CHAPTER 2:
DIFFERENTIATION
Introduction
Expression: when differentiate, we write as:
Equation: y = when differentiate, we write as:
Function: = when differentiate, we write as: ′
a) Mesti ada KUASA = 5 3 3
b) KUASA mesti di ATAS 2
= 5
= 4 = 2 −4
c) 0 = 1 = 2 − − 2
2 5 2 5
d) Expand = + 2 1 −
d) Separate 2 5 − 2 + 5 = 2 − 2 + 2
= 2 3 − 1 + 5 −2
= 2
TRIGONOMETRIC
FUNCTION
CHAPTER 2: DIFFERENTIATION
Trigonometric Function
Reciprocal Identities Trigonometric Identities
2 + 2 = 1
= 1 + 2 = 2
2 + 1 = 2
1
=
1
=
1
= =
Trigonometric Function
Basic Derivatives
= = −
= − =
= 2 = − 2
Trigonometric Function
How To Derive Trigonometric Function
1. Differentiate trigo
= ∙ 1 2. Differentiate
1. Differentiate trigo
+ = + ∙ 2. Differentiate dlm kurungan
+ = −1 + ∙ + ∙
1. Differentiate KUASA
2. Differentiate trigo
3. Differentiate dlm kurungan
Trigonometric Function 1. Differentiate trigo
2. Differentiate
Example 7: Find the derivative
= ∙ 1
a) = 3 c) = 2 d) = 3 2 kuasa bawa
8 4 naik ATAS
3
= − 3 ∙ 3 = 3 2 −4
2 2 8
= −3 3 = 3 ∙ 3
3 − 2 −4 ∙ −8 −5
22 = 8
= 3 3
b) = 1 4 2
= 3 5
2
= 1 24 ∙ 4
2
= 2 2 1 − 4
Trigonometric Function 1. Differentiate trigo
2. Differentiate dlm kurungan
Example 7: Find the derivative = + ∙
+
a) = 3 + 2 b) = 5 + 3
= − 5 + 3 5 + 3 2
= − 3 + 2 3
= −3 3 + 2 = − 5 + 3 2 5 + 3
c) = 3 1 − 4 3 composite d) = 7 − 2
function 4
8
tukar btk
= 7 − 2 −4
= 3 1 − 4 3 3 1 − 4 2 −4
8
= 2 7 − 2 −4 −8 −5
9 1 − 4 2 1 − 4 3 = − 8 2 2
= −2 5 7 − 4
Trigonometric Function 1. Differentiate KUASA
2. Differentiate trigo
3. Differentiate dlm kurungan
Example 7: + = −1 + ∙ + ∙
a) = 34 b) = 2 2 5 + 3
= 3 ∙ 24 ∙ −sin 4 4 = 2∙ 2 5 + 3 − 5 + 3 5 + 3 2
= −3 24 4 = −4 5 + 3 2 5 + 3 5 + 3
c) = 3 5 1 − 4 d) = 4 7 − 1 kuasa bawa
4 naik ATAS
5
= 3 ∙ 5 4 1 − 4 ∙ 1 − 4 −4 = 4 7 − −4
5
= 4 3 7 − −4 2 7 − −4 −4 −5
= −12 4 1 − 4 ∙ 1 − 4 = − 16 3 7 − −4 2 7 1
5 − 4
Trigonometric Function
Example 7: Find the derivative
a) = 4 5 − 4 2 Product Rule:
= 4 = 5 − 4 2 = +
= 4 3 = 5 − 4 2 −8
= −8 5 − 4 2
= 5 − 4 2 ∙ 4 3 + 4 ∙ −8 5 − 4 2
= 4 3 5 − 4 2 − 2 2 5 − 4 2
Trigonometric Function
Example 7: Find the derivative
b) = 2+5 Quotient Rule:
3+2 2
= 2 + 5 = 3 + 2 2 = −
2
= − 2 +5 ∙ 2 = 3 2 + 4
= −2 2 + 5
3 + 2 2 ∙ −2 2 + 5 − 2 + 5 ∙ 3 2 + 4
=
( 3 + 2 2)2
−2 3 + 2 2 2 + 5 − 3 2 + 4 2 + 5
= ( 3 + 2 2)2
Trigonometric Function
Example 7: Find the derivative
c) = 3 3 Chain Rule:
