Apabila y = 3, 3 = ! 2x + 7
9 = 2x + 7
2x = 2
x=1
dan dy = 1 + 7
dx ! 2(1)
= 1
! 9
= 1
3
dy dy dx
dt = dx × dt
6 = 1 × dx
= 3 dt
dx 18
dt unit s–1
3. (a) y = (x – 8)! x + 4
[ ]dy = (x – 8) 1 (x + 4)– 12 (1) + ! x + 4(1)
2
dx
x–8 + ! x + 4
= 2! x + 4
= x – 8 + 2(x + 4)
2! x + 4
= x –8+ 2x + 8
2! x +4
= 3x
2! x + 4
(b) Apabila x = 5, dy = 3(5)
dx 2! 5 + 4
= 15
2(3)
= 15
6
5
= 2
dy = dy × dx
dt dx dt
ddyt =
5 ×6
2
= 15 unit s–1
Perbincangan (Halaman 68)
1
(a) V = 3 π r2h …1
8r = h
16
h
r = 16 × 8
= h …2
2
Gantikan 2 ke dalam 1:
( )V =1 π h 2h
3 2
= 1 π h3
12
51
Kadar perubahan V diberi oleh:
dV = dV × dh (petua rantai)
dt dh dt
( )=ddh 1 πh3 × dh
12 dt
= 1 πh2 × dh
4 dt
dV
Apabila h = 8 dan dt = 64π, kita peroleh
64π = 1 π(8)2 × dh
4 dt
dh
64π = 16π × dt
dh = 4
dt
Jadi, kadar perubahan kedalaman air dalam bekas itu ialah 4 cms–1.
(b) L = πr2 …3
Gantikan 2 ke dalam 3:
( )L h 2
= π 2
= 1 πh2
4
Kadar perubahan L diberi oleh:
dL = dL × dh (petua rantai)
dt dh dt
( )=d 1 πh2 × dh
dh 4 dt
= 1 πh × 4
2
dh
Apabila h = 8 dan dt = 4, kita peroleh
dL = 1 π(8) × 4
dt 2
= 16π
Jadi, kadar perubahan luas permukaan mengufuk ialah 16π cm2s–1.
Latihan Kendiri 2.13
1. y = 1 x2
8
dy
dx = 1 x
4
dy 1
Apabila x = 4, dx = 4 (4) = 1
dy = dy × dx
dt dx dt
dy
dt = 1 × 3
= 3 unit s–1
2. L = x2
dL
dx = 2x
Apabila L = 4,
x2 = 4
x2 = ! 4
dL = = 2 (. 0)
dan dx 2(2) = 4
52
dL = dL × dx
dt dx dt
dx
8 = 4 × dt
ddxt = 8
4
= 2 cms–1
3. I = x3
dI
dx = 3x2
Apabila x = 10, dI = 3(10)2
dx
= 300
dI dI dx
dt = dx × dt
–10.5 = 300 × dx
dt
dx = – 1300.05 = – 2070 cmmin–1
dt
4. (a) V = π r2h
= π(3)2h
= 9πh
dV
(b) dt = 9π × – 0.6
= –5.4π cm3min–1
5. Katakan panjang bayang-bayang dan panjang hujung bayang-bayang dari kaki tiang lampu masing-masing ialah
s m dan l m.
6 1.8
x+s = s
6s = 1.8(x + s)
6s = 1.8x + 1.8s 6m
4.2s = 1.8x
3
s = 7 x 1.8 m
(a) s= 3 x xm sm
7 lm
ds 3
dx = 7
Jadi, ds = ds × dx
dt dx dt
= 3 × 3.5
7
= 1.5
Maka, kadar perubahan panjang bayang-bayang ialah 1.5 ms–1.
(b) l = x + s
3
= x + 7 x
= 170 x
dl 10
dx = 7
Jadi, dl = dl × dx
dt dx dt
= 10 × 3.5
7
= 5
Maka, kadar perubahan hujung bayang-bayang yang bergerak ialah 5 ms–1.
Perbincangan (Halaman 71)
Boleh digunakan tetapi jawapannya tidak tepat dan bukan penghampiran yang terbaik.
