DM015 CHAPTER 5 2021/2022
CHAPTER 5
TRIGONOMETRY
5.1 ANGLES AND THEIR MEASURES
Radian and Degree Measures of a Angle
Definition
The angle 1 radian is defined as an angle subtended by an arc of length at the
centre 0 of a circle with radius .
radians = 1800 rr
1 radian
ran
180 0
1 radian = or 1° = 180 0 radians
Converting between Degree and Radian Measure
➢ To convert from degree to radian measure, multiply by radians .
180
➢ To convert from radian to degree measure, multiply by 180
radians .
➢ 1 = 60' (60 minutes)
➢ 1' = 60'' (60 seconds)
Mathematics Unit, KMPk Page 1 of 40
DM015 CHAPTER 5 2021/2022
EXAMPLE 1:
1. Express each of the following angles in degrees.
(a) 2.45 radians (b) 3.54 radians
(c) 2 radians (d) 7 radians
3 4
(e) 0.694 radians (f) 5 radians
2. Express the following in radians as exact values in terms of .
(a) 210° (b) 450°
(c) −105° (d) −405°
Mathematics Unit, KMPk Page 2 of 40
DM015 CHAPTER 5 2021/2022
3. Convert each of the following angles to radians.
(a) 75° (b) 136°15′
(c) 82.36° (d) 16°30′15′′
The equivalents radian-degree
Mathematics Unit, KMPk Page 3 of 40
DM015 CHAPTER 5 2021/2022
Trigonometric Ratio for Any Angle
(i) All angle is positive when it is measured anti clockwise from the
positive -axis and is negative when it is measured clockwise
Positive angle
Negative angle
(ii) Signs of trigonometric ratios
A reference angle for an angle is the positive acute angle made by
the terminal side of angle and the -axis. (Shown below in red)
Quadrant II Quadrant I
sin + All +
tan + cos +
Quadrant III Quadrant IV
Mathematics Unit, KMPk Page 4 of 40
DM015 CHAPTER 5 2021/2022
(iii) Negative Angle
Irrespectively of whether is an acute angle, obtuse angle or reflex
angle, if is a negative angle,
(− ) = − ( )
(− ) =
(− ) = −
(iv) Types of Angles
= 0 0 90 90 180
= 90 =180
Mathematics Unit, KMPk Page 5 of 40
DM015 CHAPTER 5 2021/2022
180 360 = 360
4. State the trigonometric ratio in acute angle.
(a) sin 160° (b) cos 220°
(c) tan 310° (d) cos 172°
(e) tan 246° (f) sin 325°
Mathematics Unit, KMPk Page 6 of 40
DM015 CHAPTER 5 2021/2022
5. State the trigonometric ratio in acute angle
(a) sin(−25°) (b) cos(−40°)
(c) tan(−48°) (d) sin(−128°)
(e) cos(−152°) (f) tan(−163°)
Mathematics Unit, KMPk Page 7 of 40
DM015 CHAPTER 5 2021/2022
5.2 TRIGONOMETRIC FUNCTIONS
Trigonometric Ratios of , , , , and .
sin = opposite SOH
hypotenuse A
cos = adjacent hypotenuse opposite
hypotenuse CAH
tan = opposite B adjacent C
adjacent TOA
From the diagram above, we can define trigonometric ratios for the sides as:
Reciprocal Identities
= =
= =
= =
= =
Mathematics Unit, KMPk Page 8 of 40
DM015 CHAPTER 5 2021/2022
A
z 90 −
y
C
Bx
sin(90° − ) = = cos cosec(90° − ) = sec
sec(90° − ) = cosec
cot(90° − ) = tan
cos(90° − ) = = sin
tan(90° − ) = = cot
EXAMPLE 2:
1. If cot = 3 and is an acute angle, find
4,
(a) tan (b) sin
(c)sec (d)cosec
Mathematics Unit, KMPk Page 9 of 40
DM015 CHAPTER 5 2021/2022
2. Given cos = 0.8, where 0° ≤ ≤ 90° evaluate
5 sin − 3 tan + 3 cosec .
3. Given tan = 1 , where 0° ≤ ≤ 90° find
√7
cosec2 −sec2
(a) cosec2 +sec2
Mathematics Unit, KMPk Page 10 of 40
DM015 CHAPTER 5 2021/2022
(b)
sin2
4+cos2
4. Given that tan = √5 and is an acute angle, find without the use of table
2
or a calculator,
(a) cot (b) sin(90° − )
Mathematics Unit, KMPk Page 11 of 40
DM015 CHAPTER 5 2021/2022
(c) sec(90° − ) (d) cosec(90° − )
5. Given that cosec = 3√2 and is an acute angle, find without the use of
4
table or a calculator,
(a) tan (b) cot (90° − )
(c) cos (90° − ) (d) sec(90° − )
Mathematics Unit, KMPk Page 12 of 40
DM015 CHAPTER 5 2021/2022
Trigonometric Ratios of Particular Angles
Equilateral triangle of sides unit in length
22
1 1
Isosceles triangle
45o
1
45o
1
Equilateral triangle and Isosceles triangle can be used to find the
trigonometric ratios of particular angels.
