GATE/ESE 2021
ENGINEERING
MATHEMATICS
WORKBOOK
Recommended for
CE/ME/EE/ECE/
CS & IT/CH/PI
AUTHOR: K. UMAMAHESWARA RAO
Table of contents
S. No Chapter Pages
1 Linear Algebra 1
2 Calculus 10
3 Vector Calculus 52
4 Differential Equations & Partial Differential Equations 82
5 Complex Variables 134
6 Probability & Statistics 162
7 Numerical Methods 208
8 Laplace Transforms 228
9 Fourier Series 238
1
1
Linear
Algebra
Linear Algebra
1. Let A be the n n matrix with 12 24 5
−
1
integer entries and assume that A also 4. Let A = x 6 2 . The value of
has only integer entries, then − 1 − 2 3
(a) det A = n x for which the matrix A is not
invertible is ________
(b) det A = 1
(a) 6 (b) 12
=
2
(c) det A n (c) 3 (d) 2
(d) det A will depend on the entries of A [IISC 2007, IISC 2008]
−
1
and A
p
[IISC 2007] 5. Let A = where p, q, r are
q r
2. Let A be a 3 3 matrix with Eigen rational numbers. A = the value of
0
−
values 1, 1, and 3. Then __________
2
2
+ ______
2
(a) A + A is non-singular
(a) 2
2
(b) A − A is non-singular (b) 1
2
(c) A + 3A is non-singular (c) 0
2
(d) A − 3A is non-singular (d) cannot be determine using given data
f
[JAM 2005] 6. For n > 1, let ( ) n be the number of
cos − sin n n real matrices A such that
3. The Eigen values of A + 2 I = 0. Then
sin cos
are (a) f = 0
(a) cos and sin (b) ( ) 0f n = its n is even
(b) tan and cot
(c) ( ) 0f n = its n is odd
i
(c) e and e − i
(d) f =
(d) 1 and 2
[IISC 2007]
[IISC 2007]
a b
7. Let A = be a 2 2 real
c d
matrix with det A = 1. If A has no real
Eigen values then
2
Linear Algebra
+
(a) (a d ) 2 4 1 4 8
11. The rank of the matrix 2 10 22
+
(b) (a d ) = 2 4 0 4 12
is __________
+
(c) (a d ) 2 4
(a) 3 (b) 2
+
(d) (a d ) = 2 16 [IISC 2008] (c) 1 (d) 0
[JAM 2007]
8. For a square matrix A, Let Tr(A) denote
the sum of its diagonal entries. Let I be 12. The least positive integer n such that
the identity matrix. If A and B are 2 2 n
matrices with real entries such that cos sin
A = B = 0 and ( ) 0 then limit 4 4 is identity matrix
tr B
of ( + ) as t → 0 is ______ − sin cos
( + ) 4 4
(a) 0 (b) of order 2_____
tr A (a) 4 (b) 8
)
( +
(c) (d) det A B
tr B
(c) 12 (d) 16
[IISC 2008] [JAM 2008]
9. If A and B are 3 3 real matrices such 13. Let A be 10 10 matrix with each row
that rank (AB) = 1 then rank(BA) has exactly one entry equal to 1, the
cannot be _______ remaining nine entries of the row being
(a) 0 (b) 1 0. Which of the following is not a
passible value for det A.
(c) 2 (d) 3
(a) 0 (b) 1−
[JAM 2006]
(c) 10 (d) 1
10. Let A be a matrix of order 2 with real
entries such that AB = BA for an [IISC 2009]
matrices of order 2 then,
14. Consider the system of equations
(a) A is always the zero matrix
a x b y c z = d ,
+
+
1
1
1
1
=
R
I
(b) A for some a x b y c z = d ,
+
+
2
2
2
2
(c) A is always invertible a x b y c z = d where a , b , c ,
+
+
3
i
i
3
i
3
3
(d) A is never invertible [IISC 2007] d are real for 1 i 3. If
i
3
Linear Algebra
b 1 c 1 d 1 17. Let P be a 4 4matrix whose det =
b 2 c 2 d 0 then the above 10.the determinant of 3P− is
2
−
−
b 3 c 3 d 3 (a) 810 (b) 30
system has ________ (c) 30 (d) 810
(a) atmost one solution [JAM 2012]
(b) always exactly one solution 18. Let A be a 5 5 matrix all of whose
eigen values are zero. Then which of the
(c) more than one but finitely many following statements is always true?
solution
T
(a) A = − A (b) A = − A
(d) infinitely many solutions
5
T
0
(c) A = A (d) A =
[IISC 2009]
[IISC 2010]
15. Let A be a 3 3 matrix with trace A = 3 19. Let A be n n matrix with real entries
and det A = 2. If 1 is an eigen value of such that A + 2 I =
A, then the Eigen values of the matrix 0. Then ______
A − 2I are (a) n is an odd integer
2
(i
(a) 1, 2 − ) 1 , − ( 2 i + ) 1 (b) n is an even integer
(c) n has to be 2
(i
(b) 1, 2 + ) 1 , − ( 2 i + ) 1
(d) n could be any positive integer
−
(i
(i
(c) 1, 2 − ) 1 , 2 + ) 1 [IISC 2011]
1 2 3 4 5 1
−
(i
(d) 1, 2 − ) 1 , − ( 2 i + ) 1 2 3 4 8 6 3
[JAM 2011] 20. Let P =
2 4 6 7 10 3
a b 4 7 10 14 16 7
16. Consider the matrix A = with
c d then the rank of the matrix P is ______
real entries suppose it has repeated eigen (a) 1 (b) 2
values. Pick the correct statement.
(c) 3 (d) 4
0
(a) bc =
[MS 2005]
(b) A is always a diagonal matrix
21. Consider the following equation
+
0
(c) det A x + y z = 3, x az b+ = ,
y + 2z = 3. This system has infinitely
(d) det A can take any real value
many number of solutions. If _____
[IISC 2009]
4
Linear Algebra
(a) a = − 1 b = 0 24. Let A be a 4 4 non-singular matrix
and B be the matrix obtained from A by
(b) a = 1 b = 2 adding to its third row twice the first
)
−
1
det
(c) a = 0 b = 1 row. Then (2A B = __________
(d) a = − 1 b = 1 [MS 2005] (a) 2 (b) 4
1 0 1 x 1 x (c) 8 (d) 16
+
+
0 1 1 1 [MS 2007]
22. Let P = .
+
+
1 1 x 0 1 x 25. Let A, B be 2 2 matrices with real
− =
1 1 x 1 x 0 entries and assume that AB BA CI
+
+
for some constants C, where I is identity
Then the determinant of the matrix P is matrix. Then C is _______
______
(a) 0 (b) 1
3
(a) ( 3 x + ) 1 (c) 2 (d) 4
2
(b) ( 3 x + ) 1 [IISC 2007]
a
(c) ( 3 x + ) 1
26. Let A = 1 where a is a real.
(d) ( x + 1 )(2x + ) 3 [MS 2005] 49
Then A is invertible _____
23. Let AX = B be a non-homogeneous
2
system of linear equations. The (a) for all a 22
augmented matrix
1 1 − 2 1 M 1 (b) for all a 180 2 49
( AB ): − 1 2 3 − 1 M 0 . (c) for all a 22 (or) a 180 2
2
49
0 3 1 0 M − 1
Which of the following statement is (d) for all rational values of a
true? [IISC 2007]
(a) Rank of A is 3 27. If A an n n matrix with real (or)
complex entries and A = 0 then ____
3
(b) The system has no solution.
3
(a)( + ) =0
(c) The system has unique solution.