53
Latihan Kendiri 2.14
1. (a) y = 4x3 – 3x2
dy = 12x2 – 6x
dx
Apabila x = 1, dx = 1.05 – 1
= 0.05
dy
dan dx = 12(1)2 – 6(1)
= 12 – 6
=6
Jadi, dy ≈ dy × dx
dx
= 6 × 0.05
= 0.3 unit
(b) y = 4! x + 3x2
( )dy = 4 1 x– 12 + 6x
2
dx
2
= ! x + 6x
Apabila x = 4, dx = 3.98 – 4
= – 0.02
dan dy = 2 + 6(4)
dx ! 4
= 1 + 24
= 25
Jadi, dy ≈ dy × dx
dx
= 25 × – 0.02
= – 0.5 unit
3
2. (a) y = 2x2
dy 1
dx =
3x2
= 3! x 3
Apabila y = 16, 16 = 2x2
3
x2 = 8
( ) x= 23 2
3
=4
dy = 15.7 – 16
= – 0.3
dan dy = 3! 4
dx
= 3(2)
=6
dy
Jadi, dy ≈ dx × dx
– 0.3 = 6 × dx
dx = – 06.3
= – 0.05 unit
x + 2
(b) y = 2
= 1 x + 1
2
dy
dx = 1
2
54
Apabila y = 2, 2 = x + 2
2
4=x+2
x=2
dy = 2 + p – 2
= p
Jadi, dy ≈ dy × dx
dx
1
p= 2 × dx
dx = 2p unit
16
3. y = x2 = 16x–2
dy = –32x–3 = – 3x23
dx
16
Apabila x = 2, y = 22
y = 16
4
=4
dx = 2.02 – 2
= 0.02
dy – 3223
dan dx =
= – 4 dy
dx
f (x + dx) ≈ y + dx
(2 16 = 4 + (– 4)(0.02)
+ 0.02)2
= 4 – 0.08
= 3.92
5
4. y = x4
dy 5 1
dx = 4 x 4
dy = 4 y
100
= 0.04y
5
= 0.04x4
dy ≈ dy × dx
dx
5 = 5 1 × dx
4
0.04x4 x4
5
0.04x4
dx = 1
5
4 x4
= 0.032x
Peratus perubahan hampir dalam x = dx × 100%
x
= 0.032x × 100%
x
= 3.2%
55
Latihan Kendiri 2.15
! 1.
T = 2π l
10
l – 21
[ ( ) ( )] ddTl 1 10 1
= 2π 2 10
! = π
10 l
10
dT π
! Apabila l = 9, dl =
9
10 10
= π! 10
30
dan dl = 9.05 – 9 = 0.05
Maka, dT ≈ dT × dl
dl
π! 10
= 30 × 0.05
= π! 10 saat
600
2. L = π j2
dL = 2π j
dj
L = 4π
π j2 = 4π
j2 = 4
j = 2 (. 0)
Apabila j = 2, ddLj = 2π(2)
= 4π
dL = 4.01π – 4π
= 0.01π
dan dL ≈ dL × dj
dj
0.01π = 4π × dj
dj = 0.01π
4π
= 0.0025 cm
3. V = x3
dV = 3x2
dx
Apabila x = 2, dx = 1.99 – 2
dV = – 0.01
dx
dan = 3(2)2
= 12
Maka, dV = dV × dx
dx
= 12 × – 0.01
= – 0.12 cm3
4
4. I = 3 π j3
dI = 4π j2
dj
Apabila j = 5, dj = 4.98 – 5
= – 0.02
56
dan dI = 4π (5)2
dj = 100π
Maka, dI ≈ dI × dj
dj
= 100π × – 0.02
= –2π cm3
Latihan Formatif 2.4
1. (a) y = ! x + 1
dy = 1 (x + 1)– 12 (1)
dx 2
1
= 2! x + 1
Apabila x = 0, ddyx = 1
2! 0 + 1
= 1
2
1
Persamaan tangen: y–1= 2 (x – 0)
2y – 2 = x
2y – x = 2
Pada paksi-x, y = 0
2(0) – x = 2
x = –2
º Q(–2, 0)
(b) Persamaan normal: y – 1 = –2(x – 0)
y – 1 = –2x
y = –2x + 1
Pada paksi-x, y = 0
0 = –2x + 1
2x = 1
1
( ) 1 x= 2
2
ºR , 0
(c) Luas ∆ PQR = 1 0 –2 1 0
2 1 0 2 1
0
=1 1
2 2 – (–2)
= 1 21 + 2
2
= 5
4
1
= 1 4 unit2
2. (a) 2y = 4 – x 1
2
y = 2 – x
y = x2 – 4x + 1
