 4 kT| o]s k6s ePsf] lrq 7n' f] xG' 5 / leq gofF lrq cfp5F km/] L leqsf] lrq aflx/ cfpF5
To;kl5 Tof] lrq 7'nf] x'G5 / leq gofF lrq cfp5F .

7. 2 k|Tos] k6s ;'?sf] lrq pN6f] xF'b} cufl8 a9s] f] 5 / '+' sf] ;V+ of a9b\ } upsf] 5 eg] leqL
lrq km/s xFb' } cfPsf] 5 .

8. 5 k|Tos] k6s lbOPsf] cube sf] ;+Vof ylkbF } uPsf] 5 .

9. 4 k|To]s k6s >]0fLdf lbOPsf] Arrow ljkl/t lbzftkm{ 3d' ]sf] 5 .

jf}l4s k/LIff -cfO={So"_ . . . . . 513

10. 2 k|Tos] k6s lrqx? 1, 3, 5 ….. n] ;V+ of a9]sf] 5 .

11. 5

lbOPsf] >]0fLdf ePsf lrqx? of] qmdn] cufl8 a9]sf] 5 .

12. 2 >]0fLdf klxnf] lrqdf ePsf] leqL eh' f aflx/ cfpF5 / leq gofF lrq cfp5F To;/L g}
13. 2 cufl8 a9L/x]sf] 5 .
14. 5
15. 3 lrqdf lbOPsf] rGbd| f cfs[lt kT| o]s k6s 90° (ACW) sf b/n] kl/jtg{ ePsf] 5 / leq
ePsf] ;fgf] lrq aflx/ cfpF5 / leq gofF lrq cfp5F .
16. 5
17. 4 o:tf] >0] fLdf xfdLn] lbOPsf] >]0fLdf s'g} lrqn] qmd eªu\ u/s] f] xG' 5 Tof] qmd eª\u ug{]
18. 4 lrq kQf nufpg'k5{ . lbOPsf] lrqdf (Arrow) +1, +1, +2, +2, ….. n] a9]sf] 5 .

19. 2 lbOPsf] lrqdf z?' df cufl8sf] ;fO8df Pp6f nfOg cfp5F Tof;] uF } bf];|f] nfOgdf cufl8
20. 5 Pp6f k5fl8 Pp6f u//] nfOg cfp5F To;kl5 km/] L cufl8 bO' j6f k5fl8 Psj6f nfOg
cfpF5 To;q} mddf a9b\ f # gDa/ lrqdf cufl8 b'Oj{ 6f k5fl8 b'O{ j6f xg' k' g{] lyof] . ePg .
21. 3
l;wf /]vfx? k|Tos] Step df Ps Pssf b/n] jl[ 4 ePsf] 5 .

lbOPsf] >]0fLdf lrq g=+ 3 / 4 p:t} 5g\ >]0fL kl/jtg{ x'gk' g]d{ f p:t} eof] .

o:tf] >]0fLdf larsf] qmd 56' s] f] x'G5 Tof] xfdLn] kQf nufpgk' 5{ . o; lrqdf klxnf] lrqdf
dflysf] efudf ePsf] lrq x/fp5F / tnsf] lrq dfly uP/ pN6f] xG' 5 To;/L g} lrq cufl8
al9/x]sf] 5 .

lbOPsf] lrq 90° (cw) n] cufl8 a9s] f] 5 / leq ePsf] uf]nf] cfsl[ t k|To]s gofF lrqdf
sfnf] / km]/L uf]nf] dfq xb'F } cufl8 a9s] f] 5 .

lbOPsf] lrqdf klxnf] lrqdf aflx/ rf/j6f lqeh' /xs] f 5g\ / leq Pp6f ju{ /x]sf] 5 .
h'g bf];f| d] f hfbF f Pp6f lqe'h x/f5F / leq Pp6f l;wf /v] f ylkG5 / k|Tos] k6s lqeh' n]
lbzf kl/jtg{ u/s] f] 5 .

k|Tos] k6s lqe'hg, ;sn{ / ju{ Ps Ps :yfg 3d' ]sf] 5g\ M

22. 4 lbOPsf] lrqdf ;sn{ ljkl/t s'gfdf uPsf] 5 . Arrow 90° (cw) / 90° (Acw) kT| o]s
23. 5 k6s ju{sf] ljrsf] 58\s] /v] fdf tnb]lv dflylt/ a95\ .