(b) I + A is invertible
(d) The system has infinite number of
solution (c) I + A is not invertible
(d) necessarily A = 0
[MS 2006]
[IISC 2007]
5
Linear Algebra
28. If A is a 3 3 non zero matrix such that 6
A = 0, then the number of non-zero (a) 0
2
eigen values of A is _________ 0
(a) 0 (b) 1
1
(c) 2 (d) 3 6
(b) 0
[MS 2008]
0
a
29. Let A = ( ) be an orthogonal matrix
ij
1 2 + 1
of order n such that a = , 4
ij
n
(c) 0
1 n n
i = 1,2,........n. If a = 2 a then 0
n i= 1 j= 1 ij
n
n ( ij a ) 2 = ____ (d) not determined uniquely
a −
i= 1 j= 1
[IISC 2006]
n + 1 n − 1
(a) (b) 31. The determinant
n n
+
+
a b c d e 1
n + 1 n − 1 b c d + a f 1
2
2
+
(c) (d)
n n c d a b g 1 =_________
+
+
+
[MS 2009] d + a b c h 1
30. Let M denote a 3 3 real matrix such (a) 0
1
4 4 (b) 1
1
1
that M 5 = 1
2 =
2 , M
+
+
) e
5 (c) (a b )(c d + + f + g + h
0 0
3
3
+ + +
6 (d) (a b c d )(e + f + g + ) h
then M 0 is [IISC 2006]
0 32. Let P = be a 50 50 matrix,
p
ij
where
p = ij min ( ,i j ) i j = , 1,2,......50
then the rank of P is _________
6
Linear Algebra
(a) 1 (b) 2 x p q 1
(c) 25 (d) 50 a x r 1
36. If = 0 then x = ______
[MS 2010] a b x 1
a b c 1
1 8
33. An Eigen vector of the matrix
0 1 [IISC 2000]
is ___________ 37. The characteristic polynomial of the
0 0 0
T
T
1,2
(a) ( ) (b) (5,0 )
matrix 1 0 1 is ____________
T
T
1,1
(c) (0,2 ) (d) ( ) 0 1 0
[MS 2011] 2 2
(a) ( x x + ) 1 (b) ( x x − ) 1
34. An Eigen vector of the matrix
2 1 0 2
(c) ( x x + ) 1 (d) ( x x − ) 1
2
1 2 1
0 0 2 [IISC 2002]
1 0 38. Let A be a 3 3 real matrix. Suppose
A = 0. Then A has ______
4
(a) 0 (b) 1
0 0 (a) exactly two distinct real eigen values
0 2 (b) exactly one non-zero real Eigen
value
(c) 0 (d) 2
(c) exactly 3 distinct real Eigen values
1 2
(d) No non-zero real eigen value
[MS 2012]
[IISC 2002]
35. Let A be a 3 3 real matrix with Eigen
values 1, 2, 3 and det B = A + − 1 A . 39. The determinant
2
Then the trace of the matrix B equal to x 0 x 1 x 2 x 3 x 4
________ x 0 x x 2 x 3 x 4
x x x x x = _________
91 95 0 1 3 4
(a) (b) x x x x x
6 6 0 1 2 4
97 101 x 0 x 1 x 2 x 3 x
(c) (d)
6 6
[MS 2013]
7
Linear Algebra
(a) a a a
1 2 3
x 0 (x x− 1 )(x x− 2 )(x x− 3 )(x x− 4 ) 4 42. Let A be the matrix b 1 b 2 b c 3 3
c
c
1
)
−
−
−
−
x
(b) ( x x 1 )( x x 2 )( x x 3 )( x x where a i a j a k , 2
+
+
0
4
3
1
2
+
+
+
+
(c) b i b j b k , c i c j c k are
2
1
2
3
3
1
−
−
−
−
x 0 (x x 1 )(x x 2 )(x x 3 )(x x 4 ) 4 three mutually orthogonal unit vector
matrix . Then ________
(d) x x x x x x
4
3
2
1
0
−
2
1
(a) A = A (b) A = A
[IISC 2005]
−1
(c) = (d) =
40. The determinant [IISC 2004]
+
1 x 1 1 1
−
1 1 x 1 1 43. For real numbers a, b, c the following
linear system of equations
+
1 1 1 y 1 x + + = 1, ax by cz = 1,
+
+
y z
−
1 1 1 1 y
a x b y c z = 1 has a unique
2
+
2
+
2
(a) xy solution if and only if _________
=
(a) b a and b c
2
xy
(b) ( )
=
(b) a b and a c
−
−
(c) (1 x 2 )(1 y 2 ) (c) a c and a b
=
2
2
(d) x + y [IISC 2005] (d) a b b c and a c
41. Let a, b, c are arbitrary real numbers. Let [IISC 2003]
1 a b
44. Let P be a 3 2 matrix, Q be a 2 2
A be the matrix A = 0 1 c . Let I matrix and R be a 2 3 matrix such
0 0 1 that PQR is equal to the identity matrix.
be the 3 3 identity matrix. Then Then ____
(a) rank of P is equal to 2
1
2
(a) A − 3A + 3I = A
(b) Q is non-singular
1
2
(b) A + 3A + 3I = A (c) Both A and B are true
1
+
2
(c) A + A I = A (d) There are no such matrices P, Q and
[IISC 2012]
R
(d) A is not invertible [IISC 2004]
8
Linear Algebra
+
1 a 1 a 2 .................a n
+
a 1 a .............a
45. 1 2 n
............ ...............................
+
a a 1 a
1 2 n
[NBHM 2009]
1
46. Given that the matrix has an
2 3
Eigen value 1, compute trace and its
determinant.
[NBHM 2009]
47. Let ∈ ( ) such that trace
2
2
cos A= and det A = 3. The
characteristic Polynomial of A =
−
1
_________
[NBHM 2005]
9
2
Calculus
Calculus
1 1 z − 2 y
)
5
f
1. The integral dx dy dz = 4. Let ( , x y = x y 2 tan − 1 . Then
0 0 0 x
___________ f f
x + y = _______
1 1 y − 2 x y
(a) dx dz dy
0 0 0 (a) 2f (b) 3f
1 1 y − 1 (c) 5f (d) 7f
(b) dx dz dy
0 0 0 [JAM 2006]
2 2 1 z cos x t − 2
−
f
(c) dx dz dy 5. Let ( ) x = e dt . Then
0 0 0 sin x
1
f )
( / 4 equals _______
2 2 1 y
−
(d) dx dz dy
0 0 0 (a) 1 e (b) − 2 e
[JAM 2005]
(c) 2 e (d) − 1 e
2 n + 1 + 3 n + 1
2. Lt
n
n→ 2 + 3 n [JAM 2006]
(a) 3 (b) 2 1 cx 1 x
+
6. If Lt = 4 then
−
(c) 0 (d) 1 x→ 0 1 cx
+
[JAM 2006] 1 2cx 1 x
Lt − is _________
17
f x =
3. Let ( ) (x − 2 ) (x + ) 5 24 then x→ 0 1 2cx
_______ (a) 2 (b) 4
(a) f does not have a critical point at (c) 16 (d) 64
[IISC 2008]
(b) f has maxima at 2
2
y
(c) f has minima at 2 7. Evaluate xe dx dy where R is
R
(d) f has neither minima nor maxima at 2 the region bounded by the lines x = 0, y
2
[JAM 2006] = 1 and the parabola y = x .
[JAM 2006]
11
Calculus
8. Find the volume of the solid bounded ln ( x + y 2 )
2
above the surface z = − 2 y and 12. The value of x + y 2 dx dy
1 x −
2
2
0
below by the plane z = .
where G = ( { , x y ) R ,
2
[JAM 2006]
1 x + y e 2 } is _____
2
2
9. Using change of variables evaluate
xy dx dy where the region R is (a) (b) 2
bounded by the curves xy = 1, xy = 3, (c) 3 (d) 4
y = 3x and y = 5x in the first
[JAM 2010]
quadrant. [JAM 2006]
n
10. Let A(t) denote the area bounded by the 13. The value of Lt 2 1 is
n→
=
curve y e − x , the x-axis and the k 1 = n + kn
straight lines x = − t and x t = . Then ________
)
Lt A ( ) t is _______ (a) 2 ( 2 1 (b) 2 2 1
−
−
t→
(a) 2 (b) 1 1
)
−
(c) 2 − 2 (d) ( 2 1
1 2
(c) (d) 0
2 [JAM 2015]
[JAM 2007] 14. Let V be the region bounded by the
planes x = 0, x = 2, y = 0, z = 0 and y + z
11. The function f defined by
e 1/x x 0 = 1. Then the value of
f ( ) x = y dx dy dz is __________
0 x 0 v
1 4
(a) is differential for all real values of x (a) (b)
2 3
(b) is not differential at x = 0
1
(c) is not differential for x < 0 (c) 1 (d)
3
(d) is not differentiable for x > 0
[JAM 2011]
[IISC 2008] 1 z y
2 3
15. The value of xy z dx dy dz
z= 0 y= 0 x= 0
is ___________
1 1
(a) (b)
90 50
12
Calculus
(c) f is discontinuous only at one point
(0,1)
1 1
(c) (d) (d) f is continuous only at one point
45 10
(0, 1)
[JAM 2012]
[JAM 2013]
16. The value of the integral
2 2
1 1 y 1 x dx dy = 3 _______ 19. The value of x dx dies between
+
0 y 0
______
−
2 2 1
(a) 2 2 (b) (a) 1 and 1.5 (b) 1.5 and 2
2
(c) 2 and 2.5 (d) 2.5 and 3
−
−
2 2 1 2 2 1
(c) (d) [IISC 2010]
8 9
2
2
20. The value of x + y dx dy ,
[IISC 2009] D
2
2
2
,
17. Let [x] denote the greatest integer D = ( { , x y ) R x x + y 2 } x
function of x. The value of for which is _______
the function
2 7
sin − x , x 0 (a) 0 (b) 9
f ( ) x = − x 2 is
14 28
, x = 0 (c) (d)
continuous at x = 0 is _____ 9 9
[JAM 2013]
(a) 0 (b) sin ( ) 1−
)
21. The area of the region ( { , x y ,
(c) sin 1 (d) 1
3
0 x y , 1, + 3 } is _____
x
y
[JAM 2013] 4 2
18. Let the function f(x) is defined by 9 7
e x , x is rational (a) (b)
f ( ) x = 16 16
e 1 x , x is irrational
−
for x ( ) . Then ______ (c) 13 (d) 19
0,1
32 32
(a) f is continuous at every point in (0,1) [MS 2005]
(b) f is discontinuous at every point in
(0,1)
13
Calculus
− + − + − +
( 2n
f
x
22. Let ( ) x = x x − x − 1 , − 1 2 3 4 5 6 .......+ − )
Lt =
2
which of the following statements is n→ n + 1 + n − 1
2
true.