0 30 45 60 90
0 1
1 11 3
0 0
2 22
31 1
2 22
1 3
1
3
Mathematics Unit, KMPk Page 13 of 40
DM015 CHAPTER 5 2021/2022
(b) cos 210°
6. Find the exact value of
(a) sin 120°
(c) tan 225° (d) tan(−120°)
(e) sin(−135°) (f) cos(−270°)
7. Find the exact value of (b) cos 630°
(a) sin 390°
Mathematics Unit, KMPk Page 14 of 40
DM015 CHAPTER 5 2021/2022
8. Find the exact value of,
(a) tan 2 (b) sin −
3 6
(c) cos 11 (d) cos 11
3 3
9. Prove that cos 60° = 1−tan2 30°
1+tan2 30°
Mathematics Unit, KMPk Page 15 of 40
DM015 CHAPTER 5 2021/2022
10. Prove that sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60° = 7
.
2
11. Find the exact value of each expression. Do not use calculator.
(a) sin 90° + tan 45° (b) cos 180° − sin 180°
(c) cosec 45° tan 60° (d) sec 30° cot 45°
Mathematics Unit, KMPk Page 16 of 40
DM015 CHAPTER 5 2021/2022
(e) sin − cos (f) 3 cosec + cot
44 34
12. If sin = 12 where < 90°, find cos and tan without using the
13
calculator.
13. If tan = − 15 where 270° < < 360°, find cos and sin without using
8
the calculator.
Mathematics Unit, KMPk Page 17 of 40
DM015 CHAPTER 5 2021/2022
14. If sin = −185 in a third quadrant, find sec and tan .
15. If sec = 5 in a fourth quadrant, find sin and tan .
3
Mathematics Unit, KMPk Page 18 of 40
DM015 CHAPTER 5 2021/2022
5.3 TRIGONOMETRIC IDENTITIES
Use basic trigonometric identities
cos2 + sin2 = 1
1 + tan2 = sec2
1 + cot2 = cosec2
Useful formulae and identities are summarized in the following diagram. The
diagonals show the reciprocals of the various trigonometric ratios:
sin = 1 cos = 1 tan = 1
cos ec sec cot
EXAMPLE 3: tan cot − cos2 = sin2
1. Prove that
Mathematics Unit, KMPk Page 19 of 40
DM015 CHAPTER 5 2021/2022
2. Prove that
cos +sin tan = sec
3. Prove that (sec + tan )(sec − tan ) =1
Mathematics Unit, KMPk Page 20 of 40
DM015 CHAPTER 5 2021/2022
4. Prove that
(cosec + cot )(cosec − cot ) =1
5. Prove the identity tan + cot = sec cosec .
Mathematics Unit, KMPk Page 21 of 40
DM015 CHAPTER 5 2021/2022
6. Prove the identity
tan xsec x = sin x .
1+ tan2 x
7. Prove the identity 1 + 1 − 1 = 2cos ec2 .
1+ cos cos
Mathematics Unit, KMPk Page 22 of 40
DM015 CHAPTER 5 2021/2022
8. Prove the identity
( )cosec2 x tan2 x −sin2 x = tan2 x
Mathematics Unit, KMPk Page 23 of 40
DM015 CHAPTER 5 2021/2022
9. Prove the identity
sec = cosec2
sec − cos
Mathematics Unit, KMPk Page 24 of 40
DM015 CHAPTER 5 2021/2022
5.4 TRIGONOMETRIC FORMULAE
Use Compound angle formulae
sin( ± ) = sin cos ± cos sin
cos( ± ) = cos cos ∓ sin sin
tan( ± ) = tan ±tan
1∓tan tan
EXAMPLE 4:
1. Without using calculator, find the value for the following in terms of surd.
(a) sin(45° + 30°) (b) cos(150° − 45°)
(c) tan(45° − 30°) (d) tan (1050 )
Mathematics Unit, KMPk Page 25 of 40
DM015 CHAPTER 5 2021/2022
2. Express the following in a single term.
(a) sin 2 cos + cos 2 sin
(b) cos 2 cos 3 + sin 2 sin 3
tan −1
(c) 1+tan
3. Prove the following identities
(a) sin( + ) = tan + tan
cos cos
Mathematics Unit, KMPk Page 26 of 40
DM015 CHAPTER 5 2021/2022
(b) (cos + cos )2 + (sin + sin )2 = 2[1 + cos( − )]
(c) tan ( x + 60) tan ( x − 60) = tan2 x −3
1−3tan2 x
Mathematics Unit, KMPk Page 27 of 40
DM015 CHAPTER 5 2021/2022
4. Find the values of sin( + ), cos( + ), tan( + ), if given:
(a) sin = 3 cos = 5 and in first quadrant.
