Accuracy guarantees: Vignette (m = n = 2000 rank-8)
low-rank matrix M sampled matrix ME
OptSpace output M^ squared error (M M^ )2
Andrea Montanari (Stanford) 1:25% sampled September 15, 2012 31 / 58
Collaborative Filtering
Accuracy guarantees: Vignette (m = n = 2000 rank-8)
low-rank matrix M sampled matrix ME
OptSpace output M^ squared error (M M^ )2
Andrea Montanari (Stanford) 1:50% sampled September 15, 2012 31 / 58
Collaborative Filtering
Accuracy guarantees: Vignette (m = n = 2000 rank-8)
low-rank matrix M sampled matrix ME
OptSpace output M^ squared error (M M^ )2
Andrea Montanari (Stanford) 1:75% sampled September 15, 2012 31 / 58
Collaborative Filtering
Accuracy guarantees: Unstructured factors
Incoherence
k k hk k ii ;u 2 k k hk k ijv
:v¡
u¡ 2 2 2
av 2 av
[Candés, Recht 2008]
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 32 / 58
Accuracy guarantees
Theorem (Keshavan, M, Oh, 2009)
jM j MAssume ij max. Then, w.h.p., rank-r projection achieves
q
j j + k k p j jM =C max nr E
RMSE ZC H E 2 n r = E :
Theorem (Keshavan, M, Oh, 2009)
( ) ( ) = ( )MLet
be incoherent with 1 M =r M O 1 . If
j j ! f ( ) gE Cn min r log n 2; r 2 log n then, w.h.p., OptSpace achieves
p
ZC HH n r E 2;
j j k kRMSEE
( ( ) )logwith complexity O nr 3
n 2.
j jp
E.g. Gaussian noise: C HHz r n= E
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 33 / 58
Accuracy guarantees
Theorem (Keshavan, M, Oh, 2009)
jM j MAssume ij max. Then, w.h.p., rank-r projection achieves
q
j j + k k p j jM =C max nr E
RMSE ZC H E 2 n r = E :
Theorem (Keshavan, M, Oh, 2009)
( ) ( ) = ( )MLet
be incoherent with 1 M =r M O 1 . If
j j ! f ( ) gE Cn min r log n 2; r 2 log n then, w.h.p., OptSpace achieves
p
ZC HH n r E 2;
j j k kRMSEE
( ( ) )logwith complexity O nr 3
n 2.
j jp
E.g. Gaussian noise: C HHz r n= E
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 33 / 58
Two surprises
Can do much better than SVD !
Error = Noise = Sampling factor
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 34 / 58
Analogous guarantees for convex relaxations
Candés, Recht, 2008 £
Candés, Plan, 2009
Candés, Tao, 2009
Gross, 2010
Negahbahn, Wainwright, 2010
Koltchinskii, Lounici, Tsybakov, 2011
...
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 35 / 58
A noisy example
n = 500; r = 4; z = 1, example from [Candés, Plan, 2009]
1.4 rank-r projection
SDP
1.2
ADMiRA
1 OptSpace
Oracle Bound
RMSE 0.8
0.6
0.4
0.2
0
j j0 100 200 300 400 500
E =n
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 36 / 58
Challenge #1: Privacy
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 37 / 58
Research question
User ratings 3 User feature vector
User ratings 3 User private attributes ???
Let us try to do it!
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 38 / 58
Research question
User ratings 3 User feature vector
User ratings 3 User private attributes ???
Let us try to do it!
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 38 / 58
Research question
User ratings 3 User feature vector
User ratings 3 User private attributes ???
Let us try to do it!
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 38 / 58
Which attribute?
Number of persons in the household
Non-obvious [ no prize :-( we won it :-) ]
Recommender has incentive
2011 CAMRa Challenge
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 39 / 58
Which attribute?