1
(a) f is not differentiable at x = 0 and x = (a) (b) 2
1
1
(b) f is differentiable at x = 0 but not (c) 0 (d) −
differentiable at x = 1 2
[MS 2007]
(c) f is not differentiable at x = 0 but
differentiable at x = 1 26. By changing order of integration
)
(d) f is differentiable at x = 0 and x = 1. 1 ex f ( ,x y dy dx can be expressed
0 1
[MS 2006] __________
23. Let 1 ln y
)
f x = 1 )( x − 2 )(x − 3 )(x − 4 )(x − ) 5 (a) f ( , x y dx dy
( ) ( x −
0 1
x
, − . The number of distinct
real roots of the equation (b) ∫ ∫ ( , )
d 1 1
dx ( f ( )) 0x = is exactly ______ 1 ln y
)
(c) f ( , x y dx dy
0 0
(a) 2 (b) 3
1
(c) 4 (d) 5 (d) ∫ ∫ ( , )
1
[MS 2006] [MS 2007]
2 1 27. Let ( ) x and
f x =
f
24. Let ( ) x = x sin x x 0 . Then
x 0 x 1
0 x = 0
g ( ) x = x − 1 1 x 2 for
1
x
f
(a) ( ) x is continuous at x = 0 x − 2 2 3
0 x = 3
(b) ( ) 0f 1 exists
x . Then ( ) x + g ( ) x is
0,3
f
(c) f 11 ( ) x is continuous at x= 0 _______
(d) f 11 ( ) 0 exists [MS 2007] (a) discontinuous at points 1 and 2
(b) continuous on [0, 3] but not derivable
25. on (0,3)
14
Calculus
(c) differentiable once but not twice on 2 3 3 2
(0,3) (a) + (b) +
2 2 4
(d) twice differentiable on (0, 3)
3 2
[MS 2008] (c) − (d) 0
4
28. The area of the region enclosed by the
2
curve y = x and x + y = 2 is [MS 2008]
_______
27
(a) 3 (b)
2 1 1
31. The value of 3 x + 3 1 dx dy =
9 0 y
(c) (d) 9
2 2 5/2 2
(a) (b) (2 3/2 − ) 1
[MS 2008] 3 3
2
)
)
−
−
29. Define ( , x y = f ) x + y 2 cos 2 (t + ) x dt . (c) 2 ( 2 1 (d) 2 ( 2 1
0 3
df
)
Then (0, y =__________ [IISC 2006]
dx
32. Let [x] denote the greatest integer
(a) 0 1 1
( )
cos y 2 function. The value of 1 2 x 2 dx =
(b)
2 ____________
( )
cos y 2 (a) 1 + 1 − 1 (b) 1 + 1
2
( )
(c) + cos y 2 3 2 2 3 2
2
1 1 1 1 1
2
y +
( )
(d) cos 2 ( ) cos y 2 (c) + + (d) −
3 2 2 3 2
[IISC 2006] [IISC 2006]
3
30. If x f ( ) t dt = x 2 sin x + x , then 33. The area of the region bounded by
3
y
2 0 and y = is
0 y = x , x + − = 0
________
f is _________
2 (a) 0.25 (b) 0.50
(c) 0.75 (d) 1.0
15
Calculus
[MS 2009] 38. Let the function : 0, ) → R is given
f
2 −
3 − 2 x by ( ) x = x e . Then the maximum
x
x
f
34. Lt
x
x→ 0 4 − 3 x value of f is___
3 2 − 1 − 2
(a) (b) (a) e (b) 4e
4 3 − 3 − 4
3 ( ) (c) 9e (d) 16e
3
2
(c) loge (d) log
4 2 [MS 2011]
3
[IISC 2006] 39. Let D be the triangle bounded by y axis,
=
the line 2y and the line y = x .
1
35. Lt (n + 5 4n 3 ) − 5 n equals ________ cos y
n→ Then the value of dx dy =
D y
4
(a) 4 (b) _______
5
1 3
5 (a) (b)
(c) 0 (d) 2 2
4
(c) 1 (d) 2
[IISC 2006]
[MS 2011]
36. The value of
1 1 e − 1 2 ( x + 2 y 2 ) dx dy = ________ 40. The volume of the solid revolution
2 − − generated by revolving the area bounded
by the curve y = x and the straight
1
(a) (b) lines x = 4, y = about the x-axis, is
0
4 2
___________
1 1
(c) (d) (a) 2 (b) 4
4 2
[MS 2010] (c) 8 (d) 12
+
37. The value of e − x y dx dy , whose [MS 2012]
S 41. The value of∫ ∫ 2
1
2
S = ( { , x y ), 0 1, y 0,1 x + 2} 0 2
x
y
equals _____________
(a) e + 1 (b) 1
(a) 1 (b) 2
2
−
−
2
2
1
e
(c) e − e (d) e − (c) e − 1 (d) e
[IISC 2005]
[MS 2010]
16
Calculus
+
x (a) 8 (b) 7
g
42. Let ( ) x = sin y 2
( ) dy . Then
x
−
(c) 10 (d) 10 − 14
g 1 ( ) x = _________
[IISC 2001]
2
(a) sin x 46. Let f be a real function defined by
ax b if x − 1
+
2
sin (x + ) + sin (x − ) 2 2
1
(b) f ( ) x = x + 1 if − 1 x
2 − ax b if x 1
+
2
2
(c) sin x ( + ) − sin (x − ) where a and b are real numbers. If f is
continuous on the real line then the
product ab is ________
2
2
(d) cos x ( + ) − cos (x − )
−
(a) 2 (b) 4
−
[IISC 2005] (c) 2 (d) 0
2 −
x
f
43. At x = 2, ( ) x = x e has [IISC 2001]
)
__________ 47. f ( , x y = x + 100x y + 200xy + 10y
6
7
7
5
2
2
2
(a) local minimum, but not global then x fxx + 2xy fxy + y fyy =
minimum _______
(b) local maximum, but not global (a) 42x + 4200x y + 8400xy + 420y
7
7
2
6
5
maximum
6
7
5
2
7
(b) 42x + 500x y + 200xy + 10y
(c) global minimum
5
2
6
7
7
(c) 42x + 1000x y + 1200xy + 420y
(d) global maximum
2
7
7
5
6
(d) 7x + 700x y + 1400xy + 70y
[IISC 2005]
[IISC 2002]
44. The value of lim ( 1 + 1 + ⋯ ⋯ +
→∞ +1 +2
1 ) is ___________ 48. For a real number y, let [y] denote the
+ largest integer smaller than or equal to y.
2 2
(a) 0 (b) ln2 The value of x dx = _________
0
2
(c) e (d) e
(a) 1 (b) 5 − 2 − 3
[IISC 2005]
8
45. The maximum value of (c) 3 − 2 (d)
10 − 3cos − 4sin + 9 for 3
0 2 [IISC 2004]
17
Calculus
(
f
49. Let : 0, ) → R be the function 52. Find ‘C’ of Rolle’s Theorem for
f ( ) x = e x (sin x − cos ) x in
e x
defined by ( ): . Then
f x
x x / 4,5 / 4
Lt f ( ) x = ________
x→ (a) / 2 (b) 3 / 4
(c) (d) does not exist
(a) does not exist (b) 0
53. The value of of
(c) 1 (d) e
1
f ( ) b − f a = − ) ( )
( ) (b a f for the
[IISC 2003] function ( ) x = Ax + Bx c in the
+
f
2
50. Let , be two real numbers and interval [a, b] is ________
→
0. The function : f R R
+
−
(a) b a (b) b a
defined by
−
+
b a b a
0 if x 0 (c) (d)
2 2
f ( ) x = 1
x sin if x 0
54. If the Rolle’s Theorem holds for the
x function ( ) 2f x = x + ax + bx in the
3
2
is differentiable at 0 iff __________ 1
−
(a) = (b) interval 1,1 for the point c = 2 then
(c) (d) 1 value of a & b are
1
2
[IISC 2003] (a) a = , b = −
2
5 − 3 x
x
51. The value of the limit Lt is 1
x
x→ 0 3 − 2 x (b) a = − 2 , b = 2
___________
10 ( ) (c) a = 1 , b = 2
5
(a) log e 9 (b) log 3 3 2
2
1
log 5 (d) a = − , b = −
2
(c) 2 (d) log 5 2
log 3 2
2
1 1
f
g
[IISC 2004] 55. If ( ) x = , ( ) x = in [1, 2] then
x x 2
Mean Value Theorems the mean value C of Cauchy’s mean
value theorem is
18
Calculus
4 5 3
(a) (b) (c) (d) 0
3 4 4
5 x sin x 6
4
(c) (d) none of these 60. cos x dx =
3 0
56. Find the mean value ‘c’ of L.M.V.T for (a) 3 2 / 512 (b) 5 2 / 256
1/3
f x = (4 x ) in [1, 6] (c) 3 2 /128 (d) none of these
−
( ) 2 +
(a) 3
61. cos x dx = _____
−
(b) 4 0
(c) 8 62. n x dx = _____ , where [x] is a step
0
(d) cannot be applied function and ‘n’ is an integer.
