Trigonometric Equations
Solution of trigonometric equations
We know that a trigonometric ratios of a certain angle has one and only one value. But if the value of trigonometric ratio is
given, the angle is not unique. To illustrate the above fact, let us observe the graph of y = sin and find the values of when
1
y = sin =
2
Y
1
0.8
0.6
0.4
0.2 0.5 0.5
X' X
O 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 360°
–0.2
–0.4
–0.6
–0.8
–1
Y'
1
From the above graph, when sin = , then the corresponding values of are 30º, 150º and so on.
2
Rules for finding angles :
1. At first we determine the quadrant where the angle falls. For this we use the CAST table.
(180° –
S A
(360° + )
T C
(180° + ) (360° – )
Quadrant
I II III IV
Ratios
Sin and cosec +ve +ve –ve –ve
Cos ans sec +ve –ve –ve +ve
Tan and cot +ve –ve +ve –ve
2. Find the least positive angle of the trigonometric function in the first quadrant for the given relation.
For example
1
(i) For sin = , the least positive angle in the first quadrant is 45º
2
1 1
(ii) For cos = – , the least positive angle in the first quadrant for cos = is 60º
2
2
1 1
(iii) For tan = – , the least positive angle in the first quadrant for tan = is 30º
3 3
(iv) For sin = –1, the least positive angle in the first quadrant for sin = 1 is 90º
3. When is the least positive angle in the first quadrant then the angle in the second quadrant = (180º – )
The angle in the third quadrant = (180º + )
The angle in the fourth quadrant = (360º – )
To find the angle more them 360º we use (360º + ) and so on.
Note: To find the angle in the second, third and fourth quadrant, we add or subtract the least positive angles of first
quadrant in even multiple of 90º.
Worked out Examples
1. Solve (0º 360º)
(a) 2 sin = 1 (b) 2cos + 3 = 0 (c) 3 tan – 3 = 0
Solution
(a) Here, 2 sin = 1
1
nd
st
or, sin = (Here, sin is positive. So, lies in 1 and 2 quadrants)
2
or, sin = sin45º, sin(180º – 45º)
= 45º, 135º
(b) Here, 2cos + 3 = 0
– 3
nd
rd
or, cos = (Here cos is negative. So lies in 2 and 3 quadrant)
2
or, cos = – cos30º
or, cos = cos(180º – 30º), cos (180º + 30º)
= 150º, 210º
(c) Here, 3 tan – 3 = 0
st
rd
or, tan = 3 (Here, tan is positive. So lies in 1 and 3 quadrants)
or, tan = tan60º, tan (180º + 60º)
= 60º, 240º
2. Solve (0º 180º)
2
(a) 4sin – 3 = 0 (b) 9 tan – 3 = 0
2
Solution:
2
(a) Here, 4sin – 3 = 0
3
or, sin =
2
4
3
or, sin = ±
2
Taking +ve sign,
3
sin =
2
or, sin = sin60º, sin (180 – 60º)
= 60º, 120º
Taking –ve sign
– 3
sin = 2
or, sin = – sin60°
or, sin = sin(180º + 60º), sin (360º – 60º)
= 240º, 300º
But 0º 180º
Hence, = 60º, 120º
2
(b) 9 tan – 3 = 0
1
2
or, tan =
3
1
or, tan = ±
3
Taking +ve sign,
1
tan =
3
or, tan = tan30º, tan (180 + 30º)
= 30º, 210º
Taking –ve sign
–1
tan =
3
or, tan = – tan30º
or, tan = tan (180º – 30º), tan (360º – 30º)
= 150º, 330º
But, 0º 180º
Hence, = 30º, 150º
3. Solve : (0º 180º)
(a) sin2 + cos = 0 (b) tan = cot5
Solution :
(a) Here, Sin2 + cos = 0
or, 2sin.cos + cos = 0
or, cos (2sin + 1) = 0
Either, cos = 0
or, cos = cos90º
= 90º
OR, 2sin + 1 = 0
–1
or, sin =
2
or, sin = – sin30º
or, sin = sin (180º + 30º), sin (360º – 30º)
= 210º, 330º