dy = 2x – 4
dx
Jadi, 2x – 4 = 2
2x = 2 + 4
2x = 6
x=3
57
Apabila x = 3, y = 32 – 4(3) + 1
= 9 – 12 + 1
= –2
º a = 3, b = –2
(b) Persamaan tangen: y + 2 = 2(x – 3)
y + 2 = 2x – 6
y = 2x – 8
Pada paksi-x, y = 0
0 = 2x – 8
2x = 8
x=4
º B(4, 0)
(c) Persamaan normal: y + 2 = – 12 (x – 3)
2y + 4 = –x + 3
2y + x + 1 = 0
Pada paksi-x, y = 0
2(0) + x + 1 = 0
x = –1
º C(–1, 0)
(d) Luas ∆ BPC = 1 4 –1 3 4
2 0 0 –2 0
= 1 2 – (–8)
2
10
= 1
2
= 5 unit2
3. (a) Luas = 75
x2 + 4hx = 75
4hx = 75 – x2
h = 75 – x2
4x
Isipadu, V = x2h
( ) = x2
1 75 – x2
4 4x
= x(75 – x2)
= 1 (75x – x3) (Tertunjuk)
4
(b) Untuk V maksimum, ddVx = 0
75 – 3 x2 = 0
4 4
75 3
4 = 4 x2
3x2 = 75
x2 = 25
x = 5 (. 0)
1
4
V = [75(5) – 53]
= 1 (375 – 125)
4
1
= 4 (250)
= 62.5 cm3
d 2V = – 32 x
dx2
58
Apabila x = 5, d 2V = – 23 (5)
dx2
= –7.5 (, 0) Ú V adalah maksimum
Maka, V mempunyai nilai maksimum apabila x = 5 cm dan isi padu maksimum kotak ialah 62.5 cm3.
4. (a) x2 + y2 = 102
y2 = 100 – x2
y = ! 100 – x2
dy = 1 (100 – x2)– 21 (–2x)
dx 2
x
= – ! 100 – x2
dy = dy × dx
dt dx dt
= – x – x2 ×3
! 100
3x
= – ! 100 – x2
Apabila x = 8, dy = – 3(8) 82
dt ! 100 –
= – 4
Jadi, kadar perubahan hujung kayu A ialah – 4 ms–1.
(b) x2 + y2 = 102
Apabila y = 6, x2 + 62 = 102
x2 = 100 – 36
x = ! 64
= 8
dy 8
Apabila x = 8, dx = – ! 100 – 82
= – 43
dy dy dx
dan dt = dx × dt
–2 = – 43 × dx
dt
dx
dt = 1.5
Jadi, kadar perubahan hujung kayu B ialah 1.5 ms–1.
5. Katakan x m ialah jarak mengufuk antara helikopter dengan budak lelaki dan z m ialah jarak antara helikopter
dengan budak lelaki pada masa t.
z2 = x2 + 1352 xm
z = ! x2 + 18 225
dz = 1 (x2 + 18 225)– 21(2x)
dx 2 x
=
! x2 + 18 225 135 m zm
Jadi, dz = dz × dx
dt dx dt
dx ddzt 72
Apabila x = 72 dan dt = –17, = ! 722 + 18 225 × –17
= 72 × –17
153
= –8
º –8 ms–1
59
Latihan Sumatif
( ) [ ] 1. (a)
had 8 + 2x – x2 = had (4 – x)(2 + x)
8 – 2x2 2(4 – x2)
x ˜ –2 x ˜ –2
[ ]=
had (4 – x)(2 + x)
2(2 + x)(2 – x)
x ˜ –2
[ ]= had
x ˜ –2
(4 – x)
2(2 – x)
= 4 – (–2)
2[2 – (–2)]
= 6
8
= 3
4
(b) had
( ) ( )( )x˜0
! 1 +x+ x2 –1 = had ! 1 + x + x2 – 1 ! 1 + x + x2 + 1
x x ! 1 + x + x2 + 1
x˜0
[ ]( )= had
x˜0
1 + x + x2 – 1
x ! 1 + x + x2 + 1
[ ]( )= had
x˜0
x + x2
x ! 1 + x + x2 + 1
[ ]( )= had
x˜0
x(1 + x)
x ! 1 + x + x2 + 1
( )= had
x˜0
1+x
! 1 + x + x2 + 1
= 1 1
! 1 +
= 1
2
(c) had 9 – x 2 =8