8 ( n n + ) 1 ( n n − ) 1
f
1
57. If ( ) x = and f(0) = 1 (a) (b)
x + 2 3x + 4 2 2
then the lower and the upper bounds of f
(1) estimated by mean value theorem are (c) n (d) n + 1
2 2
5 1
(a) 2 and 3 (b) and
6 10 2
)
63. log (tan x dx =
3 4 0
(c) and (d) 7 and 5
4 3
(a) 0 (b)
Definite Integrals 2
1 1 x (c) (d)
+
x
58. 2 cos log dx = ____ 4
−
− 1 1 x
2 d e sin x
64. Let F ( ) x = , x 0. If
(a) 0 (b) 1 dx x
sin x 2
4 2e dx = F ( ) k − F ( ) 1 then k
(c) (d) none of these 1 x
2
= ________
4
59. sin x dx = 2
− x u
65. If = log then x + y =
y x y
(a) (b)
2
19
Calculus
(a) (b) 2 dy
69. If x + y y = x c then at (1, 1) is
dx
(c) 0 (d) 1
−
(a) 1 (b) 1
x y
2
66. If = 5 5 then (c) 0 (d) 2
x + y 2
2
x + 2 xy + y = ____ 70. If u = x e z where y = a − 2 x ,
2
2
2
y
xx xy yy
du
2
1 1 z = sin x then find at (0, 1, 1) is
(a) (b) − dx
4 4 ______
3 3 −
(c) (d) − (a) e (b) e
4 4
−
1
(c) e (d) 2e
1 4 1 4
z
y
67. If z = sin − 1 x + y 1 then 71. If u = f (2x − 3 , 3y − 4 , 4z − 2x )
1 6 then 6u + 4u =
6
x − y x y
x z + 2xy z + y z = ______ (a) 2u− z (b) 8u
2
2
xy
yy
xx
z
−
1 (c) 3u (d) 3u
2
(a) tan z (tan z − 11 ) z z
144
Maxima & Minima
1
(b) tan z 72. The maxima & minima of the function
12 x
2
f ( ) x = (t − 3t + ) 2 dt occurs
tan z 0
2
(c) (sec z − 11 ) respectively at
144
(a) x = − 2 and x = 1
(d) None of these
68. If (b) x = − 1 and x = 2
u ( , x y = ) x 2 tan 1 ( / y x − ) y 2 tan − 1 ( / x y ), (c) x = 2 and x = 1
x 0, y 0then
(d) x = 1 and x = 2
(
+
x 2 ( 2 / u x 2 ) 2xy 2 / u x ) y + y 2 ( 2 / u y 2 ) =
73. The maximum value of the function
f ( ) x = x − 9x + 24x + in [1, 6] is
5
2
3
−
(a) u (b) u ______
(c) 2u (d) 3u 74. The values of ‘a’ and ‘b’ for which the
function ( ) x = x + ax + bx has
3
f
2
20
Calculus
local minima at x = 4 and point of 4 x 2 / y x dy dx =
inflection at x = 1 are 79. e _______
0 0
(a) a = − 3, b = − 24 3 4
8
7
(a) 4e − (b) 3e −
(b) a = − 3, b = 24
4
9
4
(c) 3e + 7 (d) 3e −
(c) a = 3, b = − 24
80. The value of xy dx dy where ‘R’
(d) a = 3, b = 24 R
is the region bounded by x – axis,
2
75. The function ordinate x = 2a and the curve x = 4ay ,
)
2
f ( ,x y = x − 3x + 4y − 10 at (2, is
3
2
0) has
a 3 a 4
(a) (b)
(a) a maximum (b) a minimum 4 3
(c) a saddle point (d) both (a) & (b) a 4 a 4
(c) (d)
76. The function 6 8
)
x
2
f ( , x y = x y − 3xy + 2y + has − y
81. The value of e dy dx is
(a) No local extremum 0 x y
(b) One local minimum but no local 1 (b) − 1
maximum (a) 2 2
−
(c) One local maximum but no local (c) 1 (d) 1
minimum
82. By changing the order of integration, the
(d) One local minimum and one local 4 2 ax )
a
maximum double integral f ( , x y dy dx
0 x 2
4a
77. The distance between origin and a point can be expressed as
+
nearest to it on the surface z = 2 1 xy q s f ( , x y dx dy then q r =
)
is p r
2
(a) 3 (b) 2 (a) y (b) y
(c) 1 (d) None (c) 0 (d) y
78. 2 3 xy dx dy = _____ 1 1 x 2 1 x − − 2 y 2 dz dy dx
−
y= 0 x= 0 83. = ____
−
2
2
0 0 0 1 x − y − z 2
(a) 9 (b) 18
(c) 27 (d) 6
21
Calculus
2 sinh x − sin x
(a) (b) 88. Lt is
2
2 8 x→ 0 x sin x
2 1 1
(c) (d) (a) (b)
12 8 2 4
1 1 x
1
84. The value of − x dz dx dy is (c) 1 (d) 1
0 y 0 3 6
1 1 1
(a) (b) 89. Lt e x (cos x ) sin x =
2
12 16 x→ 0
1 (a) 1 (b) e − 1/2
(c) 12 (d)
21
(c) e 1/2 (d) e
a
85. The value of x y x y z dz dy dx is
0 0 0 n n n
90. Lt + + ...+
n→ n 2 n + 1 2 n + 2 (n − ) 1 2
2
a 4 a 4
(a) (b)
16 12
(a) (b)
a 6 a 4 4 3
(c) (d)
48 4 1
(c) 0 (d)
1 x 1 4
86. Lt e − 1 5x + sin =
5x
x→ 5 x Lt 1 + 1 + ........+ 1
91.
+
+
n→ 1 n 2 n n n +
(a) -1 (b) 1
(a) log2 (b) 2
(c) 0 (d) does not exist
1
2 8cos x 8 8 (c) (d)
87. Lt sin + x − sin is 2 4
x→ 8x 6 6
n
1 92. Lt 1 =
+
(a) 1 (b) n i → k= 13n k
2
4 3
3 (a) log (b) log
(c) (d) 3 3 4
2
22
Calculus
3 5 (c) a = 3, b = 2 (d) a = 2, b = 3
(c) log (d) log
2 4 98. Which of the following function is
continuous at x = 3.
1
! n n
93. Lt n
n→ n 2, x = 3
(a) ( ) x = x − 1, x 3
f
(a) 0 (b) e
x + 3 , x 3
1 3
(c) 1 (d)
e 4, x = 3
f
(b) ( ) x =
+
sin2x a sin x − 8 x x , 3
94. If Lt = b where ‘b’ is
n→ 0 x 3 x + 3, x 3
f
finite then a = ____, b = ________ (c) ( ) x =
x − 4, x 3
(a) -2, -1 (b) 2, 1
1
(d) ( ) x = f , x 3
(c) 2, -1 (d) -2, 1 x − 27
3
95. The values of a and b such that x + 3x a , x 1
+
2
f
+
2
a sin x b log (cos x ) 1 99. If ( ) x = is
Lt = bx + 2, x 1
n→ 0 x 4 2
differentiable for ‘x’ then a, b =
(a) -1, -2 (b) 1, 2
(a) a = 3, b = 5 (b) a = 1, b = 2
(c) -1, 2 (d) 1, -2
(c) a = 1, b = 3 (d) a = 3, b = 1
x
96. If y = + x + x + ....... then 100. If 4x − 7 = 5, then the value of
y ( ) 2 = 2 x − − x is
(a) 4 or 1 (b) 4 only 1 1
(a) 2, (b) ,3
(c) 1 only (d) undefined 3 2
97. The values of a and b for which the 3 2
function (c) ,9 (d) ,9
3
2
2x + 1 if x 1
f
2
f ( ) x = ax + b if 1 x is 101. If ( ) x = x − 1 + x − 2 is not
3
5x + 2a if x 3 derivable at x =
continuous every where (a) x = 0 (b) x = 1, 2
(a) a = 2, b = 1 (b) a = 1, b = 2 (c) x = 3 (d) none
23
Calculus
102. A real function tan x tan x
x + 2 , x for x 0 (a) (b)
f ( ) x = 2y − 1 2y − 1
x + x + 5sin , x x 0
2
3
2
f
. If ( ) x is twice differentiable then (c) sec x (d) sec x
2y − 1 2y − 1
(a) 1, = = 0 (b) 1, = = 5 dy
+
(c) 5, = = − 10 (d) 5, = = 5 106. If x y = a b (x + ) y a b then dx =
2x x 1
103. The derivative of sin − 1 2 with (a) (b)
+
1 x y y
2x
respect to tan − 1 2 is equal to 1 y
−
1 x (c) (d)
x x
(a) 0 (b) 1
107. By applying, Rolle’s theorem for
2x sin x
(c) (d) 2 f ( ) x = in 0, , the value of
−
1 x 2 e x
)
c (0, is
104. If x = ( a sin − ) ,
2
d y
y ( a = cos − ) then = (a) (b)
dx 2 6 4
1
(a) − (c) (d)
a sin 2 2 3
2
108. Which of the following function satisfied
1 all the conditions of Rolle’s Theorem in
(b) − cosec 4
4a 2 the interval [0,1]
1 f x =
(c) − sec 2 / 2 cosec 4 / 2 (a) ( ) tan x
4a
1
1 x , 0 x
(d) sec 2 / 2 cosec 4 / 2 2
f
4a (b) ( ) x =
− , 1 x 1
1 x
2
105. If y = tan x + tan x + tan x + .....
dy 109. By applying Lagranges mean value for
then = the function
dx
24
Calculus
)
f x = + )log (1 x on [0,1] the 113. For the function ( ) x = x , the mean
+
( ) (1 x
f
value of c ( ) is value theorem does not held in the
0,1
interval….
4 1
(a) (b) 1
−
e e (a) 1,0 (b) 0, 2
−
−
4 e 1 e
(c) (d) 1
e e (c) 0, 2 (d) 1,1
−
110. By applying mean value theorem, for the
=
=
function ( ) x = f x − 2 4 on [2,4], the 114. If x r cos , y r sin then the
)
value of c (2,4 is value of 2 + 2 =
x 2 y 2
(a) 6 (b) 8
(a) 0 (b) 1
(c) 2.5 (d) 3.14 x y
(c) (d)
111. By applying Rauchy’s mean value r r
2
theorem for ( ) x = x , ( ) x = x
3
g
f
115. The Taylor series expansion of sin x
over [1,2] the value of c ( ) is
1,2
about x = is
6
14 13
(a) (b)
9 7 1 3 1 2
(a) + x − − x − + ......
2 2 6 4 6
2 3
(c) (d)
3 2 x 3 x 5
(b) x − 3! + 5! − .......
=
3
112. A curve ‘C’ is defined as x a cos ,
y = a sin in 0, / 2 . What will be 1
3
(c)
the point P on curve C where the tangent 2
to the curve is parallel to the chord 3
−
−
joining points (a,0) & (0, a) x / 6 (x / ) 6
(d) − + .....
a a 1! 3!
(a) (a, a) (b) ,
2 2 116. The Taylor series expansion of
sin x
a a a a f ( ) x = x at x = is
−
(c) , (d) ,
2 2 2 2 2 2
25
Calculus
(x ) 2 e 4 e 2
−
(a) 1+ + ..... (c) (d)
3! 4! 2!
(x − ) 2 x 2 y 2 z 2
(b) 1− + + .....
3! 119. If u = x y z then
1 1 1
−
(x ) 2
(c) 1− + ..... u + u + u =
3! x y z
(a) 0 (b) 1
−
(x ) 2
(d) 1− + .....