= 3 = 3 = ×
= 2 3(3 2) = 2 2
= 3 2 2 3
= 2 2 ∙ 3 2 2 3
= 6 2 2 3 2
= 6 2 2 3 2 3 3
LOGARITHMIC
FUNCTION
CHAPTER 2: DIFFERENTIATION
Logarithmic Function
How To Derive Logarithmic Function
If given :
a) ln b) ln c) ln
1 ′ 1
∴ ln = ∴ ln = ∴ ln = ∙
Example: One over Differentiate
value value
a) ln 2 b)Differentiate ln 2 Over value c) ln 2
value
1 1 2 1 1 2 1
= 2 ∙ 2 = = 2 = = 2 ∙ =
a) + =
b) − =
c) =
d) = 1
e) =
Logarithmic Function
Example 8: Find the derivative
Hukum log:
=
a) = ln 4 differentiate b) = ln 3 5 c) = ln 3 − 2
constant
= 5 ln 3 1
= 0 = 3 − 2 3
1
= 5 ∙ 3 ∙ 3 3
= 3 − 2
5
=
Logarithmic Function
Example 8: Find the derivative
Hukum log:
=
d) = ln 1 − 3 5 e) = ln 5 + 2 tukfa)r = 3 ln 2 − 3 + 5 2
1
= 5 ln 1 − 3 bentuk 1 −3 + 10
= ln 5 + 2 2 = 3 ∙ 2 − 3 + 5 2
1 1
= 5 ∙ 1 − 3 ∙ −3 = 2 ln 5 + 2
3 −3 + 10
−15 = 2 − 3 + 5 2
= 1 − 3 1 1
= 2 ∙ 5 + 2 5
5
= 2 5 + 2
Logarithmic Function
Example 8: Find the derivative
Hukum log: Hukum log:
= ln 5 − 3 2 3 2 + 4 2 = 2 + 2 7 2 = 2 − 2
g) h) = ln 1−3 2
bw kuasa = ln 5 − 3 2 + ln 3 2 + 4 = ln 7 − ln 1 − 3 2
turun = 2 ln 5 − 3 + ln 3 2 + 4 1 1
= 7 7 − 1 − 3 2 −6
1 1
′ =2∙ 5 − 3 ∙5+ 3 2 + 4 ∙ 6 1 6
= 7 + 1 − 3 2
10 6
= 5 − 3 + 3 2 + 4
Logarithmic Function Quotient Rule:
= −
j) = ln 5 +2 2
4
Example 8: Find the derivative = 4
i) = 4 ln 5 + 2 Product Rule: = ln 5 + 2 = 4 3
1
= + = 5 + 2 5
= 4 = ln 5 + 2 5
= 5 + 2
1
= 4 3 = 5 + 2 5 4 ∙ 5 − ln 5 + 2 ∙ 4 3
= 5 + 2 4 3 2
5 ′
= 5 + 2
5
′ = ln 5 + 2 ∙ 4 3 + 4 ∙ 5 3 5 + 2 − 4 ln 5 + 2
=
5 + 2 4 6
= 3 4 ln 5 + 2 + 5 = 5 − 4 ln 5 + 2
5 + 2 5 + 2 4 3
Logarithmic Function
Example 8: Find the derivative
i) = ln sin 3 2 j) = 2
′ = 1 ∙ cos sin 3 2 ∙ 6 ′ = 2 2 1
sin 3 2 ∙ 2 ∙ 2
6 cos sin 3 2 2 2
= sin 3 2 =
Logarithmic Function
= 2 − 3 2 − 3 Hukum log: = 5 − 3 2 Hukum log:
=
2 = 2 + 2
= 2 − 3 2 − 3 Product Rule: = 5 − 3 2 Chain Rule:
= +
= ×
7 Hukum log:
= 1 − 3 2
2 = 2 − 2
7 Quotient Rule:
= 2 − 3 2
= −
2
EXPONENTIAL
FUNCTION
CHAPTER 2: DIFFERENTIATION
Exponential Function
How To Derive Exponential Function c) +
If given : ∴ + = + ∙ +
a) b)
∴ = ∴ = ∙ ′ c) 2 +1 Salin semula
exponent
Salin semula Salin semula = 2 +1 ∙ 2
exponent
Example: exponent
a) 2 Differentiate b) 2 Differentiate = 2 2 +1 Differentiate
power power power
= 2 ∙ 2 = 2 ∙ 2
= 2 2 = 2 2
a) × = + f) =
b) ÷ = − g) 0 = 1
c) =
d) 2 = 2 2
e) − = 1
Exponential Function e) = 5
3 2
Example 9: Find the derivative