But 0º 180º
= 90º
(b) Here, tan = cot5
or, tan = tan (90º – 5)
or, = 90º – 5
or, 6 = 90º
= 15º
4. Solve (0º 360º)
(a) (3sin – 4) (2sin + 3 ) = 0
(b) (2sec + 3) (tan + 3 ) = 0
Solution :
(a) Here, (3sin – 4) (2sin + 3 ) = 0
Either, 3sin – 4 = 0
4
or, sin = (Rejected) [since value of sin and cos lies from – 1 to +1]
3
OR 2sin + 3 = 0
– 3
or, sin = 2
or, sin = – sin60º
or, sin = sin(180º + 60º), sin(360º – 60º)
Hence, = 240º, 300º
(b) (2sec + 3) (tan + 3 ) = 0
Solution :
Here, (2sec + 3) (tan + 3 ) = 0
Either, 2sec + 3 = 0
–3
or, sec =
2
–3
–1
= sec
2
OR, tan + 3 = 0
or, tan = – 3
or tan = – tan60º
or, tan = tan (180º – 60º), tan (360º – 60º)
= 120º, 300º
–3
–1
Hence, = sec , 120º, 300º
2
5. Solve (0º 360º)
(a) 2sin + 3cos = 3 (b) tan – 3sec + 3 = 0
2
2
(c) sec.tan = 2 (d) 3 sin + cos = 2
(e) cos – 3 sin = 2 (f) sin2 + sin4 = cos + cos3
Solution :
2
(a) 2sin + 3cos = 3
2
Here, 2sin + 3cos = 3
or, 2(1 – cos ) + 3cos – 3 = 0
2
or, 2 – 2cos + 3cos – 3 = 0
2
or, 2cos – 3cos +1 = 0
2
or, 2cos – 2cos – cos + 1 = 0
2
or, 2cos (cos – 1) – 1 (cos – 1) = 0
or, (cos – 1) (2cos – 1) = 0
Either, cos – 1 = 0
or, cos = 1
or, cos = cos0º, cos (360º – 0º)
= 0º, 360º
OR, 2cos – 1 = 0
1
or, cos =
2
or, cos = cos60º, cos (360º – 60º)
= 60º, 300º
Hence, = 0º, 60º, 300º, 360º
2
(b) tan – 3sec + 3 = 0
or, sec – 1 – 3sec + 3 = 0
2
2
or, sec – 3sec + 2 = 0
2
or, sec – 2sec – sec + 2= 0
or, sec (sec – 2) –1 (sec –2) = 0
or (sec – 1) (sec – 2) = 0
Either, sec – 1 = 0
or, sec = 1
or, sec = sec0º, sec (360º – 0º)
= 0º, 360º
OR, sec – 2 = 0
or, sec = 2
or, sec = sec 60º, sec (360º – 60º)
= 60º, 300º
Hence, = 0º, 60º, 300º, 360º
(c) sec.tan = 2
Here, sec.tan = 2
1 sin
or, . = 2
cos cos
or, sin = 2 (1 – sin )
2
or, 2 sin + sin – 2 = 0
2
2
or, 2 sin + 2sin – sin – 2 = 0
or 2 sin (sin + 2 ) – 1 (sin + 2 ) = 0
or (sin + 2 ) ( 2 sin – 1) = 0
Either, sin + 2 = 0
or, sin = 2 (rejected)
OR, 2 sin – 1 = 0
1
or, sin =
2
or, sin = sin45º, sin(180º – 45º)
= 45º, 135º
Hence, = 45º, 135º
(d) 3 sin + cos = 2 … (i)
2
2
Here, (coefficient of sin) + (coefficient of cos)
2
= ( 3) + (1)
2
= 2
Now, dividing equation (i) on both sides by 2, we get
3 1 2
sin . + cos . =
2 2 2
1
or, sin.cos30º + cos.sin30º =
2
or, sin ( + 30º) = sin45º, sin(180 – 45)
or, + 30º = 45º, 135º
= 15º, 105º
Hence, = 15º, 105º
(e) cos – 3 sin = 2
or, 3 sin – cos – 2 … (i)
2
Here, (coefficient of sin) + (coefficient of cos) = ( 3) + (1)
2
2
2
= 3 + 1
= 2
Now, dividing both sides of equation (i) by 2, we get
3 cos –2
sin – =
2 2 2
or, sin.cos30º – cos.sin30º = –1
or, sin ( – 30º) = – sin90º
or, sin ( – 30º) = sin (360º – 90º)
or, – 30º = 270º
= 300º
Hence, = 300º
(f) sin2 + sin4 = cos + cos3
Here, sin2 + sin4 = cos + cos3
2 + 4 4 – 2 3 + 3 –
or, 2sin . cos = 2cos . cos
2 2 2 2
or, 2sin 3.cos = 2cos2.cos
or, 2sin3.cos – 2cos2.cos = 0
or, 2cos (sin3 – cos2) = 0
Either, 2cos = 0
or, cos = 0
or, cos = cos90º, cos (360º – 90º)
= 90º, 270º
OR, sin3 – cos2 = 0
or, sin3 = cos2
or, sin3 = sin (90°– 2)
or, 3 = 90° – 2
or, 5 = 90º
= 18º
Hence, = 18º, 90º, 270º
SEE Questions
Short Qustions
2
1. (a) olb 2cos = – 3 cos eP 0° b]lv 180° leq kg]{ sf] dfg lgsfNg'xf];\ .