−
+
+
3! (c) x y z (d) ( 2 x + y + ) z
)
+
117. The Taylor series expansion of 120. If u = f ( , r s where r = x y ,
1 x
+
−
log at x = 0 is s = x y then u + x u = y
−
1 x
(a) 2u (b) 2u
x 3 x 5 r s
(a) 2 x + + + .... − −
3 5 (c) 2u (d) 2u
s
r
)
−
=
x 3 x 5 121. If z = f ( , x y where x e + u e ,
v
(b) 2 x − + + ... − u v
3 5 y = e − e then z − u z = v
x 2 x 4 (a) xz − yz (b) xz + yz
(c) 2 + + .... x y x y
2 4 (c) xz + yz (d) xz − yz
y x y x
4
x 2 x 4 x + y 4
(d) 2 − + .... 122. If u = log x + y then
2 4
2 u + 2 u + 2 2 u
2
x
118. In the taylor series expansion of e , x x 2 2xy y y 2 =
x y
4
about x = 2, the coefficient of ( x − ) 2
(a) 0 (b) 3
is
(c) -3 (d) 1/3
1 e 2
(a) (b)
4! 4!
26
Calculus
1 x + y 3 x
3
x
123. If u = tan − then (c) sin y (d) u
x − y
u u 2 2
x + y = x y
x y 127. If u = x + y then
2
2
(a) sin 2u (b) cos 2u x u + 2xyu + y u =
xx xy yy
(c) tan 2u (d) cot 2u
(a) u (b) 2u
x + 2y + 3z
124. If u = sinu = then (c) 4u (d) 6u
x + 8 y + 8 z 8
2
u u u x 2 ( x − y 2 ) 3
x + y + z = 128. If u = then
x y z ( x + y 2 ) 2
2
1 xu + x yu = y
−
(a) tanu (b) 7tanu
7
(a) u (b) 3u
1 1
(c) secu (d) − tanu (c) 4u (d) 24u
7 7
=
129. By change of variables x r cos ,
n y r sin in f ( , x y dx dy
)
=
x
x
n
−
125. If u = x f 1 + y f 2 then
y
y
changes to
( cos , sin
u u 2 u 2 u 2 u f r r ) ( , r )dr d
x + y + x 2 + 2xy + y 2 =
x y x 2 y 2 then ( , r ) =
x y
(a) 0 (b) ( n n + ) 1 u
1
(a) r (b)
2
(c) n u (d) ( n n − ) 1 u r
2
x + y 3 (c) r (d) 1
3
126. If u =
x − y By change of variables x uv , y = v
=
3
x + y 3 x 130. u
u = + x sin then
)
x − y y in f ( ,x y dx dy changes to
x u + 2xyu + y u = v
2
2
)
xx xy yy f uv , u ( ,u v du dv then
x + y 3 )
3
(a) 0 (b) 2 ( ,u v =
x − y
27
Calculus
u (c) 41 (d) 46
(a) uv (b)
v 135. The maximum value of
2
3
5
v x − 9x + 24x + is
(c) (d) 1
u (a) 21 (b) 25
250 (c) 41 (d) 46
f
131. The function ( ) x = x + 2 at x =
x 136. The maximum value of the function
5, attains
5Cos + 3Cos + + 3 is
(a) maxima 3
(b) minima (a) 5 (b) 10
(c) neither maxima nor minima (c) 11 (d) 9
(d) none 1/x
f
137. The function ( ) x = x has maxima
sint at x = _______
f
132. The function ( ) t = at t = 0
t
attains (a) 1 (b) e
2
(a) maxima (c) e (d) 2
(b) minima 138. Maxima slope of the curve
2
3
− x + 6x + 2x + 1 is
(c) neither maxima nor minima
(a) 14 (b) 16
(d) none
(c) 19 (d) -13
133. The right circular cone of largest volume
that can be enclosed by a sphere of 139. The function
2
2
radius 1m has a height of f ( ,x y ) 2x= 4 + y − x − 2y has a
1 2 relative _____
(a) m (b) m
3 3 1
(a) maxima at ,1
2 2 4 2
(c) m (d) m
3 3 1
(b) minima at ,1
134. The maximum value of 2
2
3
f ( ) x = x − 9x + 24x + is
5
(c) maxima at (0, 1)
(a) 21 (b) 25 (d) minima at (0, 1)
28
Calculus
140. The function 145. 0 /2 log (1 tan x dx+ )
) 4x +
2
8
f ( , x y = 2 6y − 8x − 4y +
)
the optimal value of ( ,f x y is (a) 0 (b) 1
1
(a) a minimum value equal to 10/3 (c) (d) 2
2
(b) a maximum value equal to 8/3
146. 0 /2 log + )
(1 tan x dx
(c) a maximum value equal to 10/3
(d) a minimum value equal to 8/3 (a) 0 (b) log2
4
141. The distance between origin and the
point nearest to it on the surface (c) log2 (d) log2
+
z = 2 1 xy is 8 2
2
+
3 147. 0 /2 (a 2 cos x b 2 sin 2 ) x dx =
(a) 1 (b)
2
2
(a) 0 (b) (a + b 2 )
(c) 3 (d) 2 2
2
2
142. The value of 1 e x ln x dx = (c) (a + b 2 ) (d) (a + b 2 )
4 8
4 2 2 4
3
3
)
(a) e + (b) e − 148. 0 /2 log (sin x dx =
9 9 9 9
2 4 4 2 −
3
3
(c) e + (d) e − (a) 0 (b) log2
9 9 9 9 2
143. − 1 1 x 2 4 sin x dx = (c) − log2 (d) log2
x +
1
5
3
149. 0 /2 sin x cos xdx =
(a) 0 (b)
1 1
(a) 16 (b) 24
(c) 2 (d)
2
1 1
+ (c) (d)
/2 10 1 sin x 48 96
144. − /2 x log dx =
−
1 sin x 1
150. s 0 dx =
+
(a) 0 (b) 2 a 2 cos x b 2 sin x
2
2
(c) / 2 (d)
29
Calculus
(c) 16 (d) 14
(a) 0 (b)
ab /4
f
156. If ( ) x = 0 tan x dx
f ( ) 3 + f ( ) 1 =
(c) ab (d)
a + b 2
2
1
4
6
151. 0 x sin x cos x dx = (a) 1 (b) 2
3 2 5 2 3
(a) (b) (c) (d) 2
512 256 2
3 2 157. The value of 0 1 0 x 2 e dy dx = 0
/ y x
(c) (d) 0
256
1 1
− x 2 /2 (a) 2 (b) 3
152. − e dx =
1 1
(a) (b) 2 (c) (d) 0
2 8
(c) 1 (d) 2 2x− 4 2y − 1
158. The value of 0 0 x + 1 dy dx =
e
153. 0 − y 3 y dy = 1/2
+
−
3
(a) 42 36log
e
(a) (b) 3
+
−
3 (b) 36 42log
e
(c) 42 36log+ 3
(c) (d) 0 e
2
−
3
(d) 42 36log
e
−
154. 0 1 x 6 1 x dx = 2 1
159. The value of 1 2 0 x dy dx =
2
5 5 x + y 2
(a) (b)
256 128 1
(a) log2 (b) log2
5 3 4 4
(c) (d)
512 512
2 x ) (c) 2 log2 (d) 2 log4
155. − 2 0 (sin x y dy dy =
(a) 0 (b) 32 160. The value of 0 x sin x dx =
+
2
1 cos x
30
Calculus
(a) 1/4 (b) 3/2
(a) (b)
4 2 (c) 4/3 (d) 3
2 2 166. The value of
(c) (d)
4 8 0 x 0 2 sin y dx dy dx =
y
0 1 x 6
161. The value of dx =
−
1 x 2 (a) -2 (b) 2
(c) -4 (d) 4
3
(a) (b)
2
32 32 167. The area bounded by y = 4x and
2
5 x = 4y is
(c) (d) 0
32
(a) 16/3 (b) 32/3
0 1 y 1 1 x dx dy = 3
+
162. The value of y (c) 8 (d) 16
2
−
2 2 1 168. The area bounded by 2y = x and
(a) 2 2 (b) x = y − 4 is
2
(a) 6 (b) 18
−
−
2 2 1 2 2 1
(c) (d)
8 9 (c) 16 (d)
0 x 1 − y /2 169. The value of 0 /2 x /2 cos y dy dx =
163. The value of e dy dx =
y y
(a) 1 (b) 2 (a) -1/2 (b) -1
(c) -2 (d) 0 (c) 1/2 (d) 1
2
x
164. Let 170. The value of 0 − 1 2 y 2 e dx dy =
)
E = ( { ,x y R 2 ,0 1,0 y } x
x
E (a) e (b) e − 1
4
4
then ( x + ) y dy dx =
4
(a) -1 (b) 0 e − 1 e 4
(c) (d)
4 4
(c) 1/2 (d) 1
171. By change the order of integration in
165. Let 0 8 x 2 f )
E = ( ,x y ) R 2 ,0 x y ,0 s q /4 ( ,x y dydx changes to
y
)
E ye − (x y+ ) r p f ( ,x y dx dy then q =
then dx dy =
31
Calculus
2
(a) 4y (b) 16y 1 1
(c) (d)
6 12
(c) x (d) 8
−
2 xy dx dx =
176. The value of 0 1 x 2 x
172. Let