c) = 3 5 = 5 −2
3
a) = 5
differentiate = 5 −2 ∙ −2
3
= 0 constant = 3 ∙ 5 ∙ 5
= − 10 −2
3
= 15 5
b) = 5 d) = 5 +2 f) = 2 3 3
= 5 ∙ 5 5 +2 = 8 9
= ∙ 5 = 8 9 ∙ 9
= 5 5 = 5 5 +2
= 72 9
Exponential Function
Example 9: Find the derivative
Hukum index Hukum index
Hukum index
× = + 5 −2 ÷ = − =
3 2
g) = 2 +3 5 3 h) i) 4 16 8
= =
= 5 2 +3+3 1 = 4 16 ∙ 8
3
= 5 −2−2 4
= 5 5 +3 1 = 4 2
3
= 5 5 +3 5 = 3 −2 = 4 2 ∙ 2
1
= 25 5 +3 = 3 3 −2 ∙ 3 = 8 2
= 3 −2
Exponential Function
Example 9: Find the derivative
j) = 2 3 − 6 expand k) = 5 + l) = 6 − 2 tukar
2 2 bentuk
separate
= 5 − 6 2 5 = 6 − 2 −2
= 2 + 2
5 − 6 2 = 6 ∙ 6 − 2 −2 ∙ −2
= 5 2 = 3 + −
= 5 5 − 12 2 = 3 3 + − −1 = 6 6 + 4
2
= 3 3 − 1
Exponential Function
Example 9: Find the derivative
m) = 4
Method 1: Chain Rule Method 2: Exponential Function
= 4 = = 4 ∙ 4 3
4 3
= = = 4 3 4
= ∙ 4 3 NOTE PENTING:
u ialah KUASA bg
exponent tsbt !!
= 4 3 4
Exponential Function
Example 9: Find the derivative (Chain Rule/ Exponential Function)
n) = 2
Method 1: Chain Rule Method 2: Exponential Function
= 2 = 1 2 2
= 2 ∙
2 2 1
= = =2
1 2 2
= ∙
2 2
=
2 2 =2
= 2
Exponential Function
Example 9: Find the derivative (Chain Rule/ Exponential Function)
o) = 4 − 2
1
= 4 − 2 2
Method 1: Chain Rule Method 2: Exponential Function
= 4 − 2 1 1 4 − 2 −21 ∙ −2 2
= 2
= 2
= −2 2 = 1 −21 2
2 =
1 −12 4 − 2
2
= ∙ −2 2
2 2
=1 =
2 4 − 2
Exponential Function Quotient Rule:
ln 5 +2 = −
4
q)
Example 9: Find the derivative = 2
Product Rule: = ln 5 + 2 = 4
p) = 2 2 + 1 3 = + 1 = 4 3
= 5 + 2 5
= 2 = 2 + 1 3 5
= 5 + 2
= 2 2 = 3 2 + 1 2 2 4 ∙ 5 ∙ 4 3
= 5 + 2
= 6 2 + 1 2 ′ − ln 5 + 2
4 3 2
′ = 2 + 1 3 ∙ 2 2 + 2 ∙ 6 2 + 1 2 3 5 − 4 ln 5 + 2
= 5 + 2
= 2 2 2 + 1 2 2 + 1 + 3
= 2 2 2 + 1 2 2 + 1 + 3 5 4 6
5 + 2
= − 4 ln 5 + 2
4 3
Logarithmic Function
One over
value
ln 2 Differentiate
How to differentiate these function? 1 value
= 2 ∙ 2
Trigonometric Function
1
=
+ = + ∙
Exponential Function
1. Differentiate trigo
2. Differentiate dlm kurungan
Salin semula
exponent
+ = −1 + ∙ + ∙ 2 Differentiate
power
1. Differentiate KUASA = 2 ∙ 2
2. Differentiate trigo
= 2 2
3. Differentiate dlm kurungan
SECOND ORDER
DIFFERENTIATION
CHAPTER 2: DIFFERENTIATION
Second Order Differentiation
What is Second Order Differentiation?
In calculus, the second derivative, or the second order differentiation,
of a function is the derivative of the derivative of .
