Newton Raphson Method
Third step: Repeat second and third step until Ixn+1- xnI < 0.0001
Ixn+1- xnI < 0.0001
Ix1- x0I <0.0001
I 0.909-1I < 0.0001 FALSE
I -0.091 I < 0.0001
n xn1 xn f (xn ) +1 − < 0.001
f '(xn )
01 0.0910
1 0.909 0.909 0.0080
2 0.901 0.0000
0.901
0.901
Therefore, the approximate root is x2 = 0.901
BFMI / JUN 2020 / DBM30043
Newton Raphson Method
Example 10 : The equation 2x3 5x2 4x sin x has a solution between -3 and -4. Use the
Newton Raphson method with x0 3 to approximate the solution to three
decimal places.
Solution : First step : Differentiate f (x) 2x3 5x2 4x sin x
f , (x) 6x2 10x 4 cos x
Second step : Substitute into
f (x) 2x3 5x2 4x sin x f , (x) 6x2 10x 4 cos x xn1 xn f (xn )
f '(xn )
f (x) 2(3)3 5(3)2 4(3) sin(3) f , (x0 ) 6(3)2 10(3) 4 cos(3) x1 3 2.859
19.010
2.859 19.010
3.150
BFMI / JUN 2020 / DBM30043
Newton Raphson Method
Third step: Repeat second and third step until Ixn+1- xnI < 0.0001
Ixn+1- xnI < 0.0001
Ix1- x0I <0.0001
I -3.150 –(-3)I < 0.0001
I -0.150 I < 0.0001 FALSE
n xn1 xn f (xn ) +1 − < 0.001
f '(xn )
0 -3 0.1500
1 -3.150 -3.150 0.0130
2 -3.137 0.0000
-3.137
-3.137
Therefore, the approximate root is x3 = -3.317
BFMI / JUN 2020 / DBM30043
THANK YOU