0 1 y xy sin xy 0 a b xy sin xy dy dx 3 1
1
( ) dx dy =
1
(a) a= 0, b = x (b) a = 1, b = x (a) (b)
8 6
(c) a = 0, b = 1 (d) a = -1, b = x 5 1
(c) (d)
173. For n N , the value of 24 2
n 1− ( / x n ) n dx = 177. − 2 1 1+ x dx =
−
0 n x
(a) 3.5 (b) 5.5
(a) 0 (c) 4 (d) none
1 1 1 1
(b) 1+ + + ...+ 178. The integral 0 1 dx converges
2 3 n 1 x 2
−
to
1 1
(c) 1+ + ........+
2 n + 1 (a) (b) 0
(c) / 2 (d)
1 1
(d) 1+ + ........+ 1
2 n + 2 179. The integral − 1 x 2 dx converges to
+
174. The value of xy dx dy taken over
the region bounded by two axis and the (a) 0 (b)
straight line x + y = 1 2
(c) − (d)
1 1 2
(a) (b)
20 24
2
180. The area bounded by y = x and the
1 1 lines x = 0
(c) (d) 4 and y = is
30 40
64
0
175. If R is the region bounded by x = , (a) 64 (b) 3
y = 0 and x + y = 1 then 128 128
R ( x + 2 y 2 ) dx dy = (c) 3 (d) 4
1 1
(a) (b)
3 5
32
Calculus
181. By change the order of integration (a) 0.27 (b) 0.67
0 2 x 2x ( , x y dy dx may be (c) 1 (d) 1.22
)
2 f
represented as 186. The function
)
2 f
(a) 0 2 x 2x ( ,x y dy dx f ( ) x = x a sin 1 , x 0 is
x
)
(b) 0 2 y y f ( ,x y dy dx 0 , x = 0
0
)
(c) 0 4 y /2 y f ( , x y dy dx differentiable at x = for all al in the
interval
)
(d) x 2x 0 2 f ( , x y dy dx (a) (− ,1 ) (b) ( 1,− )
2
182. The volume generated by revolving the ) (d) ( ,1
area bounded by y = 8x and the line x (c) (1, )
2
= 2, about y-axis is [JAM CA 2006]
128 5 x
2
f
(a) (b) 187. Let ( ) x = (t − 1 )(t − 5t + ) 6 dt ,
5 128 0
for all x R . Then
127 32
(c) (d)
5 5 (a) f is continuous but not differentiable
on R
183. The value of integral of the function
4
Q ( , x y = ) 4x + 3 10y along the (b) f’ is bounded on R
straight line segment from the point (0,0) (c) f’ has exactly three zeroes
to the point (1, 2) in the xy plane is
(d) f is continuous and bounded on R
(a) 33 (b) 34 [JAM CA 2011]
(c) 40 (d) 56 4
−
184. The value of 0 0 e − ( x + 2 y 2 ) dx dy = 188. For the function y = 1 x , the point
x =
0 is a point of
(a) inflection
(a) (b)
2 (b) minima
(c) (d) (c) maxima
4
(d) absolute minima [JAM CA 2005]
2
185. The length of the arc y = x 3/2
3 189. The value of a and b for which the
3
2
f
between x = 0 and x = 1 is function ( ) x = x + ax + bx has
33
Calculus
local minima x = 4 and point of 0 x 5. Then F has local minimum at
inflection at x = 1 are the points
(a) 3, 24 (b) -3, -24 (a) {0,2,4} (b) {1,3,5}
(c) -3, 24 (d) 0, 0 (c) {0,3,4} (d) {3,4,5}
[JAM CA 2005] [JAM CA 2007]
190. The value of x and x with x x 193. Consider the function
1 2 1 2 2
x
2
such that (12 − x − x 2 ) dx has the f ( ,x y ) (x= + ) y − (x + y ) 1+ .
x 1 The absolute maxima value and the
largest value are absolute minimum value of the function
(a) -3, 3 (b) -4, 1 on the unit square.
x
(c) -4,4 (d) -4,3 ( , x y ):0 1,0 y 1 ,
[JAM CA 2005] respectively are
f x =
+
191. For ( ) (1 sin x )cos x , where (a) 3 and 3 (b) 3 and 3
0 x 2p , where of the following 2 2 4
statements is true 3 3
(c) 3 and (d) 2 and
4 4
f
(a) ( ) x has a local maxima at x =
6 [JAM CA 2007]
(b) ( ) x has a local minima at x = 194. Let ( ) x = x − x + 1, 0 x 1.
2
3
f
f
3
Then the absolute minima value of
f
(c) ( ) x has a local maxima at f ( ) x is
5
x = 14 5
3 (a) (b)
27 9
3
(d) ( ) x has a local minima at x = 23
f
4 (c) (d) 1
27
[JAM CA 2006] x
2
F
195. Let ( ) x = (t − 3t + ) 2 dt . Then
0
192. Let F has
f ( ) x = x (t − 1 )(t − 2 )(t − 3 )(t − ) 4 dt , (a) a local maximum at x = 1 and a local
0 minimum at x = 2
34
Calculus
(b) a local minimum at x = 1 and a local 199. For the function
maximum at x = 2 y 1 x
z = x tan − 1 + y sin − + 2 ,
(c) local maxima at x = 1 and x = 2 x y
(d) local minima at x = 1 and x = 2 the value of x z + y z at (1, 1) is
x y
[JAM CA 2008]
− − 1
2
196. If ( ) x = f x ( t t − ) 1 dt , then (a) 4 sin 1
a
−
+
1
(a) f has a local maximum at x = 0 and a (b) + sin 1 2
local minimum at x = 1 4
(b) f has local minima at x = 0 and x = 1 (c) + sin 1 2
−
−
1
4
(c) f has a local maximum at x = 1 and a
local minimum at x = 0 −
1
(d) + sin 1 [JAM CA 2005]
(d) f has local maxima at x = 1 and x = 0 4
=
=
2
3
x
f
197. If ( ) x = ax + bx + + 1 has a 200. For x r cos , y r sin , which of
local maximum value 3 at x = − 2, then the following is correct?
r − 1
3 5 3 5 (a) = sec and = sin
(a) a = ,b = (b) a = ,b = x x r
4 2 2 4 r
(b) = sec and = cosec
3 5 3 5 x x
(c) a = ,b = (d) a = ,b =
4 4 2 2 r 1
(c) = cos and =
x x r cos
17
f x =
198. Let ( ) (x − 2 ) (x + ) 5 24 . Then r − sin
(d) = cos and =
x x r
(a) f does not have a critical point at 2
[JAM CA 2005]
(b) f has a minimum at 2
x 3
(c) f has a maximum at 2 , ( ,x y ) (0,0 )
)
201. If ( ,f x y = x + y 2
2
(d) f has neither a minimum nor a 0 , otherwise
maximum at 2 then at (0,0)
[JAM MA 2006] f f
(a) and exist and are equal
x y
35
Calculus
f f 1 ln x
+
(b) and exist but not equal (c) lncot + c
x y 2
ln x
f f (d) lnsin 1+ + c
(c) exists but does not 2
x y
f f [JAM CA 2005]
(d) exists but does not
y x 1
205. The value of 1 e e (1 ln x+ ) dx is
[JAM CA 2006] x 2
x y (a) 1 (b) 1/e
202. Suppose z = x sin + y sin , (c) e (d) 0
y x
z z 206. If a real valued function f is given by
xy 0 . Then x + y is equal to f ( ) t
x y x dt = 2 x b x where a
+
,
0
a t 2
(a) -z (b) 0 > 0 and b are areal constants, then f(4) is
(c) z (d) 2z equal to
=
=
203. If z = e xy 3 , x t cost , y t sint then (a) 4 (b) 6
(c) 8 (d) 10
dz at t = is
dt 2 [JAM CA 2010]
2
t −
cos x
f
(a) 3 / 8 (b) 3 / 4 207. Let ( ) x = sin x e dt , then
−
(c) 3 / 2 (d) 3 / 8 ( ' f / ) 4 equals
[JAM CA 2009]
(a) 1/ e (b) − 2 / e
dx (c) 2 / e (d) − 1/ e
204. The value of
+
−
x 1 cos 2 (1 ln x )
[JAM MA 2006]