5, 12 13, 7
(b) cos = − 13, tan = 24, is second quadrant and in third
quadrant.
Mathematics Unit, KMPk Page 28 of 40
DM015 CHAPTER 5 2021/2022
Use double-angle formulae
sin 2 = 2 sin cos
cos 2 = cos2 − sin2
= 2 cos2 − 1
= 1 − 2sin2
tan 2 = 2 tan
1−tan2
2 tan 15°
5. Find the exact value of 1−tan2 15°
6. If tan = 3 with is acute angle, find the exact value of:
4
(a) tan 2 (b) tan 4
Mathematics Unit, KMPk Page 29 of 40
DM015 CHAPTER 5 2021/2022
7. Without using calculator find the exact value of;
(a) 2 sin(22.5) cos(22.5) (b) 1 − 2 sin2(75)
8. Prove each of the following: (b) sin 3 = 3 sin − 4 sin3
(a) cot + tan 2 = cot sec 2
9. Given that is acute and that tan = 12, evaluate each of the following;
(a) tan 2 (b) sin 2
Mathematics Unit, KMPk Page 30 of 40
DM015 CHAPTER 5 2021/2022
(c) sec 2 (d) cosec 2
10. Prove that 1+ sin 2A = (sin A + cos A)2 .
11. Prove that sin 2 = tan , hence find the value of tan15 and tan 67.5
1+ cos 2
without using calculator.
Mathematics Unit, KMPk Page 31 of 40
DM015 CHAPTER 5 2021/2022
Solving of Trigonometric Equations
Solve basic trigonometric equations
Solve Equations such as sin = , cos = , tan = .
12. Find the value of , if 0° ≤ ≤ 360°
(a) sin = 1 (b) cos = 1
2 2
(c) sin = − √3 (d) tan = −2
2
(e) cos = − 1 (f) sin = − 1
4 4
Mathematics Unit, KMPk Page 32 of 40
DM015 CHAPTER 5 2021/2022
13. Solve the following equations for angles in the range 0° ≤ ≤ 360°
(a) tan 2 = √3 (b) sin 2 = − 1
2
(c) cos(3 − 75°) = 0.5 (d) cos 1 = −0
3
Mathematics Unit, KMPk Page 33 of 40
DM015 CHAPTER 5 2021/2022
14. Solve the following equations for values of for 0° ≤ ≤ 360°:
(a) 6 cos2 + cos − 2 = 0
(b) 2 sin2 − sin − 1 = 0
Mathematics Unit, KMPk Page 34 of 40
DM015 CHAPTER 5 2021/2022
(c) sec2 x + tan x =1
(d) 10sec2 x −11tan x =16
Mathematics Unit, KMPk Page 35 of 40
DM015 CHAPTER 5 2021/2022
(e)
sec x = 13 − tan2 x +16
sec x
(f) 5 + tan2 x = 9 − sec x
sec x
Mathematics Unit, KMPk Page 36 of 40
DM015 CHAPTER 5 2021/2022
15. Use Trigonometric identities to solve these questions in range
−180 x 180
(a) cosec2x = 3cot x −1
(b) 2sin2 x + 5cos x +1 = 0
(c) tan2 x + sec2 x =17
Mathematics Unit, KMPk Page 37 of 40
DM015 CHAPTER 5 2021/2022
(d)
2cos x + tan x = sec x
(e) cos xcot2 x = cos x
(f) sin x + 2cos2 x =1
Mathematics Unit, KMPk Page 38 of 40
DM015 CHAPTER 5 2021/2022
16. Solve the equations tan = 2 sin in radian, where 0° ≤ ≤ 2 .
17. Solve the following trigonometric equations
(a) 4cot2 x −9cosec x + 6 = 0 0° ≤ ≤ 360°
(b) 2tan2 x =11sec x −7 0° ≤ ≤ 360°
Mathematics Unit, KMPk Page 39 of 40
DM015 CHAPTER 5 2021/2022
(c) 3cot2 + 5 cosec + 1 = 0 0° ≤ ≤ 2
(d) 4 cos2 = 3 sin2 0° ≤ ≤ 360°
Mathematics Unit, KMPk Page 40 of 40