4 – ! x 2 + 7
x˜k
9 – k 2 =8
4 – ! k 2 + 7
( )( )
9 – k 2 4 + ! k 2 + 7 =8
4 – ! k 2 + 7 4 + ! k 2 + 7
( )(9 – k 2) 4 + ! k 2 + 7
=8
16 – (k2 + 7)
( )(9 – k 2) 4 + ! k 2 + 7
=8
9 – k2
4 + ! k 2 + 7 = 8
! k 2 + 7 = 4
k2 + 7 = 16
k2 = 9
k = ±3
( ) 2. hada–5 = –3
x ˜ –1x+4
a–5
–1 + 4 = –3
a–5 = –3
3
a – 5 = –9
a = –9 + 5
a = – 4
60
( ) 3. d d
(a) dx 1 = dx [(2x + 1)–1]
2x + 1
= –1(2x + 1)–2(2)
= – (2x 2 1)2
+
( b) ddx[4x(2x – 1)5] = 4x[5(2x – 1)4(2)] + (2x – 1)5(4)
= 40x(2x – 1)4 + 4(2x – 1)5
= 4(2x – 1)4[10x + (2x – 1)]
= 4(12x – 1)(2x – 1)4
[ ](c)
d (2 6 = d [6(2 – x)–2]
dx – x)2 dx
= 6(–2)(2 – x)–3(–1)
= 12
(2 – x)3
( )(d) + 3)– 21(1) + ! x +
d (x! x + 3) = x 1 (x 3(1)
dx 2
x
= 2! x + 3 + ! x + 3
= x + 2(x + 3)
2! x + 3
= 3x + 6
2! x + 3
= 3(x + 2)
2! x + 3
4. (a) y = x(3 – x)
= 3x – x2
ddxy = 3 – 2x
d 2y
dx2 = –2
y dd x2y2 + x ddyx + 12 = (3x – x2)(–2) + x(3 – 2x) + 12
= –6x + 2x2 + 3x – 2x2 + 12
= 12 – 3x
(b) 12 – 3x = 0
3x = 12
x = 12
3
x = 4
5. y = ax + b
x2
= ax + bx–2
ddxy = a – 2bx–3
2b
= a – x3
( )Pada titik , – 72 b
–1, – 27 = a(–1) + (–1)2
– 27 = –a + b
7
a–b= 2
2a – 2b = 7 …1
61
dan dy = 2
dx
2b
a – (–1)3 = 2
a + 2b = 2 …2
1 + 2: 3a = 9
a=3
Gantikan a = 3 ke dalam 1: 2(3) – 2b = 7
6 – 2b = 7
2b = –1
– 21 b = – 12
ºa = 3, b =
V= 4 π r3
6. 3
dV = 4π r2
dr
dV = dV × dr
dt dr dt
20π = 4π r2 × 0.2
20 = 0.8r2
r2 = 25
r = 5 (. 0)
º r = 5 cm = 14(6x3 + 1)– 21
7. (a) y = 14
! 6x3 + 1
( ) dy – 21 (6x3 + 1)– 23(18x2)
dx = 14
= – 126x2
3
(6x3 + 1)2
Apabila x = 2, dx = 2.05 – 2
= 0.05
dan dy = – 126(2)2
dx 3
[6(2)3 + 1]2
= – 350443
= – 4729
Jadi, dy ≈ dy × dx
dx
= – 4729 × 0.05
= –0.0735 unit
14
(b) Apabila x = 2, y = ! 6(2)3 + 1
= 14
7
= 2
dx = 2.05 – 2 = 0.05
dan dy = – 7429
dx
14
! 6(2.05)3 + 1
( ) – 7492 (0.05)
=2+
= 2 – 0.0735
= 1.927
62
8. y = 1
! x
= x– 12
dy = – 21 x– 23
dx
= – 2!1 x3
Apabila x = 4, y = 1
! 4
= 1
2
dx = 2 × 4 = 0.08
100
dy
dan dx = – 2!1 43 = – 116
Jadi, dy ≈ dy × dx
dx
= – 116 × 0.08
= – 0.005
Maka, peratus perubahan hampir dalam y = dy × 100%
y
= – 0.0105 × 100%
2
= –1%
9. y = 3x2 – 4x + 6
dy = 6x – 4
dx
Apabila x = 2, y = 3(2)2 – 4(2) + 6
= 12 – 8 + 6
dy = 10
dx
= 6(2) – 4
=8
dan dx = p × 2
100
= 0.02p
dy = dy × dx
dx
= 8 × 0.02p
= 0.16p
Maka, peratus perubahan dalam y ialah 0.16p × 100 = 1.6p%
10