is
208. Let :f R R→ be a continuous function.
1 ln x
+
(a) ln tan + c 0 x f ( )dt = x sin ( ) x
2t
2 If for all
1 ln x
−
(b) ln tan + c x R , then f(2) is equal to
2
(a) -1 (b) 0
(c) 1 (d) 2
[JAM MA 2007]
36
Calculus
3
2
) ( ) t dt ,
209. Let ( ) x = f 0 x ( x − 2 t g 213. If 0 x f ( ) t dt = x 2 sin x + x . Then
where g is real valued continuous f
function on R. Then f’(x) is equal to 2 is
( )
3
(a) 0 (b) x g x 2 3 3 2
x x (a) 2 + 2 (b) + 4
(c) g ( ) t dt (d) 2x 0 g ( ) t dt
0 3 2
(c) − (d) 0
[JAM MA 2008] 4
210. Let a be non-zero real number. Then e 1 +
1 214. The value of 1 2 e (1 ln ) x dx is
lim 2 x sin t 2 x
( ) dt equals
2
→
x a x − a a
(a) 1 (b) 1/e
1 1 (c) e (d) 0
( )
( )
(a) sin a 2 (b) cos a 2
2a 2a [JAM CA 2005]
1 1
( )
( )
(c) − sin a 2 (d) − cos a 2
2a 2a dx
215. The integral 1 2 x )
+
[JAM MA 2009] x (1 e
→
211. Let : f R R be defined as (a) converges and has value < 1
(b) converges and has value equal to 1
tant
f ( ) t = t , t 0 (c) converges and has value > 1
(d) diverges
1, t = 0
0
216. For , the value of the integral
1 3 0 − x 2
Then the value of lim 2 x 2 f ( ) t dt e dx equals
x→ 0 x x
1
(a) is equal to (-1) (b) is equal to 0 (a) (b)
(c) is equal to 1 (d) does not exist 2 2
2
[JAM MS 2006] (c) (d) 2
d sin x 2
t
212. e dt is equal to [JAM CA 2007]
dx 0
)
x
2
2
(a) e sin x cos x (b) e sin x 217. The integral 0 /2 min (sin ,cos x dx
)
2
(c) (2sin x e sin x (d) e 2sin x equals
37
Calculus
2
(a) 2 − (b) 2 − 2 (a) 2 (b) 1
1
(c) 2 2 (d) 2 + 2 (c) (d) 0
2
218. The value of the integral [JAM MA 2007]
tan x
0 /2 tan x + cot x dx is 223. The value of the integral
−
(a) / 6 (b) / 2 − /4 1 cos2x dx is
(c) 0 (d) / 4 2
−
1 log x (a) 1− 1 (b) 1− 1
e
219. The integral dx 2 2
x
1 1
(a) converges to e (c) 3− 2 (d) 2 − 2
1
(b) converges to
e [JAM GP 2008]
(c) converges to 1 224. The value of the integral
is
(d) diverges 9 dy
0 y 1+ y
1 dx
220. The value of is
0 x (1 x− ) ( )
−
(a) 4 (b) 4 10 1
(c) 8 (d) 12
(a) 0 (b)
2 [JAM CA 2012]
(c) (d) 2
2
x
225. Area enclosed by the curves y = and
2n+
f
221. Let ( ) x = n sin 1 x cos x . Then the 2
n
value of y = 2x − 1 lying in the first quadrant
lim 0 /2 f ( ) x dx − 0 /2 ( lim f ( )) is
x dx
n→ n n→ n
(a) 1/6 (b) 1/4
is
(c) 1/2 (d) 1/3
(a) 1/2 (b) 0 [JAM CA 2005]
(c) -1/2 (d) −
2 xy
222. Let A(t) denote the area bounded by the 226. The value of 0 1 y 1 x e dx dy
curve y = e − x , the x-axis and the e + 2 e − 2
=
straight lines x = − t and x t . Then (a) 2 (b) 2
lim A ( ) t is equal to
t→
38
Calculus
e − 1 e + 1 (d) 2/3 1 2 ( / 1 v− ) ( f u uv− ,uv )u du dv
(c) (d) 1/ (1 v− )
2 2
[JAM CA 2006]
[JAM CA 2005]
231. The area bounded by the curve
0 1 y 1 x y = (x + 2
227. The value of dx dy is ) 1 , its tangent at (1,4) and the
2
( x + y 2 ) x-axis is
1 2
(a) (b) (a) (b)
4 2 3 3
4
(c) (d) (c) 1 (d)
3 5 3
[JAM CA 2005] 232. If denotes the region bounded by the
x-axis and the lines y = x and x = 1,
228. The value of the integral then the value of the integral
0 x e − y dy dx cos 2x
( )
y dx dy is
x
(a) 0 (b) 1
sin2 cos2
(a) (b)
(c) 2 (d) 2 2
229. The entire area bounded by the curve (c) cos 2 (d) sin 2
r = a cos2 is
2
[JAM CA 2007]
(a) a (b) 2a
233. Let D be the region in the first quadrant
(c) a (d) 2 a lying between x + 2 y = 2 1 and
230. The double integral x + 2 y = 2 4. The value of the integral
1 2 x 2x f ( ,x y dy dx under the sin ( x + y 2 ) dx dy is
)
2
transformation x u= (1 v− ), y uv is D
=
transformed into
(a) (cos1 cos2− )
2
( / 1 v
−
(a) 1/2 2/3 1/ − − ) ) ( f u uv ,uv )du dv 4
(1 v
− )
( / 1 v−
(b) 1/2 2/3 1/ 2 (1 v− ) ) ( f u uv− ,uv )u du dv (b) (cos1 cos4
4
( / 1 v−
(c) 1/2 2/3 1/ 2 (1 v− ) ) ( f u uv− ,uv )v du dv (c) (cos1 cos2− )
2
39
Calculus
1 u v 2u v
−
+
)
−
(d) (cos1 cos4 [JAM CA 2007] (d) 0 4 − u u /2 f , dv du
2 3 3 3
234. Consider the double integral 236. The area of the region bounded by the
0 1 x 2 x f ( ,x y dy dx . After curves x = 2y and y = 2x is
)
+
2
2
reversing the order of the integration, the
integral becomes (a) 1 (b) 2
3 3
(a)
0 0 y− 2 f ( , x y dx dy + 1 0 1 f ( , x y dx dy (c) 4 (d) 4
)
)
2
1
)
+ 2 3 y 1 f ( , x y dx dy 3
(b) [JAM CA 2008]
)
0 0 y f ( , x y dx dy + 1 0 1 f ( , x y dx dy237. The value of the integral
)
2
1
)
+ 2 3 y− 1 2 f ( , x y dx dy 0 3 0 3x dy dx is
x + y 2
2
(c)
0 0 y f ( , x y dx dy + 1 0 y f ( , x y dx dy (a) 3log 2 + 3
)
(
)
)
2
1
)
+ 2 3 y− 1 2 f ( , x y dx dy
(
)
(b) 3log 2 − 3
(d)
0 0 y− 2 f ( , x y dx dy + 1 0 y f ( , x y dx dy
)
)
2
1
)
+ 2 3 y 1 f ( , x y dx dy (c) 3log 2
)
(
3
(d) log 2 + 3 [JAM CA 2008]
[JAM CA 2008] 2
235. The double integral 238. Changing the order of integration of
0 2 x 4 x f ( , x y dydx under the − 1 1 1 x 2 f ( , x y dy dx gives
)
−
)
−
−
transformation u = x y , v = y − 2x − 1 x 2
+
)
+
1 y
is transformed into (a) 0 1 1 y f ( ,x y dy dx +
−
u v 2u v
−
+
(a) 0 4 u u /2 f , dv du − 0 1 1 y 2 f )
−
3 3 − 1 y 2 ( , x y dy dx
−
+
−
)
+
(b) 3 0 4 u u /2 f u v , 2u v dv du (b) 0 1 1 y f ( ,x y dy dx
−
3 3 1 y
)
+
−
−
1 4 u u v 2u v − − 0 1 1 y 2 f ( ,x y dy dx
(c) 0 u /2 f , dv du − 1 y 2
−
3 3 3
40
Calculus
0 1 1 y ) 242. The area of the region bounded by the
+
(c) − − f ( , x y dy dx
1 y
curves r = 1 and r = cos2 ,
3
)
−
+ − 0 1 − 1 y 2 2 f ( , x y dy dx 0 , is
−
2
1 y
)
+
(d) 0 1 − 1 y f ( , x y dy dx (a) (b)
−
1 y
2 3
)
−
− − 0 1 − 1 y 2 2 f ( , x y dy dx
−
1 y
(c)
4 (d) 8
239. The value of x + y dx dy , where
D [JAM CA 2010]
[x + y] is the greatest integer less than or
equal to x + y is the region bounded by x 243. The area included between the curves
2
= 0, y = 0 and x + y = 2, is x + 2 y = 2 a and
b x + a y = a b (a 0,b ) 0 , is
2
2 2
2 2
2
3 1
(a) (b)
2 2 a
−
(a) a b
1 2
(c) (d) 0
4
(b) a − 2 3ab b
+
2
2
x
240. The area bounded by the curves y =
(c) a a b −
and x = y is
2
2
2
(a) 1/3 (b) 2/3 (d) a − b [JAM CA 2011]
(c) 4/3 (d) 5/3 244. The area bounded by the curves
−
[JAM CA 2009] x = 2 4 2y and x = 2 y + 4 is
241. The value of the integral (a) 16 (b) 24
0 /2 x /2 sin y dy dx is (c) 30 (d) 36
y
245. The value of the integral
1 x x e − x 2 / y dy dx is
(a) 0 (b) 0 y= 0
2
(a) 0 (b) 1/2
(c) 1 (d) 2
(c) 4 (d) 1
[JAM GP 2005]
41
Calculus
1
246. If (c) 1+ + .....+ 1
h
1 y+
5
4
4 dx dy = 1 dy dx + ( ) g dy dx 2 n + 1
=
y= 0 x= 0 x= 0 y= 0 x= 4 y g ( ) x 1 1
, then the functions g(x) and h(x) are, (d) 1+ + .....+ n + 2 [CSIR]
2
respectively
(a) (x – 4) and 1 (b) (x + 4) and 1
/4
(c) 1 and (x – 4) (d) 1 and (x + 4) 250. log + )
(1 tan x dx
0
[JAM GP 2009]
(a) 0 (b) log 2
247. The surface area obtained by revolving 4
y = 2x , for x 0,2 , about y-axis is
(c) log 2 (d) log 2
8 2
(a) 2 5 (b) 4 5
/2
+
2
(c) 2 5 (d) 4 5 251. (a 2 cos x b 2 sin 2 ) x dx =
0
[JAM CA 2009]
2
(a) 0 (b) (a + b 2 )
=
248. If the line y mx, 0 x 2 is rotated 2
about the line y = − 1, then the area of (c) (a + b 2 ) (d) (a + b 2 )
2
2
the generated surface is 4 8
[JNU]
+
+
(a) 4 (1 m ) 1 m
252. Let ‘ f ’ be a real valued function of a
real variable defined as
+
+
4
(b) (1 m 2 ) 1 m f ( ) x = x − , where x denote the
x
+
2
(c) 4 ( 1+ m ) 1 m largest integer less than or equal to x
1.25
. The value of f ( ) x dx _________
0.25
+
+
2
(d) 4 (1 m ) 1 m is (up to 2 decimal places).
