INTEGRATION BY USING SUBSTITUTION METHOD
f [g(x)]g , (x)dx f (u) du where u g(x).
Steps of substitution method of integration:
Choose u g(x) Substitute u g(x) and Integrate Replace u
du g '(x)dx to obtain with respect by g(x) in
and differentiate u to
get du g '(x)dx. the integral f (u)du. to u. the result.
Example 1: Use suitable substitution to evaluate 2x 1 x2 5 dx.
Step 1: u 1 x2
du 2x du 2xdx
Choose u, the differentiation of u dx
part of the integrand.
Step 2:
Substitute u g(x) and 2x 1 x2 5 dx u5du
du g '(x)dx to obtain f (u)du.
Step 3: u6 c
Integrate with respect to u. 6
Step 4:
Replace u. 1 1 x2 6 c
6
Example 2: By using the substitution u x 2 , find 3 dx
x2
Step 1: u x2
Choose u, the differentiation of u du 1 du dx
part of the integrand. dx
Step 2: 3 2 dx 3 du
Substitute u g(x) and x u
du g '(x)dx to obtain f (u)du. 1
3u 2 du
Step 3: 1
Integrate with respect to u.
6u 2 c
Step 4: 6x 1 c
Replace u.
22
Example 3: Use suitable substitution to evaluate the following 2xex23 dx
Step 1: u x2 3
Chose correct u du 2x du 2xdx
Differentiate u dx
Step 2: 2xe x23 dx ex23 2x dx
Substitute u and du to obtain eu du
f (u)du. eu c
Step 3: ex23 c
Integrate with respect to u.
Step 4:
Replace u.
Example 4: Use suitable substitution to evaluate the following 4x3 dx
x4 9
Step 1: u x4 9
Chose correct u du 4x3 du 4x3dx
Differentiate u dx
Step 2: 4x3 dx 1 4 x 3 dx
Substitute u and du to obtain
x4 9 x 4 9
f (u)du.
1 du
Step 3: u
Integrate with respect to u.
Step 4: Replace u. ln u c
ln x4 9 c
Example 5: Use suitable substitution to evaluate the following ln x 2 dx
x
Step 1: u ln x
Chose correct u du 1 du 1 dx
Differentiate u dx x x
Step 2: ln x 2 dx u2 du
Substitute u and du to obtain
x
f (u)du.
u3 c
Step 3: 3
Integrate with respect to u.
Step 4: ln x3 c
Replace u.
3
Example 6: Use suitable substitution to evaluate the following x cos2x2 dx.
Step 1: u 2x2
Chose correct u du 4x du xdx
Differentiate u dx 4
Step 2: x cos2x 2 dx cos2x2 x dx
Substitute u and du to obtain
cos u du
f (u)du. 4
Step 3: 1 cos u du
Integrate with respect to u. 4
Step 4:
Replace u. 1 sin u c
4
1 sin 2x2 c
4