Number of persons in the household
Non-obvious [ no prize :-( we won it :-) ]
Recommender has incentive
2011 CAMRa Challenge
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 39 / 58
CAMRa dataset
m % 2 ¡ 105 users, n % 2 ¡ 104 movies
jE j % 4:5 ¡ 106 ratings (p % 0:001)
272 households of size 2
14 households of size 3
4 households of size 4
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 40 / 58
CAMRa dataset
m % 2 ¡ 105 users, n % 2 ¡ 104 movies
jE j % 4:5 ¡ 106 ratings (p % 0:001)
272 households of size 2
(14(h(ou(se(ho(ld(s (of(si(ze((3
(4 (ho(us(eh(ol(ds(o(f s(iz(e(4
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 41 / 58
CAMRa dataset
m % 2 ¡ 105 users, n % 2 ¡ 104 movies
jE j % 4:5 ¡ 106 ratings (p % 0:001)
272 households of size 2
Can you identify whether two users shared an account?
Can you identify which user watched a movie?
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 42 / 58
Short answer
Yes: For a signicant fraction of the accounts.
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 43 / 58
Two examples (Netix dataset, no ground truth)
No movie info used!
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 44 / 58
How did you do it?
Rij $ hui ; vj i + "ij
( ) Pn Rr +1; j P WatchedBy(i)o Hyperplane
Rij ; vj
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 45 / 58
How did you do it?
Rij $ hui ; vj i + "ij
( ) Pn Rr +1; j P WatchedBy(i)o Hyperplane
Rij ; vj
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 45 / 58
How did you do it? Subspace clustering
One user 3 One hyperplane
Two users 3 Two hyperplanes
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 46 / 58
Example: A two-user household (CAMRa)
Number of movie rating eventsDistance Difference Distribution for household 172, with similarity score 0.898117
80
User 1
User 2
70 Normal fit (−)
Normal fit (+)
60
50
40
30
20
10
0 2
−2 −1.5 −1 −0.5 0 0.5 1 1.5
Difference of distances of xj from the two hyperplanes
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 47 / 58
Example: Another two-user household (CAMRa)
120 Distance Difference Distribution for household 124, with similarity score 0.500787
100
User 1
User 2
Normal fit in µ ± 1.5σ
Number of movie rating events 80
60
40
20
0 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−2.5 Difference of distances of xj from the two hyperplanes
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 48 / 58
Classifying households Size 1, Empirical
Size 2, Empirical
0.08 Size 1, Fitted Gamma
MOVIEX Size 2, Fitted Gamma
0.06PDF
0.04
0.02
00 (M5S0E1−MSE120)0× m / lo1g5(m0) 200
MSE1 3 MSE using one hyperplane
MSE2 3 MSE using two hyperplanes
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 49 / 58
Challenge #2: Interactivity
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 50 / 58
We want to design the system
User Recommender
We took time out of the picture.
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 51 / 58
We want to design the system
User Recommender
We took time out of the picture.
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 51 / 58
Interactive system Recom.
Recom.
t = 1 User Recom.
t = 2 User
t = 3 User
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 52 / 58
Abstract from other users
At time t
Recommender suggests movie vt ;
User gives feedback Rt
Focus on user u
Rt $ hu; vt i + "t
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 53 / 58
Abstract from other users
At time t
Recommender suggests movie vt ;
User gives feedback Rt
Focus on user u
Rt $ hu; vt i + "t
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 53 / 58
Linear bandits
Decision:
vt
Observations:
Rt $ hu; vt i + "t
Reward: =yt h it
Andrea Montanari (Stanford) u ; v`
`=1
[Rusmevichientong, Tsitsiklis, 2008]
Collaborative Filtering September 15, 2012 54 / 58
Important dierences
Number of observations $ Dimensions
Cannot explore completely at random.
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 55 / 58
Simulating an interactive system (Netix data)
10 8 8
8
6Cumulative Reward 6 6
4 Cumulative Reward
2 Cumulative Reward4 4
0
2 2
0
5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
t 0 t 0 t
3 `typical' users
Constant-optimal policy
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 56 / 58
Conclusion
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 57 / 58
Conclusion
A crucial technology for modern information networks.
Only scratched the surface.
Thanks!
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 58 / 58
Conclusion
A crucial technology for modern information networks.
Only scratched the surface.
Thanks!
Andrea Montanari (Stanford) Collaborative Filtering September 15, 2012 58 / 58