Chapter 7 Coordinate Geometry
7.1 Divisor of a Line Segment
A line segment is part of a straight line with two end points with
specific length or distance.
Any point dividing the segment in a particular ratio is known as the
internal point.
x1 x2 , y1 y2
2 2
(i) Midpoint
Example: (x1 , y1) (x2 , y2)
1. Find the coordinates of midpoint of A 2, 2 and B 4, 2 .
2 4 , 2 (2)
2 2
Midpoint of CD
2 , 0
2 2
1 , 0
2. If K 3, 2 is the midpoint of the points M 4, 7 and N , find the
coordinates of the point N .
x1 x2 , y1 y2
2 2
Midpoint
Draft the straight line N x, y 3, 2 4 x 7 y
2 2
最好先草图 ˙
,
˙K 3, 2 4 x 3 7 y 2
˙M 4, 7 2 2
4 x 3(2) 7 y 2(2)
4 x 6 7 y 4
x 2 y 3
N 2, 3
3. Given that the points P(7, 6), Q(8, 10), R(3, 7)and S are four vertices of a
parallelogram, find the coordinates of the point S.
y ** Parallelogram
- Two pairs of parallel lines
P(7, 6) - Intersection point = midpoint
Q(8, 10)
˙ Midpoint / intersection point
R(3, 7)
x
S(x, y)
0
Midpoint QS = Midpoint PR ** Remember this
important concept
8 x , 10 y 7 3 , 6 7
2 2 2 2
8 x , 10 y 5 , 13 By comparison: 作比较
2 2 2
coordinate-x and coordinate-y
8x 5 10 y 13
2 22
8 x 10 10 y 13
x2
y3
S2, 3
比例
(ii) Point that internally divides a Line Segment in the ratio m : n
1n ˙ F x2, y2
Gx, y x, y n x1 m x2 , n y1 m y2
m n m n
˙
1m
˙ E x1, y1
Example:
1. The point P internally divides the line segment joining the points
K 3, 3 and L 2, 4 in the ratio 2 : 5 . Find the coordinates of point P.
L 2, 4 1. Draft the straight line (最好先草图,避免弄错
˙ value of coordinate-x and coordinate-y)
5
˙P 2. Cross multiplication (画两个交叉箭头)
2
3. Formula: Px, y n x1 m x2 , n y1 m y2
m n m n
˙K 3, 3 5(3) 2(2) 5(3) 2(4)
25
coordinate P 25 ,
s
15 4 , 15 8
7 7
11 , 7
7 7
1 4 , 1
7
2. The point Q 1, 9 internally divides the line segment joining the points
M 7, 6 and N in the ratio1: 3 . Find the coordinates of point N .
˙Nx, y (1, 9) 3(7) 1(x) , 3(6) 1( y)
1 3
3 1 3
Q(1, 9) (1, 9) 21 x , 18 y
4 4
1˙
˙M 7, 6 21 x 1 18 y 9
4 4
21 x 4 18 y 36
x 17 y 18
N17, 18
3. Point P 1, k divides the line segment joining the points A 3, 2
and B 2, 8 in the ratio AP : PB . Find the ratio AP : PB and the value of k.
B2, 8 P1, k n(3) m(2) , n(2) m(8)
m n m n
˙
n
˙ P(1,k) 3n 2m 1 2n 8m k
mn mn
m
3n 2m (m n)
˙A 3,2
2m m n 3n 2(3) 8(2) k
23
1. x, y n x1 m x2 , n y1 m y2 3m 2n 5k 10
m n m n k 2
m2 m = 2, n = 3
n3
2. AP : PB = m : n m:n 2:3
3. Compare the coordinate-x and
coordinate-y AP : PB 2 : 3
Text Book page 180
Page 180
**一定要写成分数格式
AP 1
PB 2
AP : PB = 1 : 2
1. (a) P(–3, 4)
(b) P(–2, 1)
(c) P(3, –1)
2. p = –2t
4. (a) AP: PB = 1 : 2, k = –2
(b) AP: PB = 1 : 1, k = 5
3.