10. (a) Titik maksimum ialah (–1, 6) dan titik minimum ialah (1, 2)
(b)
y
(–1, 6) y = f (x)
(1, 2)
0x
63
11. (a) y = 3x3 – 4x + 2
dy = 9x2 – 4
dx
Pada titik A(2, 1), dy = 9(2)2 – 4
dx
= 36 – 4
= 32
Persamaan tangen di titik A(2, 1) ialah:
y – 1 = 32(x – 2)
y – 1 = 32x – 64
dy y = 32x – 63
dx
(b) = 32
9x2 – 4 = 32
9x2 = 36
x2 = 4
x = ±2
Apabila x = –2, y = 3(–2)3 – 4(–2) + 2
= –24 + 8 + 2
= –14
º (–2, –14)
( ) 12. (a) j2 = 6! 3 2 – t2 A
t cm
j = ! 108 – t2 …1 D
I = 1 πj2t …2
3
Gantikan 1 ke dalam 2: 6� 3 cm
B j cm
I = 1 π (! 108 – )t2 2t
3
1
= 3 π (108 – t2)t
= 36π t – 1 π t3 ddIt
3
Untuk isi padu maksimum, = 0
36π – π t2 = 0
36π = πt2
36 = t2
t = 6 (. 0)
º t = 6 cm
(b) I = 36π t – 1 π t3
3
1
Apabila t = 6, I = 36π(6) – 3 π (6)3
= 216π – 72π
= 144π
º Isi padu kon ialah 144π cm3.
13. AC = ! 302 + x2 = ! 900 + x2
Jumlah masa yang diambil dari A ke D ialah
T= ! 900 + x2 + 400 – x
40 50
T = 1 ! 900 + x2 + 8 – 1 x
40 50
64
Untuk nilai pegun T, dT = 0
dx
(900 + x2)– 12(2x) –
( )11 1 = 0
2 50
40 x 1
40! 900 + x2 50
=
50x = 40! 900 + x2
5x = 4! 900 + x2
25x2 = 16(900 + x2)
25x2 = 14 400 + 16x2
9x2 = 14 400
x2 = 1 600
x = ! 1 600
= 40
º Jarak dari B ke C ialah 40 m.
14. I = 8
x3 = 8
x = 2
L = 6x2
AddLxpab=il1a2xx
= 2, dL = 12(2)
dx = 24
dL = dL × dx
dt dx dt
dL
dt = 24 × 2
= 48
º Kadar perubahan jumlah luas permukaan kubus ialah 48 cm2s–1.
15. (a) Luas, A = 1 xy
2
1
= 2 x(6x – x2)
= 1 (6x2 – x3) (Tertunjuk)
2
(b) (i) A= 1 (6x2 – x3) = 3x2 – 1 x3
2 2
dA 3
dx = 6x – 2 x2
dA = dA × dx
dt dx dt
( ) dA 3
dt = 6x – 2 x2 (2)
[ ] Apabila = 2, dA = 3 (2)2 (2)
x dt 6(2) – 2
= (12 – 6)(2)
= 12
Kadar tokokan A ialah 12 unit2 s–1
[ ](ii) Apabila x = 5, dA = 3 (5)2 (2)
dt 6(5) – 2
= (30 – 37.5)(2)
= –15
º Kadar susutan A ialah 15 unit2 s–1
65
16. (a) r = h
12 20
r = 12 h
20
r = 3 h …1
5
V = 1 π r2h …2
3
( )Gantikan
1 ke dalam 2: V = 1 π 3 h 2h
3 5
( ) 1 9
= 3 π 25 h2 h
= 3 π h3 (Tertunjuk)
3 25
(b) (i) V= 25 π h3
dV = 9 π h2
dh 25
Apabila h = 5, dh = 4.99 – 5 = – 0.01
dan ddVh = 9 π (5)2
25
= 9π
d V ≈ dV × d h
dh
d V = 9π × – 0.01
= – 0.09π
º Perubahan kecil dalam isi padu air ialah – 0.09π cm3.
(ii) Jika h menyusut sebanyak p%,
d h = – 1p00(h) = – 1p0h0
dV
d V ≈ dh × d h
d V = 9 π h2 × – 1p0h0
25
9
= – 2 500 π ph3
Jadi, dV × 100% = – 2 9 π ph3 × 100%
V 500
3
25 π h3
= –3p
º Isi padu menyusut sebanyak 3p%.
66