2
Written as:- ′′ or 2
differentiate differentiate differentiate differentiate
first time second time first time second time
′ ′′ 2
2
a) Mesti ada KUASA = 5 3 3
b) KUASA mesti di ATAS 2
= 5
= 4 = 2 −4
c) 0 = 1 = 2 − − 2
2 5 2 5
d) Expand = + 2 1 −
d) Separate 2 5 − 2 + 5 = 2 − 2 + 2
= 2 3 − 1 + 5 −2
= 2
Second Order Differentiation
Example 10: Find the second derivative for each of the following:
a) = 3 3 − 2 2 + 7 b) = 2 5 − 4 3 + 2 − 7 tukar
First 7
derivative =
3 3 2 − 2 2 First 2 5 3 2 −1 bentuk
derivative 7
= − 4 + − 7
Second = 9 2 − 4 5 2 4 − 3 −14 + 2 −1 −2
derivative 2 = 4 7
2 = 2 9 − 4
Second = 10 4 − 3 −14 − 2 −2
derivative 4 7
= 18 − 4
2 1 3 −54 2
2 = 4 10 4 − −4 4 − −2 7 −3
= 40 4 + 3 5 + 4
16 4 7 3
Second Order Differentiation
Example 10: Find the second derivative for each of the following:
c) = 2 3 + 2 tukar First d) = 3 2 + 3
3 bentuk derivative 1
First
derivative = 2 3 + 2 −3 = 3 ∙ 2 + 3 ∙ 2
+ −3 2 −4 Second 6
= 2 3 3 derivative = 2 + 3
Second
derivative = 6 3 − 6 −4 = 6 2 + 3 −1
2 3 − −4 6 −5 2 2 + 3 −2 2
2 = 6 − 3 2 =
−1 6
= −18 3 + 24 −5
−12
24 = 2 + 3 2
= −18 3 + 5
Second Order Differentiation
Example 10: Find the second derivative for each of the following:
e) = 4 3 +1 + 2 − 10 tukar First f) = 3 + 5 4
5
First bentuk derivative
= 4 ∙ 3 + 5 3 ∙
derivative = 4 3 +1 + 2 −5 − 10 3
= 4 3 +1 3 + 2 −5 −5 Second = 12 3 + 5 3
derivative
Second 2
derivative = 12 3 +1 − 10 −5 2 = 3 12 3 + 5 2 3
2 = 12 3 +1 3 − 10 −5 −5 = 108 3 + 5 2
2
= 36 3 +1 + 50 −5
= 36 3 +1 + 50
5
Second Order Differentiation
Example 10: Find the second derivative for each of the following:
g) = 2 3 Product Rule: = 6 = 3
= 6
= + = 3 3
= 2 = 3 = 3 3
= 2 ′′ = 2 − 3 3 − 3 6 + 6 3 3
= − 3 3 = −6 3 − 6 3 − 18 3
= −3 3
′ = 3 2 + 2 −3 3
= 2 3 − 6 3 = −12 3 − 18 3
= −6 2 3 − 3 3
Second Order Differentiation
Example 10: Find the second derivative for each of the following:
Quotient Rule:
h) = 2+3 = − = 4 2 − 2 − 12 = 4 − 1 2
4 −1 = 8 − 2 = 8 4 − 1
2
= 2 + 3 = 4 − 1 2 4 − 1 2 8 − 2 − 4 2 − 2 − 12 ∙ 8 4 − 1
2 =
= 2 = 4 4 − 1 2 2
4 − 1 2 − 2 + 3 ∙ 4 4 − 1 4 − 1 8 − 2 − 8 4 2 − 2 − 12
= = 4 − 1 4
4 − 1 2
8 2 − 2 − 4 2 − 12 36 2 − 4 − 8 + 2 − 36 2 + 16 + 96
= 4 − 1 2 = 4 − 1 3
4 2 − 2 − 12 4 + 98
= 4 − 1 2 = 4 − 1 3
Second Order Differentiation
Example 10: Find the second derivative for each of the following:
i) = Quotient Rule:
+2 −
2
=
= = + 2
= 1 = 1
′ = + 2 1 − 1 ′ = 2 + 2 −2
′′ = −2 ∙ 2 + 2 −3 1
+ 2 2
= −4 + 2 −3
+ 2 −
= + 2 2 −4
2 = + 2 3
= + 2 2
Second Order Differentiation
Example 10: Find the value of 2 when = −2 for each of the following
2
a) = 3 − 6 2 + 9 + 3 b) = + 1 3 2 − 1
= 3 2 − 12 + 9 = 3 3 − + 3 2 − 1
9 2
2 = − 1 + 6
2 = 6 − 12
2
when = −2 2 = 18 + 6
2 when = −2
∴ 2 = 6 −2 − 12
2
= −24 ∴ 2 = 18 −2 + 6
= −30