In each step each one of the existing half pins gets rotated through 180° and one of

the existing line segments get converted to a half pin. The formation of half pins

occurs in a (cw) direction sequentially.

24. 2 lrqdf lbOPsf] rGbd| f 90°(Acw) sf b/n] a9]sf] 5 / leqL lrq aflx/ cfpF5 / leq gofF
25. 2 lrq cfpF5 .
26. 4
lbOPsf] lrqdf 'x' 90° (cw) n] cufl8 a9s] f] 5 / leq ePsf lrqx? k|Tos] k6s z'?sf]
lrq clGtddf cfPsf] 5 .

lbOPsf] lrqdf ePsf] lqeh' Ps Ps step n] move ePsf] 5 / kT| os] lrqdf pN6f] ePsf]



514 . . . . . c;O{ k/LIff bk0{ f

5 To;/L ;s{n Ps Ps step move ePsf] 5 / km/s lrqdf sfnf] / vfnL xFb' } cufl8
a9s] f] 5 eg] ju{ Ps Ps step move ePsf] 5 .

27. 5

lbOPsf] lrqdf ePsf lrqx?n] o;/L :yfg kl/jtg{ u/s] f 5g\ / afofF side sf]
dfly gofF lrq cfpF5 .

To;} u/L km]/L bf;] |f] lrq o;/L kl/jt{g ePsf] 5 / h;sf] dflysf] afofF side df
goflF rq cfpF5 .

28. 4 lbOPsf] >]0fLdf klxnf] k6s lrq 45° (Acw) 3D' 5 / sfnf] efu ePsf] lrq ylkG5 To;kl5
29. 4 kg' lrq 45° (Acw) 3'D5 / ;t] f] efu epsf] lrq ylkG5 .
30. 1
lbOPsf] lrqsf] klxnf] k6s dflyNnf] efudf ePsf / tNnf] efudf ePsf lrqx? tn dfly
31. 4 xG' 5g\ / To;kl5 dflyNnf] efudf / tNnf] efudf gofF lrq ylkg cfp5F .
32. 1
33. 2 lbOPsf] >]0fLdf ePsf] klxnf] lrqdf ePsf cfs[ltx? bf];f| ]df hfbF f klxnf] / bf;] f| ] cfs[lt
pN6f] eP/ kl/jtg{ ePsf 5g\ To;/L csf]{ lrqdf hfFbf bf;] f| ] / t];f| ] lrqdf ePsf cfsl[ t
34. 4 pN6f] eP/ kl/jtg{ xG' 5g\ .
35. 5
36. 1 lrqdf (Arc.) k|Tos] k6s (Acw) sf b/n] gofF ylkG5 / ePsf] (Arc) (cw) n] cufl8
37. 3 a95\ .

lrqdf leq k6L lbOPsf ;Dk0" f{ ;fgf lrqx? 90° (cw) n] cufl8 a9s] f 5g\ .

ylkg] 'L' cfs[ltsf] lrq 90° (Acw) sf b/n] cfp5F / lrqdf ePsf 'L' cfsl[ tx? o;/L
kl/jt{g xG' 5g\ .

146

258

36 9

kT| o]s k6s bfofF side df ePsf] Pp6f nfOg x/fp5F / afofF side df uP/ ylkG5 . afofF
side df kfnk} fnf] bfofF / afofFdf ylkFb} a9\5 .

lbOPsf] lrq 90° (cw), 135° (Acw), 180° (cw), 225°Acw …. n] kl/jt{g ePsf] 5 .
Arrow df ePsf nfOgx? –1, +2, –3, +4 n] a9]sf 5g\ .

hexagon df ePsf nfOgx? (cw) n] a9s] f 5g\ / aflx/ corner df ePsf] nfOg{ (cw) n]
a9]sf] 5 / klxnf,] t;] |f] / kfrF f}df Ps Psn] a9]sf] 5 .

lbOPsf] lrqdf leqsf] lrq aflx/ cfpF5 / 7n' f] x'G5 eg] leq gofF lrq cfpF5 olx qmdn]
cufl8 a9s] f] 5 .

e) Venn Diagrams

jf}l4s k/LIff -cfO{=So"_ . . . . . 515

lbOP{ sf item x? nfO{ ;dx' df /fVg], 56' \ofpg] ,pk;dx' x?df laefhg ug{] ,l;knfO{ lrqsf] dfWod af6
b]vfOG{ 5 .