[GATE-2018 (EE)]
[JAM CA 2007] 253. 2 1 x dx = ________
−
249. For n N , the value of 0
(a) 0 (b) -1
n 1− ( / x n ) n
dx = (c) 1 (d) 2
−
0 n x e 1
+
254. The value of e (1 ln x ) dx is
(a) 0 1 x 2
1 1 1 (a) 1 (b) 1/e
(b) 1+ + + .........+
2 3 n
(c) e (d) 0
42
Calculus
)
x
255. The integral 0 / 2 min (sin , cos x dx (a) 2 (b) 2 10
10
equals
(c) 10 (d) 2
(a) 2 − (b) 2 − 2
2
[ESE PRELIMS-2017]
(c) 2 2 (d) 2 + 2
256. The value of the integral 261. The value of the integral
tan x
2
0 / 2 tan x + cot x dx is (x − 2 ) 1 sin x − 2 ( ) 1 dx is
(a) /6 (b) /2 0 (x − ) 1 + cos (x − ) 1
(c) 0 (d) /4 (a) 3 (b) 0
(c) -1 (d) -2
5 / 2
257. The value of f ( ) x dx, where [ME, GATE-2014 : 1 MARK]
− 5 / 2
/ 2
)
3
f ( ) x = e x 2 . sin x + 4cos , x 262. log (sin x dx =
0
equals_____ −
(a) 0 (b) log2
(a) 4 (b) 8 2
5 − 5 (c)
−
(c) (d) log2 (d) log2
2 2 2
=
100 263. If x sin x dx k , then the values
258. The value of sin x dx . 0
0 of k is equal to_________.
(a) 100 (b) 100 [GATE-2014 (CS-SET 3)]
(c) 200 (d) 200 / 2
5
3
264. sin x cos x dx =
1 0
259. 2 dx =
2
+
2
a cos x b 2 sin x 1 1
0
(a) (b)
16 24
(a) 0 (b)
ab (c) 1 (d) 1
48 96
(c) ab (d)
2
a + b 2
6
4
265. x sin x cos x dx =
260. The value of the integral 0
0 2 9 sin + 3 2 d is
43
Calculus
3 2 5 2 4 4 16
(a) (b) (c) and 0 (d) and
512 256
3 2 [GATE-17-CSIT]
(c) ab (d) 0
256 270. The value of the integral
−
x
sin x
266. The value of 0 1 cos x dx = − / 4 1 cos2x dx is
+
2
2
1 1
(a) (b) (a) 1− (b) 1−
−
4 2 2 2
2 2
(c) (d) (c) 3− 1 (d) 2 − 1
4 8 2 2
267. Consider the following definite 271. The value of the integral
−
1
1 ( sin x ) 2
9
integral I = dx . dy is
−
0 1 x 2 0 y 1+ y
The value of the integral is
)
−
3 3 (a) 4 (b) 4 ( 10 1
(a) (b)
24 12 (c) 8 (d) 12
3 3
A
(c) (d) 272. Let ( ) t denote the area bounded by
48 64
x
the curve y = e , the x - axis and the
[GATE-17-CE] straight lines x = t − and x t , then
=
lim ( ) t is equal to
( )
2
t→
268. The value of 0 / 4 x cos x dx correct (a) 2 A (b) 1
to three decimal places (assuming (c) 1/2 (d) 0
that = 3.14 ) is ____.
1/ 2
273. e − y 3 .y dy =
[GATE-18-CSIT]
0
x
1
269. If ( ) x = R sin + S , ' f = 2
f
2
2 (a) (b)
3
and 0 1 f ( ) x dx = 2R , then the constants
(c)
2 (d) 0
R and S are respectively.
2 16 2 274. The value of 1 dt is ________
(a) and (b) and 0 0 − lnt
44
Calculus
1 1
(a) (b) (a) (b)
2 5015 15015
− 1 1
(c) - (d) (c) (d)
2 5005 5001
/ 2
275. The value of e − 5x 4 x dx is ______ 280. The value of cot d is ______
0 0
3 2 (a) (b)
(a) (b) 2 3
2 3
(c) (d)
(c) (d) 2 4
3 2
x
a
276. The value of x dxis _________ 281. The value of 1 x 6 dx is ________
+
0 a x 0
a a + 1
(a) (b) a+ (a) (b)
(ln a ) a (ln a ) 1 3 3 3
a a + 1
(c) a+ (d) (c) (d)
(ln a ) 1 (ln a ) a 2 2 2
4 + 5 )
1 x ( 1 x
−
277. x 6 1 x dx = 2 282. The value of (1 x ) 15 dx is _____
+
0 0
1 1
(a) (b) (a) (b)
256 128 5005 5001
3 1 1
(c) (d) (c) (d)
512 512 1001 10001
1 x 6 283. The length of the arc y = x 3/ 2 , z = 0
278. The value of − 2 dx =
0 1 x from (0, 0, 0) to (4, 8, 0) is ________
3 8 3/ 2
(a) (b) (a) ( 10 + ) 1
32 32 27
5 8 3/ 2
(c) (d) 0 (b) ( 10 − ) 2
32 27
1 8 3/ 2 −
279. The value of x 4 (1 5x dx− ) 5 is _____ (c) ( 10 ) 1
27
0
45
Calculus
8 288. A parametric curve defined by
(d) ( 10 3/ 2 + ) 2
27 u u
x cos , y = sin in the range
284. Let f be increasing, differentiate 2 2
function. If the curve y = f ( ) x passes 0 u 1 is rotated about the X-axis by
0
through (1, 1) and has length 360 . Area of the surface generated is
2 1 (a) (b)
1 x
L = 1+ 2 dx 2, then curve 2
1 4x (c) 2 (d) 4
is __________ [GATE-17-ME]
)
x −
(a) y = ln ( ) 1 289. Let W = f ( ,x y , where x and y are
functions of t. Then, according to the
−
(b) y = 1 ln x dw
)
(c) y = ln 1+ ( x chain rule, dt is equal to
+
x
(d) y = 1 ln ( ) (a) dw dx + dw dt
dx dt dy dt
285. The length of the arc w x w x
)
x = ( a t − sint ), y = a (1 cost between (b) x t + y t
−
t = 0 to t = 2 is _____ (c) w dx + w dx
(a) 8a (b) 4a x dt y dt
dw x dw x
(c) 4 2a (d) 2 2a (d) +
dx t dy t
)
+
286. The length of the arc r = a (1 cos
290. The surface area obtained by
between = 0 to is _____ revolving y = 2x for x 0,2 about y –
287. Consider a spatial curve in three-
axis is ____
dimensional space given in parametric
(a) 2 5 (b) 4 5
from by x ( ) t = cos , y ( ) sin ,t = t
t
(c) 2 5 (d) 4 5
2
z ( ) t = t , 0 t
2 291. The surface area generated by
The length of the curve is ___________ rotations
3
3
[ME, GATE-2015 : 2 MARKS] x = a cos , y = a sin ,0
about y- axis
46
Calculus
12 5 295. The volume generated by revolving
2
2
(a) a (b) a
5 12 the area bounded by y = 8x and the
2
6 5
−
2
2
2
(c) a (d) a line x = , about y axisis
5 6
128 5
292. The surface area of the solid (a) (b)
5 128
generated by revolving line segment
127 32
y = x + 2 for 0 x 1about the line (c) 5 (d) 5
y = 2 is __________
(a) 2 (b) 2
2
(c) 2 2 (d) 2 296. The area bounded by x = 2y and
=
2
293. If the line y mx, 0 x 2 is y = 2x is _______
rotated about the line y = − 1 then the 1 2
(a) (b)
area of the generated surface is 3 3
4
_________ (c) (d) 4
3
+
+
(a) 4 (1 m ) 1 m
297. The area between the parabolas
+
+
4
(b) ( 1 m 2 ) 1 m y = 4ax and x = 4ay is
2
2
2
+
2
(c) 4 ( 1 + m ) 1 m (a) a (b) 14 a
2
2
3 3
2
+
+
(d) 4 (1 m ) 1 m 16 17
2
2
(c) a (d) a
3 3
294. The volume generated by revolving
[EE, ESE-2019]
the area bounded by the parabola
298. The area of the region bounded by the
y = 2 8 , x y axis and the lines y = − 4 to
−
parabola y = x + 2 1and the straight
y = 4 about y-axis is
line x y+ = 3 is
32
(a) 32 (b) 59 9
5 (a) (b)
128 6 2
(c) (d) None of the above 10 7
5 (c) (d)
3 6
[EE-1994]
47
Calculus
2
299. Let I = c xy dxdy , where R is the 2 x 1
R 302. 2 3/ 2 dy dxtransforms to
1 0 ( x + ) 2
region shown in the figure and
a c
−
4
c = 6 10 . The value of I equals ____. 1 2 dr d in polar coordinates then a,
(Give the answer up to two decimal 0 b r
b, c respective are ____________
places)
(a) ,sec and 2sec
4
(b) , 2sec , 4sec
4
(c) , 2sec , 4sec
2
(d) , sec and 2sec
300. The area bounded by the curves 2
−
x = 2 4 2y and x = 2 y + 4 is 303. The value of xydx dy over the
D
(a) 16 (b) 24
region common to the circles
(c) 30 (d) 36
+
x + 2 y = 2 x and x y = y is _________
301. Let D be the region in the first
1 1
quadrant lying between x + 2 y = 2 4 . The (a) (b)
192 96
value of the integral 1 1
(c) (d)
sin ( x + y 2 ) dx dy is 48 24
2
D
304. What is the area common to the circle
(a) (cos1 cos2− ) = a and r = 2a cos ?
4
2
2
(a) 0.524 a (b) 0.614 a
)
−
(b) (cos1 cos4 (c) 1.047 a (d) 1.228 a 2
2
4
[GATE-2006]
(c) (cos1 cos2− ) 305. A surface ( , x y = 2x +
)
3
2 S 5y − is
integrated once over a path consisting of
(d) (cos1 cos4− )
2 the points that satisfy
48