2
If 2cos = – 3 cos find the values of which lies between 0° to 180°. 2059 R
1
2
(b) olb cos – cos + = 0 eP 180° leq kg]{ sf] dfg lgsfNg'xf];\ .
2 2 4
1
2
If cos – cos + = 0, find the value of which lies between 0° and 180°. 2060 R
2 2 4
2. xn ug'{xf];\ (Solve): {0° (x) 180°}
(a) sin = cos 2063 R (f) cos 2x = sin x 2064 R-II
2
(b) 2 cos – 1 = 0 2063 Supp. (g) 3 tan = 3 2063 R-II
2
(c) 2 cos = 1 Mode 2063 (h) cot x = 3 2065 R
(d) 4 sin = 3 cosec 2064 R-II (i) sin – tan = 0 2062 K
2
(e) 2 cos – 3cos = 0 2064 Supp. (j) tan = cot 2064 Supp.
Additional Questions
1. xn ug'{xf];\ (Solve): {0 (/A/ 360}
(a) 2sin 3 = 0 (b) 3 tan + 1 = 0 (c) 2secA 2 = 0
2
(d) 2cos 1 = 0 (e) sin 0.75 = 0 (f) 3tan 3 = 0
2
2
2. xn ug'{xf];\ (Solve): (0 90°)
(a) sin3 = cos7. (b) tan = cot. (c) tan + cot = 2.
(d) tan = 2sin. (e) sin2 cos = 0
3. xn ug'{xf];\ (Solve): (0° 180°)
(a) (2sin 1) cos = 0 (b)(sin + 1) (2sin 1) = 0
(c) sin 2sin . cos = 0 (d) 2sin . cos sin = 0
2
3
2
(e) cos + cos = 0
2 2 4
4. xn ug'{xf];\ (Solve): (0° A 180°)
1 3
o
(a) sinA . cos30 cosA . sin30 = (b) sin45 . cosA + cos45 . sinA =
2 2
1 1
o
(c) cos60 . cosA sin60 . sinA = (d) cosA . cos45 + sinA . sin45 = .
2 2
SEE Questions
1. xn ug'{xf];\ (Solve):
2
(a) 2 cos = 3 sin (0° 180°) 2057 Supp.
1
2
(b) cos – sin = (0° 180°) 2061 R
4
2
(c) 2 cos + sin = 2 (0° 180°) 2061 Supp.
2
(d) 1 + cos = 2 sin (0° 180°) 2058 Supp.
2
2
(e) cos x = 3 sin x + 4 cos x, (0° x 360°) 2062 R
2
(f) 3 cos 2x – 1 = 2 sin x (0° x 180°) 2064R-II
2
2
(g) 7 sin + 3 cos = 4 (0° 360°) 2065 E
2. xn ug'{xf];\ (Solve):
(a) cos 2 = sin (0° 360°) 2058 R
(b) sec . tan = 2 (0° 180°) 2060 R
3. xn ug'{xf];\ (Solve):
(a) 3 sin – cos = 2 (0° 180°) 2057 R
(b) sin 3x + sin x = 2 sin x (0° x 180°) 2063 R-II
(c) cos 3x + cos x = 2 cos x (0° x 180°) Model 2063
(d) cos 3 + cos = cos 2 (0° x 180°) 2064 Supp.
(e) sin 4x + sin 2x = cos x (0° x 360°) 2063 Supp.
4. xn ug'{xf];\ (Solve): sin 3 + sin = sin 2 (0° 180°) 2061 R
3
5. xn ug'{xf];\ (Solve): 3 cot A = – 1 (0° A 360°) 2064 R
sin A
1
2
6. xn ug'{xf];\ (Solve): cot x + 3 + cot x = – 1 (0° x 360°) 2065 R-II
3
Answers
1. (a) 30° or 150° (f) 30°, 150° 3. (a) 75°, 165° 4. 0°, 60°, 90°, 180°
(b) 30°, 150° (g) 30°,150°,210°,330° (b) 0°, 180°, 360°
(c) 0°, 180° (c) 0°, 90°, 180° 5. 0°, 60°, 360°
(d) 60°, 180° 2. (a) 30° (d) 45°, 60°, 135° 6. 120°, 150°, 300°, 330°
(e) 120°, 240° (b) 45°, 135° (e) 10°, 150°, 130°