1. olb klxnf] bf;] |f]sf] ;b:o xf] t/ t;] f| ] 5§' } 2. -olb klxnf] bf;] f| ]sf] ;b:o xf] t/ t];f| ] bj' ;} uF

ePdf o;/L b]vfOG5 _ If one item belongs s]xL cy{df ;DalGwt ePdf o;/L bv] fOG5_

to the class of second but third item is If one item belong to the class of second

entirely different from two the venn and the third item is partly related to

diagram is shown as below these two the diagram is shown as below.

BC B
AC
A

Eg: , df5f , XjOn{ , ufx] L Eg: women, mother, Engineers

3. -olb b'O{ j6f cfO6dx? Ps cfk;df 4. -olb tLg j6} cfO6dx? Ps csf{d] f

;DlaGwt 5g} g\ t/ b'j} t];|fs] f] ;b:o xg' \ eg] ;DalGwt ePdf o;/L bv] fOG5_ If given
o;/L bv] fOG5_ If two separate items
three items are partly related to each

belongs to the class of third .They are other they are represented as below

represented by two disjoint circle inside AB
a bigger circle as below

C C
AB
Eg: Boys, Chess player, Student

Eg: Family, Father, Mother

5. -olb klxnf] / bf;] f| aLr sx] L ;DaGw 5g} t/ 6. -olb @ j6f cfO6d aLr s]xL ;DaGw 5 t/

b'j} t];f| ;] Fu sx] L cyd{ f ;DalGwt 5 eg] bj' } t];f| ]sf] ;b:o xf] eg] o;/L b]vfOG5 _If
o;/L b]vfOG5 _ If the two items are partly
two items belongs to the class of third

related to the third but are in dependent such that some items of each of these

of each other they are represented by two group are common relationship, then

three indersecting circles in a line the venn diageam is represented

A BC AB

Eg: School, Boys, Girls C

Eg: Women, Mother, Widow

7. -olb # j6f cfO6dx? Ps cfk;df ;DlaGwt 8. -olb klxnf] bf];|fs] f] ;b:o xf,] bf;] f| ] t;] f| ]sf]
5}gg\ eg] o;/L b]vfOG5_. If the items ;b:o xf] eg] o;/L b]vfOG5_ If one item

belongs to the different groups, we belong to the class of second and the

repress the Venn diagram as below seers belongs to the class of third. Then

we represent the Venn diagram in the

form of three consent circles as veils.

A BC
Eg: (a) Man (b) Cat (c) Fish



516 . . . . . c;O{ k/LIff bk{0f

C
B
A

Eg : Year, month, week

9. -olb klxnf] bf;] f| s] f] ;b:o xf] t/ t;] |f] 10. olb klxnf] / bf];f| ] aLr s]xL ;DaGw 5 t;] |f]

bf;] |f;] uF dfq} ;DalGwt ePdf o;/L b]vfOG5 5'§} ePdf o;/L b]vfOG5 _If two item are
_ If one item belongs to the class of
partly related to each others are the item

second and the third item is party related is entirely different from the two. We

to the second, they are represented as repo resent the condition as below.

below

B

AC AB C

Eg: Mother, Doctor, Child

Eg: mother, Femals, Children

Exercise -1

b]xfosf] s'g eg] lrqn] tn lbPsf] ljsNkx?nfO{ ;xL tl/sfn] a'emfpF5 M

1. Family, wife, husband

AB C D
2. Asia, Nepal, Janakpur

AB C D
3. Human, Animal, Tree C D

AB

jfl} 4s k/LIff -cfO{=So_" . . . . . 517

4. Furniture, bed, Chair

AB C D
D
5. Family, Mother, Daughter

AB C

6. rf]/ , Gofolwz , ck/flw

AB C D
D
7. Jeep, Truck, Vehicle

AB C

8. Men, Uncles, Father

AB C D
9. House, Bedroom, Bathroom

AB C D
10. Hospital, Nurse, Patient
D
AB C


518 . . . . . c;O{ k/LIff bk{0f

11. Mother, Women, Child

AB C D

12. Authors, Teachers, men

AB C D
13. Automobiles, Cars, Motorcycle

AB C D

14. Smokers , Lawyers , Non Smokers

AB C D

15. Perennial sources of water , River , Canal

AB C D

16. Girl, Student, Athletes

AB C D

17. Tennis Fans, Cricket players, Students

AB C D


Click to View FlipBook Version