The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by sazazila1977, 2021-10-09 10:21:52

BENGKEL MATEMATIK PT3

MATEMATIK KSSM

1  luas tapak  tinggi
3

12  3, 28  7, 56  14 √
44 4

21.2 kg bersamaan 21 kg dan 2 g 21.2kg  21kg  0.2kg
0.2kg  200g



2670 100  26.7m





12  1
22  4
32  9
4 2  16
5 2  25
6 2  36
7 2  49
8 2  64
9 2  81
10 2  100



























5 cm

5

55 1 8 x
2
5  5   1  8  x   49
 2 

25  4x  49

25  4 x  49

4 x  49  25
4 x  24
x6

V  22   x  2  y
7 2

V  22   x  2  y 22 x 2 y  28V
7 2
y  28V
V  22  x 2  y 22 x 2
74
y  14V
V  22 x 2 y 11 x 2
28

y  14 2310  y  32340
117 2 539

y  60

 2 p 2  3 pq   p  5 q  p  5 q 

  2 p 2  3 pq  p 2  5 pq  5 pq  25 q 2

 2 p2  p2  3pq  5 pq  5 pq  25q2
 p2  7 pq  25q2



x  30    y  15   25 x  y  10 ......( 1)
x  y  20 ......( 2)
x  30  y  15  25
x  y  10 (1)  (2)
 2 y  10
2x  30   2 y  15   130 y5
2x  30   2 y  15   130
x  5  20
x  30  y  15  65 x  15
x  y  20

 2 2  13 2   5  5 2  13 5   5

123 45 67 8







36% = ???? 12% = 288
1% = ????
1% = 24

:
= 13 : 2





)
)
)
()
)
)
) )
6 cm
)

16.An aeroplane took off from town X to town Y .
Based on a map drawn to a scale of 1 : 3 000 000 ,
the pilot of the aeroplane noticed that the distance
between two towns is 20 cm . Find the actual
distance , in km , between town X and town Y .

Solution :
1 : 3 000 000
scale drawing : actual distance
1 : 3 000 000 = 20 cm : actual distance

Solution :

1 : 3 000 000 = 20 cm : actual distance

1  20
3000000 x
x  20 3000000
 60000000cm
 600km

• 17. The diagram below
consists of two right-
angled triangles , PQR
and SPR .

Solution:

cos  PRQ  4  12
5 PR

PR  12 5  15
4

RS  82 152  64  225  289  17

sin  4  15

5 17

18. The diagram below
shows a circle with centre 0 .

• Diberi x + y = 165 . Hitung
nilai y .

• Given that x + y = 165 .
Calculate the value of y .

Solution:

• y = 2x
• x + 2x = 165
• 3x = 165
• x =55
• y = 55 x 2 = 110

19. Find the equation of a straight line passing through A
(2,5) and parallel to the straight line 2y = - x + 2.

Solution :

parallel ..... equal gradient .

2y  x  2
y   1 x 1

2

subtitute gradient in point ( 2,5) y  mx  c
y = mx + c 5   1 (2)  c

gradient   1 2
2 51 c
c6
y  1 x6

2

• Raj deposits RM 10 000 into a saving account at a bank
with an interest rate of 5% for 2 years . The interest is
compounded once in 3 months . Calculate the maturity
value obtained by Raj

• ( 2 marks )

 100001 0.05  4 ( 2 )
4
MV

 11044.86

compounded once in 3 months,
so , n = 4

• Joe wants to buy a car at a price of RM 92 000 and he
has put 8% down payment from the price of the car .
Bank has approved the loan with an interest rate of 2.65%
per annum for 9 years .Calculate the total loan needed to
be repaid by Joe . ( 4 marks)

• 92000-7360

84640   84640  2.65  9 
100

 104826.44


Click to View FlipBook Version